I N OVAN ‘ E FORWARD, ALWAYS PROGRESSING

INOVANCE
o]
=

|8

I
‘xLEIEEILI

Medium-Sized PLC

Programming Guide (Motion Control)

Q@Q@Q >

Ao evaent NCH e e Data code 19012378 A0O

Preface

Preface

Thank you for choosing the medium-sized programmable logic controller (PLC) and expansion modules

developed by Inovance and using InoProShop.

@® Intended Audience

This guide is intended for technicians who configure, program, and commission motion control

functions through the medium-sized PLC (including AM400/AM500/AM600/AC700/AP700/AC800). Readers

of this guide are supposed to have a basic understanding of automation and PLC.

Before using the software, read this guide carefully and perform operations correctly with due attention

to safety.

@® Termsand Abbreviations

Term/Abbr. Description
InoProShop Programming software for the medium-sized PLC
Gateway Dedicated communication service for the medium-sized PLC in this guide
PLC Programmable logic controller

@ Revision History

Date

Version

Change Description

Sept 2024

A0O

First release

Contents

Contents

PrOACE .. ettt 1
1. Overview Of the PLCOPEN SPECITICATION ...ttt sttt s et e s s sese st et et s e s seseses et sssssnsesesnsen 7
2. Composition of the Motion CoNtrol APPLICAtION SYSEEMviuiueieieiriiicicicieieisee ettt s et s bbb s s sesesesessanas 9
3. Composition of the Motion CONTrOL PrOZIam........c.ccuiciiiiiiiiiciiciiie ettt 11
3.1 USEI PrOgram SEIUCTUIEoiiiiiiiiicitc ettt bbb bbbt b e bbb eb et b bt b b nene 11

3.1.1 USer Program COMPOSITIONc.cueuiuiiririeieteteittsie sttt ettt ettt ettt e b bttt bttt bbb bt s et bebenens 11

3L 1.2 TASK TP ittt ettt et b sttt bbb b s ettt et b b s s e bbb bRtttk h s h et bbbt s ettt ebenenent 11

3.1.3 Benefits of a User Program Consisting of MUILIPIE POUSc.ceueriiriiieieieiniiccecietetsseeceeieiee et eesesenene 12

3.1.4 How to Achieve Both Logic Control and Motion Control in User Program............cceeueerinieiniennieninieeeisieneienennne 13

3.2 Writing and CommisSioning @ SIMPLE USEr PrOZIAMc.cuvuiiiriurueiririiiseieeeeeisesestesesesssessssesesssesesesessssssssssssssessssssssssssssesesssssssnes 13

3.2.1 CrEatiNG @ PrOJECE ettt et b ettt b et bbbt e bt st bt st eb et e bbbt et ettt st nene 14

3.2.2 Writing POUS fOr FUNCLION PrOCESSINGcvevviiriiaticieieieiniiesctetetetseseescetaeiese ettt tea st s bttt esessssaeacaesene 15

3.2.3 Setting MOtOr PArameEterscciiiiiiiiiiiiiiii bbb 17

3.2 4 Writing MarqUEE CONTIOL LOZIC ...veveviiirieeieieieiriricseieieieisis ettt a st s ettt s st seb et se e s s e st et esesaenenenesns 19

3.2.5 Associating a Variable with the Hardware OULPUL POIT.........oueueuiiiiriiieieicce et 19

3.2.6 Troubleshooting User Program COMPIlationc.ccccueuriiiiecicieinininieccieieieie ettt ettt aene 20

3.2.7 Monitoring the RUNNING Of the USEI PrOZIamcccucuiiiiriiiccicieieinre ettt 21

3.2.8 Summary of Typical Steps of Writing @ Motion CONtrol ProJECt.......viiieeeeerieccieieieiscceeeie e 21

4. Execution Mechanism of the Motion CONtrOL PrOZIAMc.v ettt eae 25
4.1 Task and Configuration iN the USEr PrOJECT.ceieuiiiriciritieirtiets ettt ettt bbbt bes 25

4.2 Dataflow Analysis of the EthErCAT BUS NEEWOIKc.eueveuiiiiiiieietetiieietete ettt es bbbt s bbb e e 27

4.3 Data Process for Communication With SErvO SLAVESc.ciciieiiiiiiiieiici ettt ses 29

4.3.1 CONLrOL INFOIMELION PrOCESS.vieiiaceiiiciteciettie ettt ettt ettt 30

4.3.2 CiA402 Data Object Dictionary and Common Objects fOr SErVO DIVEScccveeereiririiseeieeiesesse e esssssssssssesesenns 33

4.3.3 Configuration of SErvo AXiS MOTOr PAramELErsccviiiueueieiriririceieieieiees ettt b ettt ettt bebeseeas 46

4.3.4 EtherCAT Network Status Initialization and Man@gEmMENTcvuieuiueueirirriieeieeiss ettt seseseens 49

4.3.5 Servo Axis and /O Port CONtrol Data REFIESN........ocviuieeeeeceeeeee ettt ettt ettt eseseeseasenarenas 51

4.4 TIMING Of MC Data TranSMISSION.....vutueuiuetriseteiscieitietteeiseseieetsetstse s s bt bt es b ss bbbttt s bbbt b et st et sttt bbb eiebes 52

4.5 Processing Mechanism for Executing MC FUNCEION BLOCKSvriiieiieieieieiiccicieieieis ettt 53

4.5.1 Cyclic Synchronous Position Control Mode for Servo Motion COMMaNdSceerrriieeeeenrriceeieieessseesesesesesnens 53

4.5.2 Data StrUCTUIE OF the SEIVO AXIS c...ucuiuieciiecirieciritiertieete ettt sttt ettt enate 54

4.5.3 Servo Axis Status and TranSitioN RULESccccuceieiiiiccieierse ettt ettt neene 55

4.5.4 Execution Logic of the MC FUNCEION BLOCK......c.cuiuiuiiiiiiicicicicirsr ettt ettt 56

4.5.5 Data Interaction Between POUs of Tasks of Different Priorities.........cceieuieuniciniicinieicniieieieseieeeeesseeeneneees 58

5. Application Programming Of USEI PrOZIAM ...c..cccucueuiieurimeirieieieicisie ettt ettt bbbttt eneae 61
5.1. MC Programming For Single-axis MC POSIHIONINGc.cevururiiiieueieiriniiecieteteesesesesceciciete s st secae e esesesesessssencace 61

5.1.1 Notes for MC Application PrOZramMiNgc.ceeceeeueueurininiiscietetetsestsescecieiesese st ebeses ettt ses sttt esesssseaeaesesene 61

5.1.2 MC Function Blocks Commonly Used for Single-AxXiS CONIOL. ... iuieuerriicicieieisis ettt seseseens 61

5.1.3 MC Commands and PDO/SDO CONFIGUIALIONvuiuiueeeieirieiiiscieieieieistseeeieie ettt s s nenenes 62

Contents

5.2 Motion Control Programming for Multi-axis Cam SyNChroNIiZationcocceienieeuriciricieieiciseeecee et ssessnaeens 63
5.2.1 Main FUNction BlOCKS FOr Cam RUNNINE ...c.c.eururiiietieieieieiriies ettt cieiese sttt sttt s bt ettt ssaesesenene 64
5.2.2 Master and Slave Axes in Relative POSItION MOAE.......c...ccviueiieiniiiiiicicicicieee ettt 67
5.2.3 Master Axis in Absolute Position Mode and Slave Axis in Relative Position Mode.........cccoveeeeeennnicccennneecenens 67
5.2.4 Master Axis in Relative Position Mode and Slave Axis in Absolute Position Mode...........covvecccueeinnnicececieininneeceenene 68

5.3 Cyclic Mode Characteristics Of the Cam TabLec.cucuiiiiiiieieeee ettt bbb ebenan 68
5.3.1 OffSet fOr CamMIN OPEIrAtiON ...c.cvivieieiieieieteieesits ettt ettt ettt sttt et s e es s e ae s e s et et es st et ese s s ssesesesesesnens 69
5.3.2 Calculation of Master Axis Scaling DUFNG Cam RUNNING......vveeeiriririieeeeeieiesiieeeesesessesesssesssesessssesesssssesesessssnssssssens 69
5.3.3 Calculation of Slave Axis Scaling DUINE Cam RUNNING ...c.c.vvuevrimiuriiieiriieinieisireieieieisese ettt st sesnene 70
5.3.4 Characteristics of and Precautions for Using Offset and Scale in Cam RUNNINGc.cvvvirniceerennncceieesseeeieaene 70
5.3.5MC_CamOut FB for EXiting Cam RUNNING SEAUS......c.evvviireieieiriririeeieieieieisireeseseietetsssseesesesesesess et se s ssssssesesesenns 71

5.4 MC_Phasing FB for Cam Master AXis Phase AQJUSTMENTccveureirriiieeeiessseeeeeie st ssesesesesessenens 71

5.5 Cam Table Design and £S5 DAta SEIUCLUIEc.c.euiiiiiecieieieirire ettt bbbttt s e 72
5.5.1 Characteristics 0f the Cam Table ...ttt ettt 72
5.5.2 INpUt MOAE Of the CaM TaDIE ...ttt ettt ettt sesesennnas 73
5.5.3 Internal Data Structure and Arrays of the Cam Table ..o 74

6. COMMON MC INSEIUCTIONS. ...ttt bbbt b et b bbbttt d bbbttt b ettt et b b beiean 7

6.1 SINGLE-AXIS INSTIUCTIONS .ttt ettt bbbttt b ettt b bttt h bbbttt b bt ea et seneacs 7
MC_ACCELEIAtIONPIOFIIE ...ttt 7
MO _HAIE ettt ettt ettt 79
MO _HalESUPEITMPOSEA ...ttt bbb bttt b ke b bttt b e b e b e b sttt e b e b e b e s ettt ebebenan 81
MO _HOME bbb bbb bbb bbb bbb bbbt 83
MC_MOVEADSOIULE ...ttt bbbt 85
MC_MOVEAAAILIVE ...ttt sttt bbbt sesae 91
MC_MOVEREIALIVE ...ttt ettt bbbttt s et bebenenene 93
MC_MOVESUPEITMPOSEM ...ttt b ettt b e sttt bbb e b e s sttt e b e b ebe b e s sttt bebebesenen e bbb ebebeseneae s ebesenan 97
MO _MOVEVELOCIEY . vttt ittt ettt sttt h bbbt e et s b b e bttt s st et e b et e s saesesebeseteta 99
MC_MOVEFEEM. ...ttt ettt ettt bbbt b s 102
MC _POSTEIONPIOTIIE ...ttt bttt es 109
M _POWET ..t bbb bbb bbb bbb bbb bbbt 111
MC_REAAACLUAIPOSITIONcecveiiiiitc bbbt 113
MC_REAAAXISEITON ..ottt ettt ettt bbbt b s 115
MC_REAABOOIPAIAMELET ...ttt ettt et ettt bbbttt e et senenenns 116
MC_REAASEALUS ..ttt bbbkttt b bbbttt b et s st b ettt 117
MO REAAPAIAMETET ...ttt ettt ettt ettt et et et e st e st essestessessestessensessensensensensensensensensensessensessensensensersensenseneansensereans 118
MO _RESEE ...ttt 120
M _SEOP ettt ettt sttt b bbb h e h et b R b R a R e bt e st h e b b e bR bt et ettt be st be bt et ene e eneten 121
MC_VEIOCIEYPIOFILE ..veiiiveieieieteiei ettt b bbbt s st s b b an st bbbt s seseseses s s nsnsesesenes 123
MO W TIEEBOOIPAIAMELEL ...ttt ettt ettt ettt e st et e st es s estessessensessensessensensensensensessensensensensensessensesseseenssnsereans 125
MC_WITEEPAIAMELET ...ttt ettt nenene 126
MC A O T TGO .ttt ettt b bbb b sttt b b e b b sttt b e b e b b hen ettt e b b st n ettt ebenen 127
MC_REAAACTUAITONGUE ...ttt b bbb b e b b s ettt b e b b senea st et bebebe s e et bebebetan 128

Contents

MC_REAAACTUAIVEIOCILY .ttt b bttt b bbb bbb sttt et e b b s ettt bebetan 129
Y LG =14 2o Ty 14 o] s PO TSROSO TR URRN 130
MC_TOUCHPIODE ..ttt ettt es 132
SMC_MOVECONEINUOUSADSOIULE ...ttt ettt sene 134
SMC_MOVECONEINUOUSREIALIVE ...ttt ettt bbbttt eacacsene 136
MO _JO vvvvveeeeeeeeeeeeeeeeeee s eeesesss e esssss e 138
SIMC_INCR ettt 139
SMEC3_PEISISTPOSITION.eeiiriiicicicieieie ettt ettt ettt nen et aene 141
SMC3_PersistPOSIEIONSINGIETUMNvuiitiiiiccicteteteir ettt sttt ettt et eacacaene 143
SMC_CheCKAXISCOMMUINTICATION ettt et et ettt et e et e et e eateeueeesessessesseeeseeeseeesesasesesenseeseeseessesaeesseessesasesssesssesseessesnne 145
SMC_FOLOWPOSIHION. ...ttt ettt ettt 147
SMC_FOLOWPOSITIONVEIOCITY ... eutuiteieicicirtset ettt ettt ettt ettt 151
SMC_FOLOWVELIOCILY .ttt bbbttt b ettt et b b b s et b e b ek b s e n et st eb e b e b b ettt ebebeseneneas 153
SIMC _FOUOWSEEVALUES ...ttt ettt et e et e et eeateeaeeeaesse st eese e st e s e easesaseseeenseeseeseessesasesseensessesssesssesseessesane 154
SMC_SEtCONLIOIEIMOGE. ...ttt bttt ettt 156
SIMC_CRECKLIMILS .ttt ettt ettt n et ane 158
SMC_GEEMAXSEEACCDEC ...ttt bbbttt 160
SMC_GEEMAXSEEVEIOCITY ..ttt ettt ettt b et ekttt bbb b st b b et e s s e a et et ebebebesesese s b ebesesennnnas 161
MO _GEETIACKINEETTON ..ttt ettt sttt b bttt s st sttt b b et ettt es s b et et e s s eseseseseseen 163
SIMC_INPOSTTION ...ttt et b ettt e s ettt nen et sene 164
SMC_REAASEEPOSITION ...ttt ettt ettt sttt sttt a s e e 167
SIMC_SEETONGUE ..ttt ettt et sa et b e sttt et et e st e e s e et et et e st et et e st eatea s estea e eatesees e eaeeseebeebesaeebesuesaeebeeaens 168
SMC_BacklashCOmMPENSATIONcueueuiuiiiiieieieicieec ettt s ettt bbbt s s s b es et et e e st esesebesesesessesesesesennnnas 169
SMC_ChaNGEGEAITNERALIO ...veviieieeieieietetrisi ettt ettt s ettt ee st s s e s s e s e es s ese st et et e s eseasse s e s et es e s esesesesesesessnsnsnees 172
SIMC_REAAFBEITO ...ttt b ettt ettt h ekttt s ettt et a s saeacacaene 173
SIMC _CLEATFBEITON ettt ettt et ettt et e et e et e saeeea e e s e e te e st eeaeeeaeesesasesaseeseees s et eessesasesesenseenseesseessesssesseensesasesssesssesseessesane 175
SMC3_PErSiStPOSITIONLOZICAL ..vuvueeeeivieieieisiicicieieteteirt ettt ettt b ettt ettt ettt es s taeaenesene 176
SMOC_HOMINE -ttt et bbbttt b sttt bbb b sttt b bbb ettt b b b es ettt et bbbt 178
MC_TOTGUECONEIOL ...ttt b bttt b e b b sttt b e b b hen et ettt e b b s ettt et ebanen 182
MO MIMIEAIATESTOP ..tttk et bbb b s sttt b b e b s s et b e b e b e b e s sttt et b e b bene sttt bebetn 184
MC _RESEEFOIOWINGEITO ...ttt bbb bbbttt es 186
MC S EETONGUELIMIT ...ttt bbbttt bbbttt b bbbttt ettt b b sttt bebebes 188
MC_REAADIGITALINPUL .ottt bbbttt bbb sttt b e b b h sttt e b b st sebebeten 190
HIMC _RESEE ... bbb bbb bbb bbbt 191
Y LY Yo 1 VY [=] I gL €O 193
6.2 Axis Group Instructions (Master/Slave AXIS INSEIUCLIONS)vcuiueiruriririiieieieieisre ettt seseaesesenen 194
SMC_CAMBREZISTEN ..ttt b bbbt b et b st e st e bt st e bt b e s et eb et e b et e b e e e b en e e s et eb e e b et benennene 194
SMC_GEtCaMSIAVESEIPOSITION.cuvvteiiiicicietetetetrt ettt bbbttt sttt et a e bene 197
SMC_GEETAPPEIVAIUE ...ttt ekttt b ettt ettt bene 199
MC_CAMTADIESELECT ittt bbb es 201
MC_CAMOUL ...ttt 215

M G EATIN .ttt ettt ettt ettt et et e et e s e e e s e e st ess e s e e st e st esaess e st e st e st e st e Rt e Rt e Rt eneeRteRseneeseeReeaeesaeseesseseeseesseae et eeseereeseeseeseerena 218

Contents

MC_GATOUL ...ttt b ettt b s 220

MO P RASINE ettt ettt ettt b bbbkttt et bbbt b et bbb bttt e bbbttt b ettt 227
SMC_CAMBOUNGS ..ottt ettt sttt ettt bbbttt benacie 230
SMC_CAMBOUNGAS_POSccuiriiiriiiicieieieisisi ettt ettt s ettt e sttt s ettt b et eneneeasacaene 233
SMC_WITEECAM <.ttt bbbttt e sttt bbbt ci bt etaets 234

6.3 Other FUNCEIONAL SPECITICATIONSouiuiiieieieieii ettt ettt b ettt b bbb e s ebebese s ses et sesesenan 235

6.3. 1 INSErUCHION CACRE ...ttt ettt ettt 235

6.3.2 HIEEINE LML 1ottt ettt bbbt s bbb bttt e b b e b bttt et et esenenea 237

6.3.3 Defaults of Motion CONtrol FUNCHION BLOCKSc.cu ittt ettt 238

6.3.4 CUINVE REVEISAL PrEVENTION ...ttt ettt b ettt bbb s ettt b b s ettt et besebe s e s et b ebesesennnnas 239

6.4 AXIS GIOUP INSEIUCTIONSuuiiittteic ettt b bttt b bttt et bbbt s bbb bttt st b bt e sesebenes 240

6.4.1 MC_GrOUPENGDIEV2 ..ottt ettt ettt bbbttt ettt 246

6.4.2 MC_GrOUPDISADIEV2 ...ttt bbbkttt b ek s ettt e b bbbttt e bt e b enenea 247

6.4.3 MC_GIOUPHOIMEVZ ...ttt ettt ettt sttt st b e et et e et et et et e e s e st ea s e s e st ea s eat e st e bt eaeeseebeebeebeebesaesaeebenaens 248

6.4.4 MC_GroUPSEPOSITIONV2ouiiiiiiiiiiriet ettt bbbttt sttt ettt ettt 250

6.4.5 MC_GroUupREAAACTUAIPOSITIONV2 ...ttt ettt bbbttt 251

6.4.6 MC_GroUpREAAACTUAIVEIOCITYV2.. ..ttt ettt bbbttt et 253

6.4.7 MC_GroupReadACTUAIACCELEIAtIONV2cuiiiiiiieieieieiet ettt ettt ettt ettt bbb senenea 254

6.4.8 MU _GIOUPSTOPVZ...ciiiiieiieiteieeit ettt sttt st sttt ettt ettt et et et e e s et en et e st e s e st e st e st e st e st en s e st e st es e eneeseebeebeeseebeenesaeebenne s 256

6.4.9 MC_GIOUPHAIEVZ .ottt sttt sttt s s e s st et et e s eaenennnens 259

6.4.10 MC_GrOUPSELOVEITIAEY2 ...ttt ettt bbb sttt b et e b sttt e b e b e b e b e sttt et et eseneneas 262

6.4.11 MC_MOVELINEATREIATIVEVZ ...ttt ettt eat et st e et e et e e eae et e etesatesatesae et eessesssesatesseessesasesssesstesseesseeane 264

6.4.12 MC_MOVELINEATADSOIULEV2 ...ttt sttt 277

6.4.13 MC_MOVECITCULAIREIALIVEV2 ...ttt ettt 287

6.4.14 MC_MOVECITCULArADSOIUTEV2 ...ttt ettt ettt sene 296

6.4.15 MC_GIOUPRESELVZ ...ttt ettt sttt sttt sttt ettt e e s e st easeat e bt e bt e bt eseebeebeeaeebesaesaeebenne e 304

6.4.16 MC_GIOUPREAAEITONV2oiveviiiiiiieieieteteeet ettt b ettt b bbb s s s s et s e b esesesese s esesesesesesese st esesesennnnas 306

6.4.17 MC_GrOUPREAASIATUSVZ ...ttt et ettt e e s e es s e s st et et eseaenenenens 307

6.4.18 MC_GIrOUPINTEITUDPTVZ c..iiiiieteete ettt ettt ettt sttt eb et b e bt b et e b et st et ebe e benenene 309

6.4.19 MC_GrOUPCONTINUEV2 ..ottt ettt ettt b ettt ettt b et bt b e st b e bt et e st e st s eb e b eb et eb et eben b e b et et eneebeneabenenene 311

6.4.20 AXIS GIOUP ETTOT COUES. ..uiuiieiiieiiiiiiieieieteteiettet ettt ettt ettt s s es et s st sesesesas et s ebesesesese s esesesesesesesessesesesesennnnas 313

5.5.4 Reference and Dynamic Switchover of the Cam Table ..o 320

7. SIMULation aNd COMMISSIONINGeueiiieiieieieieiriritte ettt ettt cb ettt b b bttt h bttt bbbt et se et h b b et ettt bbbt etnenens 322
7.1 SIMULELION CONTIOLET ..ttt bbbttt bttt bbbt et neeacs 322

7.2 SIMULGLION SEIVO DIIVE ..ttt ettt ettt sttt b ekttt es bbbttt s e bt et et et enn 323
Appendix A Homing Modes SUPPOItEd DY ISE20Nc.ciriiririeueieiiiriieieietei ettt ettt ettt bbbttt ebe ettt ebebenen 325
A.1 DESCriPtioN Of HOMING MOUES:......cuvieieeieieieisiiicie ettt s ettt s et e s s s s s s s et s e se s et et e s esnsnsnsnnsees 325
Appendix B: CiA402 Common Data Object Cheat Sheet SUPPOrted by ISE20Nc.c.ouviieeueiereiriiriicieieieesseeeieiese e eeeaene 335
APPENTIX C EFTOT COUES .vuvuiririuiieteiiistieietetetsesetstaeaesesese s es s esesesesessesesessaesesesesesaesesesesesesesaeseasassesesesesseseseseses et e s e easaeaeses et e s esesesesesesesasnensnsaes 339

.. Chapter 1 Overview of the

PLCopen Specification

1. Overview of the PLCopen Specification

1. Overview of the PLCopen Specification

IEC 61131 is an international standard for general-purpose programmable logic controllers (PLCs). It
was initiated by several leading PLC technology companies in Europe as an industry standard. Part 3 of
this standard, IEC 61131-3, provides international specifications for PLC programming and has defined
standards for six programming languages.

PLCopen is a promotion group based in Europe for IEC 61131-3. It is a global membership organization
where several renowned PLC manufacturers have contributed to refining certain technical details. The
aim is to achieve programming standardization and eliminate technological differences and barriers
among different PLC manufacturers. This enables users to program different brands of PLCs without the
need to learn additional programming methods.

In China, the corresponding national standard, GBT15969.3, was released in 1995 and updated in
2005. It serves as the recommended design standard for PLC device manufacturers. Thereis also a
corresponding PLCopen promotion organization in China.

The PLCopen Specification not only provides recommendations for standardizing general logic control
instructions, program structures, and keywords in various languages, but also specifies technical
specifications for the motion control (MC) function blocks. This includes naming conventions, specific
functions, input and output variable definitions, and relevant timing logic, ensuring maximum
compatibility and interoperability in user programming technologies.

The medium-sized PLC adopts the CODESYS programming platform from 3S-Smart Software Solutions
GmbH, a German company. This platform fully supports the PLCopen Specification, allowing users to
refer to numerous standard function libraries. The programming flexibility of high-level languages makes
it easy for PLC manufacturers and users to develop proprietary function blocks and instruction libraries.
By utilizing existing control programs, they can create industry-specific process packages to improve
programming efficiency.

2 Composition of the Motion
Control Application System

2. Composition of the Motion Control Application System

2. Composition of the Motion Control
Application System

The medium-sized PLC is a general-purpose programmable logic controller with the SoftMotion motion
control function (CAM/CNC/ROBOT). It controls multiple motion axes through the EtherCAT bus. The
following figure shows the typical control bus network, where the IS620N servo is controlled through the
bus, and the /O expansion rack is connected to the CPU module of the medium-sized PLC through the
EtherCAT bus.

In the typical motion control network shown below, AM600 is the control master and the servo axes and
remote I/O are slaves. The EtherCAT bus is a real-time bus, and the clock of its first slave is used as the
reference synchronization clock of the whole network. Therefore, the servo must be installed in the front
end of the EtherCAT bus network, that is, the 1# slave of the network must be the servo. The EtherCAT
remote module (RTU-ETC) has no internal clock unit, so it is typically installed in the middle or back end
of the network requiring motion control.

AMG600 Controller
L t l Local expansion I/0
EtherCAT HSIO port
n# EtherCAT

IS620N
servo drive

servomotor{i00 @OD @O EOY

Motion control (MC) means that the controller commands, through the EtherCAT real-time bus, the servo
to run based on software calculations and digital instructions. MC benefits from the high-speed (100
Mbps) and high-frequency (1 ms per communication cycle) interaction of the EtherCAT bus, providing
higher accuracy and promptness compared with the traditional pulse control. Correspondingly, MC
brings about some programming approaches different from conventional ladder diagram logic control,
requiring the use of function blocks that contain more underlying functions.

Remote expansion I/0

.. 3. Composition of the Motion

Control Program

=1Ll=

3. Composition of the Motion Control Program

3. Composition of the Motion Control
Program

3.1 User Program Structure

The medium-sized PLC is developed based on a multi-tasking operating system, which runs function
modules in a multi-tasking mode. A user program can be divided into multiple tasks to be executed
separately based on the task priority set by the user.

When writing a user program for the medium-sized PLC, users can divide the program into multiple
program organization units based on the type of services processed in the application system and the
degree of urgency. In addition, they can specify the execution trigger conditions for each task or the
corresponding execution interval (also called execution period) to achieve the optimal control response
of the application system.

3.1.1 User Program Composition

As introduced earlier, the multi-tasking mode can be adopted for the medium-sized PLC, that is, several
tasks can be executed "at the same time", and each task can have several user program organization
units (POUs). The following figure shows the typical composition.

s . N
User project
Task 1 Task 2 _ IEC library
— —— — ~ P -— - -~ -
Ve N Ve m N Dedicated
/ A TR)
POU5
\ S)
~ Ll N S [
~ ~ - —_— — -
Task3__ — — FB
- N Taskn - =— — —
4 SESET
\ m) Camcurven
S~ —_— - (\ POU _
N _ = CNCcurven
. J

A user project is composed of multiple POUs, which are classified into several task groups based on the
POU execution characteristics. Each task group is configured with its own execution characteristics.
POUs that are not included in task configuration will not be executed.

The user project also contains some objects supporting the user program, such as the library functions,
global variables (GVLs), function blocks (FBs), CAM curves for cam definition, and CNC curves for multi-

axis interpolation trajectory definition, as part of the user program.

3.1.2 Task Type

Task configuration enables users to divide the user program into several task groups based on the
execution requirements. Users can set different execution trigger conditions, execution intervals, and
priorities for the task groups.

Common tasks of the medium-sized PLC include the EtherCAT task, CANopen task, HSIO high-speed

-11-

3. Composition of the Motion Control Program

interrupt task, and main cyclic task. The main body of the user program related to motion control is
executed under the EtherCAT task.

R

EtherCAT task CANopen task External interrupt task Common task
(Bus period 1, priority 0) (Bus period 2, priority 1) (Tr;fggg:arle,dp%ﬁ)t(;ezrral @ | (Execution period 3, priority 16)

i
‘ | Global variable data exchange 1 between tasks | ‘
1

i
Global variable data exchange 2 between tasks | ‘
i

v

o Tri y ixed ti © Triggers the execution at a fixed time o Triggers the execution at a fixed time

Triggers the execution at afixed time interval ° Triggers POU execution by external signal interval

interval

o i N i o Executes the POUs completely each time

o Executes the POUS completely each Executes the POUs completely each time Executes once per triggering : seompie

i . o May be nterrupted by a higher-priori

time © May be interrupted by an EtherCAT task o May be interrupted by a higher-priority task pred by ahigherpriortty
B : task

Executes multiple POUs by sequence o Executes multiple POUs by sequence o Executes multiple POUs by sequence

The EtherCAT task is one of the most important tasks for the medium-sized PLC, responsible for
real-time processing of motion control functions. It operates as a clock interrupt task with a short
execution interval and the highest priority. Once specified time conditions are met, the EtherCAT task
unconditionally interrupts other tasks and initiates its execution. The interruption continues until all
POUs configured under the EtherCAT task have been executed.

Multiple POUs can be specified for a task and these POUs will be executed one by one in the order
specified in the task configuration, as shown in the following figure.

PO Execution
sequence
ETHERCAT.EtherCAT _Ta

PLC_PRquiiiiiiiiiii:
PDU_“:'D qiiiiiiiiiiiiii

PDUE qiiiiiiiiiiiiiii

The three POUs shown in the figure will be executed in the order of PLC_PRG, POU_ipo, and POU2. The
order should be arranged properly, especially when there are global variable update operations and
judgment.

There is also a POU named ETHERCAT.EtherCAT_Task, which is executed first by default. It can be
considered as a bus communication POU processed by the system by default once the EtherCAT task is
executed. It involves the PDO sending and receiving between the master and all slaves, as well as the
update to each servo axis data structure.

3.1.3 Benefits of a User Program Consisting of Multiple POUs

Processing programs with different execution periods should be compiled in different POUs. For
example, POUs executed based on the EtherCAT period, external interrupt program POUs, and POUs
processed based on a 20-ms time period must be written separately.

To improve the readability of a program, you may use different POUs and name them straightforward

3. Composition of the Motion Control Program

based on the control process sections, operational objects, and physical structural components.

For example, in C programming, you may create an independent POU for a repeatedly called processing
program, so that the program can be easily called by your project and reused by other projects.

When multiple programmers collaborate on creating a program, they may write and commission the
POUs of their respective process sections, and finally combine the POUs into a user program project.

The programming software InoProShop supports six programming languages. You may choose the most
suitable language based on the type of processing logic. Generally, a POU can be written in only one
programming language. If multiple programming languages are needed in a project, you may divide the
program into multiple POUs.

3.1.4 How to Achieve Both Logic Control and Motion Control in User Program

In an application system, synchronous control and trajectory control require higher timeliness compared
with logic control. In the AM600 user program, you may group motion control (MC) POUs into the
EtherCAT task group, and logic control POUs into general task groups. If specific program variables are
declared as global variables, coordinated actions with logic control can be achieved in motion control.

For single-axis MC applications, where the control objects are the servo drive and motor, servo enable,
homing, positioning control, velocity control, torque control, and stop and reset are required. For multi-
axis synchronous MC applications, such as cam control and trajectory interpolation control, the PLC
provides the corresponding MC function blocks to complete these operations. Therefore, function blocks
are commonly used control commands in motion control programming, just like the use of prefabricated
parts instead of gravel and cement in construction to improve construction efficiency.

A user program can control the execution trigger and termination of the function blocks based on the
control logic of the application system. In addition, the user program can determine the execution status
of the function blocks and determine whether there is an error. The PLCopen Specification defines the
axis state data structures. The controller system establishes a corresponding data structure for each
servo axis that has been configured by the user and automatically updates the status of the servo axes
in time in each EtherCAT period. The user program can monitor the operation status of the servo axes by
accessing the variables of the data structure and use the status variables as the basis for logic control,
making it easy to achieve logic control and motion control in a user program.

3.2 Writing and Commissioning a Simple User Program

Before explaining the principle of the programming system and the methods for developing motion
control programs, the following uses an example of a basic servo control program to give you a basic
understanding of the programming process. In the following example, the application system consists of
a CPU module, IS620N servo systems, and AM600-RTU-ECTA and 0016ERN expansion modules.

3. Composition of the Motion Control Program

AMG600 controller
CPU module

EtherCAT

EtherCAT

B
-

| 1IS620N
| servo drive 2

@ RTU-ETC
@ 0016 ERN
@ 1600 ENN

Servo motor 2

Servo motor 1

Assume that we need to write a simple program to achieve the following functions on the AM600 CPU

controller:

Enable servo motor 1 to jog.

Every time the command flag is triggered, servo motor 2 runs for two revolutions and then stops, which
is used to test whether the system is functioning normally.

Perform marquee output through the I/0 output port on the expansion rack, with the value bits
circularly shifted by 1 bit from low to high every 0.5 seconds within the range of 16 bits.

The programmi

ng example involves the following approach and steps:

Motion control of the servo needs to be processed in the EtherCAT task period with high timeliness. The
marquee control can be processed in the 20-ms task period as timeliness is not critical.

3.2.1 Creating a Project

Run InoProShop and create a user project. On the screen shown below, double-click "Network

Configuration” i

[Device (AME00-CPU1608TR/TN)
@ Fauit Diagnose
=9 Network Canfiguration
& EthercaT Config
£ Locabus Config
=Bl PLC Logic
=} Application
1) Library Manager
PLC_PRG (PRG)
= (& Task Configuration
=g ETHERCAT

& ETHERCAT

=g MainTask
@] pLc_PRG

vireas liet

9 Ree

n the left pane to add the EtherCAT network bus.

EET

[Hodbus Master
et

_ca
[J{ANopen Master

FEthernet
[JModbusTCP Master
FEtherCal

EtherCAT Naster
JEtherNet/IP
[]EtherNet/IP Master []Etheret/IP Slave

[Modbus Slave [JFtee Protocol

L
[Hfodbus Master [idodbus $lave [JFree Protocal

[<aNlink Master [<ANlink Slave [JFree CAN

[ModbusTCP Slave [JHelsec Mzster

EtherCAT_Task

According to the wiring sequence of the devices in the actual system, add two IS620N servos and one
AM600-RTU-ECTA remote module (expansion rack) to the network, as shown in the following figure.

-14-

3. Composition of the Motion Control Program

Devices

-3 x

=" TestProject.project =
=i~ [Device (AM5DO-CPU 1608TP/TN)

@ Fault Diagnose
=% Network Configuraton
&y ethercaT config
&9 Localus Config
= B PLc Logic
=} Application
i) Library Manager
PLC_PRG (PRG)
=@ Task Configuration
=-§& ETHERCAT
5 ETHERCAT EtherCAT Task
=g MainTask
& ric_PrG
(=) Resources List
'8 SoftMotion General Axis Fool
[l +16H_SPEED_IO (High Speed 10 Module)
=[] ETHERCAT (EtherCAT Master SoftMotion)
= [15620N (15620N_ECAT_v2.6.9)
HP Axis (Axis)
= [1s620N_1 (15520N_ECAT v2.6.9)
WP axis_1 (axis)
() AME00_RTU_ECTA (AMSOO-RTU-ECTA_2.0.

‘% Network Configuration X
& Refresh | §23 Copy

1S620N

Axis
i

Paste {f Delete $Undo

I1S620N
] Axis_1
—

Redo

@ Import EDS File

= || Network Devices List ~ 3 x
% Serial Port
= | @9 canopen Port
A || @ Ethemnet Part
F EthercaT Port
=] Inovance
EtherCAT Fieldbus modules
Vier
EtherCAT Eridge Terminal (GR20-ECEC)
Terminal Coupler
i
[l GLi0-RTUECTA_2.0.7.0
[l BL20-RTUECT_1.3.20.0
il GL2RTU-ECT32 3.0.7.0
Serva Drives
[l Esea0_iAxis_w0.18
[l Ession_ECAT vi3
~-[l] 15620N_ECAT v2.6.9
~fill STDB0_1Axis_06008
[l svs1oN_ECAT vi14
il sv520M_ECAT v0.1.3
il sve30_iaxis_03715
[l sve3s_1axis_03415
[l sv640_1axis 03615

~Jf] SV6B0_1Axis_00815
[l sve70_1axis_0s002
[l svesn_iaxis_04002
[l svesDL1Axis_04701
[l SV6B0S1AXis_D4002
WMult_Axis Drive
Digital 10
Analog 10
Pulse Cutput
Encoder Input
Junction Slave

J Ethernet/IP Part

Double-click the RTU-ECT module to enter the expansion rack configuration screen. Add expansion |/0
modules according to the actual wiring order, as shown in the following figure.

Devices

> 1 X

B Network ¢

&) Hardware

=[5 TestProject? project
= (2 Device (AM§00-CPUI608TP/TN)
@ Fault Diagnose

EtherCAT

=82 Netnork Configuration
B EthercaT Config
£ LocalBus Config
= B pLC Logic
=-1C} Application
i) ibrary Manager
PLC_PRG (PRG)
= (&3 Task Configuration
=% ETHERCAT
48] ETHERCAT.Ether CAT Task
=g MainTask
& pLc_PRG
(=] Resources List
"3 SoftMotion General Asxis Pool
H +iGH_SPEED IO (Hich Speed 10 Maduie)
= (M| ETHERCAT (EtherCAT Master SoftMotion)
=[] 15620N (1S620N_ECAT v2.6.9)
HaP Asis (Axis)
=[] 15620N_1 (IS620N_ECAT_v2.6.9)
P Axis_1 (Axis)
= AmMs00_RTU_ECTA (AMS00-RTU-ECTA 2.0,
[GL10_0016ER (AME00-0D1SETN(ETP/ER)

& Refresh |2 Copy

Paste

x

Delete ‘) Undo

Redo

= || In\Cutput Module List -7 X
B[1o Modules

= Digital Modules

S

[l GL10_0032ETN

[l GL10_3200END
i
[l cLio_ooiseTe
[l GL10_oo1sETN

[l GL10_0016ER
Analog Modules
il cLi0_4aD
[l cL10_oa
Temperature Modules
fll cL10_eT
[l cLio_sTC
il cL10_atc
Other modules

Now, we have completed the hardware configuration in the user project, which is consistent with the

wiring in the actual application of AM600.

3.2.2 Writing POUs for Function Processing

Let's take a look at the default task configuration in the InoProShop programming environment. There is
a MainTask task by default. Click on it and we can find that it contains a POU named EHERCAT.EtherCAT _
Task, indicating that it is an EtherCAT task. There is another POU named PLC_PRG under this task, which
was created when the project was created. We can write servo control program code in PLC_PRG.

-15-

3. Composition of the Motion Control Program

=5 TestProject2 praject -
= () Device (AME00-CPU1608TR/TN)
@ Fault Diagnose
= 9 Netwark Configuration
b EtherCAT Config
#5 Localbus Config
=-Elll PLC Logic
= £} Application
() Lirary Mansger
PLC_PRG (PRG)
=88 Task Configuration
= g8 MainTask
1) ETHERCAT EtherCAT Task
& pLc_PrRG
(=) Resources List
‘& SoftMotion General Axis Pool
H HicH_SPEED_IO (High Speed 10 Module)
=[] ETHERCAT (EtherCAT Master Softvotion)
= 15620M (IS620N_ECAT v2.6.9)
HgP pods (Axis)
= () 15620N_1 (1S620N_ECAT_v2.6.9)
WP Axis_1 (Axis)
=[] AMBDO_RTU_ECTA (AMB00-RTU-ECTA_2.0.7
[GL10_0016ER (AMS0O0-00 16ETNETP/ER)

Configuration

priority (0.31) |0

Type

Cydic N Interval (e.q. t=200ms): \WDD ps v
Watchdog

[Enzble

Time (2.g. t¥200ms): ms

Sensitivity: 1

4k Add Call ¥ Remove Call [# Change Call | # Move Up 4 Move Down | *~ Open POU
POU Comment

ETHERCAT.EtherCAT _Task

PLC_PRG

Double-click PLC_PRG in the left pane to enter the POU editing screen. Input the content shown in the
following figure. To be concise, variables not used in the MC function block example are not displayed.

=5 TestProjectz -
= [Device (AMB00-CPU1608TR/TH)
@ Fault Diagnose
=% Netwark Configuraton
&5 EthercaT Config
85 LocalBus Config
=B PLC Logic
=1} Application
il Library Manager
PLC_PRG (PRG)
= (&8 Task Configuration
=g MainTask
{3 ETHERCAT EtherCAT_Task
& pLc_PrG
(=) Resources List
‘3 SoftMotion General Axis Pool
[l +16+_SPEED IO (High Speed 10 Moduie)
=[] ETHERCAT (EtherCAT Master SoftMotion)
= [15620N (IS620N_ECAT_v2.6.9)
W& A (Axis)
=[] 15620N_t (15620N_ECAT v2.5.8)
P rods_1 (Axis)
= [AMB00_RTU_ECTA (AME0O-RTUECTA_2.0.7
[GL10_D016ER (AME0D-00 18ETN{ETP ER)

oveRelative 1:
JFL:BOOL;
JBL:BOOL:

RUNF1: BOOL;

10| END_VER

100 % |(ER

Ixis, Enable:= TRUE, bRequlatorOn:= TRUE, bDriveStart:=
Axis 1, Enable:= TRUE, bRegulatorOn:= TRUE, bDriveStart

1 MC_Power0(Axis
2 MC Powerl(Axis

Axisi= Bxis,

4 MC_Jog 1(
C JogForward:= JF1,

JogBackward:= JB1,
Velocity:= 1,
Acceleration: /Beeeleration Time:1/10s
Deceleration: //Deceleration Time:l/10s
11
12 MC_MoveRslative_1(//Bxis MoveRel
13 Axisi= Bxis 1,
14 Execute:= RUNFL,
15
le

/103
/108

//Dzceleration Time:l

RUNF1

[/Each time this flag

UE,):
TRUE,)

is set, it can trigger MC_MoveRelative to execute once

//Enable Axis
//Enable Axisl

The servo trial run code shown above can make servo 1 jog and servo 2 run for two revolutions each

time the RUNF1 flag is set.

To achieve this goal, we need to configure the EtherCAT master communication PDO based on the servo
drive. The configuration items checked in the following figure are data for interaction during every

EtherCAT communication.

=-5) TestProectz ~
= [Device (AMB00-CPU1608TR/TH)
@ Fault Diagnose
=9 Network Configuration
& ethercaT Config
&5 Localbus config
= 80 pLcLogic
=€} Application
i) Library Manager
PLC_PRG (PRG)
= (&3 Task Configuration
=g MainTask
) ETHERCAT EtherCAT Task
@) ric_rrc
[=) Resources List
"3 SoftMotion General Axis Pool
[l Hi6H_SPEED IO (High Speed 10 Moduie)
=[] ETHERCAT (EtherCAT Master Softiotion)
= [15620N (1S620N_ECAT_v2.6.9)
HgP Axis (xis)
=+ [15620N_t (IS620N_ECAT_v2.6.9)
HgP Axis_1 (Axis)
=- [AMB00_RTU_ECTA (AMS0D-RTUECTA_2.0.7
({J GL10_D018ER (AMEDO-0D16ETH(ETP/ER)

generel @Add) Edit JDelete Collapse Display Al - | Loadpdo OuifByte): 120
play [~ PDO Assign PDO Config PDO Len iyt 280
Process Data(PDO Setting)
Input/OutPut Name Index Sublindex Size Type Flag SM
e =) % [] Output | 1streceive PDO Mapping 1621600 0 8.0 Editable
. = [7] Output 258th receive PDO Mapping 1621701 16200 12.0 F 2
"# Contralwerd 1626040 16200 20 UINT
CoE Online "# Targetposition 1626074 16200 40 DINT
"¢ Touch probe function 1626088 16200 20 UINT
Serve Function Code “# Physical sutputs 1660FE 16 40 UDINT
EtherCAT 1/0 Mapping @[] Output | 259th receive PDO Mapping F
&[] output h receive PDO Mapping F
EtherCAT IEC Objects #-[J Output | 261th receive PDO Mapping F
®-[] Output | 262th receive PDO Mapping 6200 F
Status ®-[] Input | st transmit PDO Mapping 0 22.0 Editable
T =-[/] Input 258th transmit PDO Mapping 16#1B01 16#00 28.0 F 3
b Error code 164603F 20 UINT
b Statusword 166041 20 UINT
*p Position actual value 1646064 40 DINT
*p Torque actusl value 1646077 20 INT
* Following error actual value 1646074 40 DINT
* Touch probestatus 1646089 20 UINT
* Touch probe pos1pos value 166084 40 DINT
R Tauch probe pos2 pos value 162608C 40 DINT
R Digitalinputs 16260FD 40 UDINT
®-[] Input | 255th transmit PDO Mapping 161602 F
#-[] mput h transmit PDO Mapping 16 3 F
#-[J put 261th transmit PDO Mapping 16#1B04 F

Some items that only require AM600 to rewrite the servo function code are available in the SDO
configuration, such as the electronic gear ratio and homing mode. The communication operates function

-16-

3. Composition of the Motion Control Program

codes of the servo, and only one rewrite operation is carried out after power-on.

Devices v ox & MainTask |5] Pcrre [1s620n x
=) Testroect2 =
= (i) Device (AMG00-CPUI1G08TP/TN)

General @ndd CEdit J{Delet= @ MoveUp & MoveDown DownloadAl{SDO) CancelAlDownload(sDo) []Di

@ Fault Diagnose rocess Data(FD0 Setting) Line IndexSubindex Name Value Bitlength IsDownload Abortif error Jump to line if err.. Nestline Comment
=-3% Network Configuration 1 166060:16%00 Modesofoperaon 8 B O (] 0 Modes of operation
B EthercaT confia Startup parameters(SDO Setting)
¥ Localsus Config
= Bl PLc Logic Orline
= G Application CoE anline
() Library Manager
PLC_PRG (PRG) Servo Function Code
=[# Task Configuration
=& MoinTask EtherCAT1/0 Mapping
8] ETHERCAT EtherCAT Task EtherCAT IEC Objects
&) pic_rre
[Resources List Status

‘3 SoftMotion General Axis Pool
. HIGH_SPEED_IO (High Speed IO Module)
= (W] ETHERCAT (Ether CAT Master SoftMotion)

’ ﬁ IS620N (IS620N_ECAT_v2.6.9)
B A ()

4 m IS620N_L1 (IS620N_ECAT_v2.6.9)
B Axis_1 (Axis)

= m AMEQD_RTU_ECTA (AME00-RTU-ECTA_2.0.
[6L10_0DI6ER (AMB00-0D16ETN(ETP/ER)

Information

In the preceding figure, the servo operation mode is set to "Cyclic Synchronization Position Mode".
Simply put, the AM600 controller calculates the position to reach in the next period (TargetPosition) in
each EtherCAT task execution and sends it to the servo drive. The servo will complete the movement to
the next target point based on the distance/time command.

3.2.3 Setting Motor Parameters

To accurately control the motion position, the controller must accurately calculate the position of the
servo motor. Based on the operating and stroke characteristics of the application system, set the "Axis
Type and Limitation" parameters for the controller to internally calculate the position based on feedback
from the motor encoder. In this way, the controller can get the accurate position and avoid errors caused
by the overflow of encoder pulses, as shown in the following figure.

4l Testrojectz -
=i bevice (AME0O-CPU1608TR/TH) | General Setting Axcs type nd Limits
@ Fault Diagnose Scaling [virtual mode ~ Seftware limits Velocity ramp type
=% Network Configuration [Activate Negative pulse @ Trapozoid
H EtherCAT Config Homing Setting Osine
5 Localbus Config © Modulo Positive 1000.0| pulse
=Bl PLC Logic Mapping O Quadratic
= £ Application U Over limits reaction O Quadratic(smooth)
(i) Library Manager ® Decelerat .
) Finite eceleration pulse/s
PLC_PRG (PRG) fﬂ’gag":‘";fﬁcﬁe"e”CDSMUZ' vo Identification
= (58 rask configurstion SM_Drive_ETC_GenericDSP402: Wax Distance pule =]
= -g& mainTask IEC Objects
% ETHERCAT.EtherCAT Task Status CNC Dynamic limits Position lag supervision
PLC_PRG
= - e Vel pulsess Acc: pulse/s? Dec: pulse/s? Jerk: pulse/st Deactivated ~
3 Resources List nformation
30 0
2 SoftMotion General Axis Pool | 1000] | 1000 | 10000 Lag limit: 1. pulse

Bl HicH_SPEED IO (High Speed IO Module)
= M| ETHERCAT (EtherCAT Master SoftMotion)

=[] 15620N (15520N_ECAT _v2.6.9)
HgP Axis (Axis)

= [15620N_1 (IS620N_ECAT v2.6.9)
P tois_1 (Axis)

=- (i AMEDO_RTU_ECTA (AMS0D-RTU-ECTA_2.0.7
[6L10_0016ER. (AM500-001SETH(ETP /ER)

For a screw type reciprocating mechanism with a limited stroke, we often need to know its absolute
position within the range of the screw stroke. In this case, select "Linear Mode".

For a unidirectionally revolving axis, the linear mode is prone to position count overflow, resulting in
position calculation errors. In this case, select "Cyclic Mode".

The encoder parameters (such as resolution) of the motor and the mechanical reduction ratio of the
application system may vary. We need to set them based on the actual situation during programming, as
shown in the following figure.

-17-

-18-

3. Composition of the Motion Control Program

=3 Testroect2 =

= [Device (AME0O-CPU1508TR /TN) S

Unitin application

O Fait Diogrose g @puse Omm Oum Onm Odegee Qinch
=3 Network Configuration Travel Distance
8 etercar config TErmn T [Invert Direction
| gy} ooy P S —— putare
5 Apikcation R @® Do not use gearbox
i) ibrary Manager Work travel distance per motor rotation pulse/rey

SM_Drive_ETC_GenericDSP402: 10
PLC_PRG (PRG) Mapping ~ !
= ok confouroten Su_Drive ETC_Genericompaon:
= 2 MainTask IEC Objects Command pulse count per motor rotation [DINT]
Number of pulses [pulse] = * Travel distance [Unit in application]
Status Work travel distance per motor rotation [LREAL]

Reference: Unit conversion formula

8] ETHERCAT EtherCAT Task
8 ricrre
I3 Resources List Information O Use gearbox
% Softhotion General A Pocl Wark travel distance per work rotation 1 pulse/rev
B +iGH_SPEED 10 (Hich Speed 10 Module) (Please refer to the Modulo value in General Setting if the Axis type is Modulo mode)
=[] ETHERCAT (EtherCAT Master SoftMotion)
= (3 13620N (1S520N_ECAT v2.6.9) Numerator of the gear ratio (the number of teeth (5) in the following picture)
HP Axis (Axis)
= [15620N_1 (1S620N_ECAT_v2.6.9)

Denominator of the gear ratio ithe number of teeth (4) in the following picture) 1

B s 1 (i) The Axis type i Linear mode.
=i AMBO0_RTU_ECTA (AMBO0-RTU-ECTA_2.0.
@ 6L10_oo16eR (Ame00-00 16ETNETR/ER) Reference: Unit conversion formula
Command pulse count per motor rotation [DINT] Numerator of the gear ratio [DINT]
Number of pulses [pulse] = . * Travel distance [Unit in application]
Work travel distance per work rotation [LREAL] Denominator of the gear ratio [DINT]

M: Motor, W: Work

Motors used with the IS620N servo are available in two typical resolutions. For general incremental
encoders, the resolution is 20 bits, indicating 1,048,576 pulses per revolution. For absolute encoders, the
resolution is 23 bits, indicating 8,388,608 pulses per revolution. In actual operation, the controller sends
the number of pulses required for operation to the servo drive by EtherCAT communication to control
the servo operation. Therefore, the encoder resolution must be set according to the actual situation, as
shown in the preceding figure.

For example, for a 20-bit encoder without a reducer, when the servo is commanded to run for 1 unit, the
servo will select 1 revolution (axis motion for 360°).

If you set the "Applied Unit" parameter circled in the preceding figure to 360, when the servo is
commanded to run for 1 unit, the servo will select 1/360 revolutions (axis motion for 1°). Similarly,
after relevant parameters (commonly known as electronic gear ratios) are set based on the actual
mechanical structure, the distance command can be input based on the physical travel distance unit of
the application system. This makes the control parameters easy to understand.

Note that the parameters circled in the preceding figure can only be set to integers. The ratio of the
parameters in the same row is a valid ratio value, and you can input appropriate integer values on the
left and right sides of a row. For example, for a servo motor that drives a screw with a lead of 5.6 mm (that
is, the screw slider moves for 5.6 mm when the screw rotates for 1 revolution) through a 4:1 mechanical
reduction mechanism, set the parameters as follows:

Travel Distance

[] Invert Direction

Command pulse count per motor rotation Customize v l 16#100000J pulse/rev

(® Do not use gearbox

Work travel distance per motor rotation I:' pulse/rev

The dimension of the parameter circled in the figure can be used as the parameter dimension of distance
in the MC command.

The servo drive and motor parameters explained above must be set and verified in the corresponding
items for both Axis and Axis_1. Otherwise, the desired operation characteristics cannot be achieved.

Example:
After the motor gear ratio is set, the statement

MC_MoveAbsolute(Axisl:=1, Distance:=80.00);//Command to move to the 80.00
mm position in the coordinates

in the user program can make the workpiece move to the 80.00 mm position in the
coordinates. The position command unit is the physical coordinate unit of the device,

which facilitates commissioning.

3. Composition of the Motion Control Program

3.2.4 Writing Marquee Control Logic

The logic control program of marquees has a lower requirement on timeliness than the motion control
of servo axis. It only requires that the DO port changes twice per second. You can set a common task to
execute the corresponding POU once every 20 ms to update bit shift. Add a POU first:

L.i LocalBus Config 7 JF1:BOOL ;
2 JBL:BOOL;
=Bl PLcLoge 5 RUNFL: BOOL;
=} | Application 10 | END VAR
p Copy . -
m Lib 11
PL Paste
= @ T .;'ﬁ': cut 1 MC Power((hxis:= Lxis, E
53 2 MC Powerl{zis:= Axis 1,
=g % Delete -
o -
Properties... -. Alarm configuration...
| e | 55}; Axis Group. ..
_ i7 Add Object 3 st 71
[Resources &l Cam table... !
- |[Z) AddFalder... JBl,
& softMotion > Editob @. CNC program. ..
] Edit Object
. HIGH_SP ,@ CNC settings... 10,
S
=-[W] ETHERCAT Edit Object With... ng Ut 10, }
= [135208 Collapse Application e
Ha? A g :
& “JE Lagin H Global Variable List. ..
= [156200 T (S620N_ECAT VZ.5.9) 1,
Image Poal...
P axis_1 (Axis) £
=3
=[] AMBDO_RTU_ECTA (AM&0O-RTU-ECTA | Interface... -
m 6L10_D016ER (AME00-0016ETH(ET) H Metwork Variable List (Receiver)... S :
ﬂ Metwork Variable List (Sender)... o
T Persistent variables. ..
PersistentVarsValueDetector. ..
8] Pou...
& POU for implicit checks. .,
ﬂ Redpe Manager...
OUs | 3 Devices B8 Symbol Configuration...

Write a program as follows in the POU and add another task:

= B0 pLC Logic

=4} Application
m Library Manager
PLC_PRG (PRE)

1 //BOU Count
POU (PRG,
EREL 2 //Deal Once Each 500ms
= Task Confinuratinn -
By i
= @ Mai Copy 4 H //Move one bit from low to high
@ Paste 5 IF =0 THEN
3 bi=1;
H| & cut - ’

_ 7 END IF

[ResourcesList | 3 Delets = EWD IF

2 SoftMotion Gen: Properties. .. El

B HicH_sPeED -

= (W] ETHERCAT (Eth] Add Object Mg Tk ”
) Add Folder...

= 15620M (156 :'
‘? Axis (s [7° EditObject

= m S6200 1 Edit Object with...
H? Axis_ Collapse Application

= m AMG00_RTU_ECTA (AMS00-RTU-ECTA_2.0.7

The above program is written in ST. As the POU is executed every 20 ms, we use variable A as the number
of times of POU execution, and multiply variable b by two every 25 times of execution (500/20 in the
program), that is, shift the binary value by one bit from low to high. Send variable b to the marquee
output port, and we can achieve the marquee effect.

3.2.5 Associating a Variable with the Hardware Output Port

According to the previous requirements, associate variable b in the POU program with the I/O module
port in the expansion RTU-ETC rack. Specifically, select the I/O module in the application system

-19-

-20-

3. Composition of the Motion Control Program

network, select the I/0 port, and specify the variable of the POU program in its I/O mapping. User-

written program variables are selected in the POU under "Application\", as shown in the following figure.

svices v R

) Teserroect2 project =

= [{ Device (AMB00-CPU160TP/TN)
@ Fault Diagnose
=-$€ Network Configuration
¥ EthercaT config
¥ Localbus Config
= B0 PLC Logic
=L} Application

5] POU [lask (1] AMBUU_KIU_ECIA X

Filter Show all

- Add FB for IO Channel.. Go to Instance

@ Mamiask [|Z] MLUPRG |) IS6AN [8s Axs
General Find
Variabl
Process Data(PDO Setting) E:a ©
Ck
Startup parameters(SD0 Setting) "y
+

online

CoE Online

Mapping Channel Address
GL10_0016ER Digital output CH1-8bit %0QB32
GL10_0016ER Digital output CH2-8bit %QB33

Device status %IW34

Type Defoult Value Unit
USINT
usiNT
UINT

(i) Library Manager
PLC_PRG (PRG)

Device Diagnosis

Description
6L10_0016ER Digital output CH1-8bit
GL10_0016ER Digital output CH2-8bit
Device status

POU (PRE) Input Assistant
= [7otk Coniquration EtherCAT /0 Mapping
& Text Search | Categories
& ManTsk EtherCAT IEC Objects
) ETHERCAT.EtherCAT Task Varizbles ~ Name Address
] pLC_PrRG Status = r_}_Apphcmn
=& Task #-[E] PLC_FRG
) pou Information -
= Erou
() Resources List P
" SoftMotion General Axis Pool b

i+ SPEED_1O (Hich Speed 10 Moduie)
=[] ETHERCAT (EtherCAT Master Softiotion)

=[] 1s620M (15620N_ECAT v2.6.9)
H&P s (Axis)

=[] 15620N_1 (1S520N_ECAT v2.6.9)
B Axs_1 (Axis)

= [AMB00_RTU_ECTA (AMB0D-RTU-ECTA_2.0.7
[6L 10_0016ER (AMBO0D-0D16ETN(ETP/ER)

Assign the marquee POU to the new task (Task) and configure task execution. Set the priority to a routine

priority (such as 15) and set the

B Testhroject2 project
=] Device (AM00-CPU108TR/TN)
@ Fault Diagnose
=% Network Configuration
$ EthercaT Config
A& LocaBus Config
= B0 PLC Logic
=€} Application
Library Manager
PLC_PRG (PRG)
POu £RE)
= (& Task Configuration
=& mainTask
) ETHERCAT EtherCAT Task
&) pic_rre
=g Task
& rou
{5 Resourees List
" softMotion General Axis Pocl
[l rieH_sPeED IO (High Speed 10 Module)
=B ETHERCAT (EtherCAT Master SoftMotion)

- @ ToConfig_Globals
#-{} ToDrvEthercatiib
2 sDElement:
+ {} sM3_Basic
#{} su3_cne
#-{} SM3_Math
(2 sMelement

<

(5L10_00 166R. Digital output CH| d

execution interval to 20 ms.

~|| configuration

priority (0.31) [15] []
Type
Cycic ~ Interval (e.g. t#200ms): [t#20ms

Watchdog
[JEnable

Time (e.g. t£200ms):
Sensitivity: 1
4k Add Call % Remove Call (£ Change Call

Move Up & Move Down | *3Open POU

POU Comment
FOU

3.2.6 Troubleshooting User Program Compilation

j j

project” - p(V1.8.0.0)

- o X
Fle Edt Vew Project Buld Onine Debug Tools Widow Hep
(€] Bed & RNl Rt Ol | 5
Devices - 1 x 2 MainTask IS620N [Device AMG00_RTU_ECTA PLC_PRG B Network Conf v
=5 Testfroject =]~
=i Device (AME00-CPU1B0STR/TH) [
@ FaultDiagnose
=3¢ Network Configuration
5 canopen Confia
B EtherCAT Config
4 Localbus Config
= B0 PLC Logic
= €} Application 00% €] |
{fif) Lirary Manager T
PLC_PRG (PRG)
= [#8 Task Configuration 5
=& CANOPEN 3
{8 canopen_Task 5 ER_IF
=& wainTask L EDIE
B ETHERCAT EtherCAT Task
&) pic_pre
= Task
&i[pou
-
Vessages -Total 0 error(s), 3 werning(s), 5 message(s) TEX
Build - [@ 0errort) [® 2 warning(s) [@ 5 messagets) | X ¥
Description Project Object Position B
@ size of giobal data: 420327 bytes
@ Total allocated memory size for code and data: 2390224 bytes
€ Memory area 0 contains Data, Input, Output, Code and Nonsafe Data: size: 3757291 bytes , highest used address: 2830224, largest contiguous me. .
@ Memory area 3 contains Memory: size: 524288 bytes , highest used address: 524288, largest contiguous memory gap: 0 bytes (0 %)
Build complete 0 errors, 2 warmings : ready for download!
v
[g Config Device Information Gutput‘ [E Messages - Total 0 error(s), 3 warning(s), 5 msssags(s)]
Lost buld: @ 0 @ 2 Precompie: @ Current user: (nobody) 9

If there are compilation errors, the error type and reason will be displayed, as shown in the preceding
figure. After you double-click the error description, the cursor will go to the program editing window
for you to make corrections. After dealing with the errors one by one, compile the program until all

3. Composition of the Motion Control Program

compilation errors are rectified.

Finally, download the user program to the AM600 CPU module.

30 R i | OF I

& MainTask PLCPRG | (4] 15620 no s PoU | Tak | [AME00RTUECTA ' [fj Device x
Communication Settings Scan network... | Gateway - | Device ~
Applications
.
Backup and Restore
PLC settings ® O ®
Gateway
Users and Groups
v
Files 1P-Address: Press ENTER to set active path...
localhast
PLC shell
Part:
1217
Log

3.2.7 Monitoring the Running of the User Program

QuiBzdI&l e} [, Rl =Yh=Ran| 195G » I =
Devices S| & wanask [pepre x| [s [ne Aus pou [Task AMGOO_RTUECTA | [Devie |
=51 TestProjectz project M| pevice.Application.PLC_PRG

= 7] Device [connected] (AM0D-CPULGOST?
. Fauit Diagnose
= P network Configuration
¥ Ethercat config ¥ @ MCJog_t
8 Localeus config £ # MC_MoveRelative_1
= &0 PLC Logic # F1
= € Application [stop]

Expression
¥ MC_Fowerd
* @ MC_Powerl

Type Value Prepared value Address Comment
MC_Power

MC_Power

MC_log

MC_Moverdlative

BO0L

Library Manager
PLC_PRG (PRG)

MC_Bowerl (Axis:i= Axis_1

1 MC_Power0(Axis:— Axis, Enzblel

TRUE,); //Emable hxis
= TRUE,); //Enable Axisl

TRUE, bRegulatorOnl
= TRUE, bRegulatoxt

, Enzbl

QU FRE) 4 MC_Jog_1(/Bxisl Jog
=8 Task configuration s Ruisi= Auis //Bxis Name

= & MainTask JogForwerdl //Fostive

F R JogBackvard] JMegative

Velocity B] //Velocity:l/s

fpic prs leration @ = 10, //Acceleration Time:1/10s
=& Task Deceleration 8= 10,); //Deceleration Time:1/10s

] pou 1

MC_MoveRelative 1(
Arigi= Ax:

[Resources List
"3 SoftMotion General Axis Pool
[l +iGH_SPEED IO (High Speed TO
= [ETHERCAT (EtherCAT Master Softh
=2\ (f 1S620N (1I5620N_ECAT_v2.6.9)
ARG nxis (i)

Distencel 5]
Velocity 0]

1,
ExecuteER:= RUNFL

Bcceleration T k= 10,
Deceleration 8= 10,);

//Bxis MoveRel
//hxis Name
//Execute flag
//Distance 2
//Velocityzl/s
//hceeleration Time:1/108
//Deceleration Time:1/10s

= AT 15520N_1 (15620N_ECAT_v2.6. |D,,gm,=s

~ # | Messages - Total 0 error(s), 1wamng(s), § messace(s) v 7 x| watnt
'

AR e 1 e

In the monitoring screen, you can obse
JF1to 1 will make axis 1 jog, and resett

rve the execution of the program. For example, setting variable

ing it to 0 will make axis 1 stop. Every time variable RUNF1 is

forcibly set to 1, axis 2 will rotate for 2 revolutions.

In the RTU-ETC expansion module screen, you can see the /O output port is in marquee switching state.

<

& Manmask N) PoU | Tek (@ AM6O0_RTUECTA x| Devie | [Gmoosm | -
o Find Filter Show all - Add FB for I0 Channel.. Go to Instance Set Continuous Address
S — Variable Mapping Channel Address Type DefaultValue Current Value Prepared Value Unit Desal
=" Appication.POUD 79 GLID_ODISER Digital output CH18bit %@832 USINT G|
Startup parameters(SDO Setting) " Bito woene BOOL
"o Bit1 mg¥s2: BOOL
anline "
i Bit2 %@¥322 BOOL
SR » 5it3 me¥s:3 BOOL
"o Bit4 %@x34 BOOL
Device Diagnosis k] Bits HQMITE BOOL
" Bit6 %326 BOOL
EtherCAT1/0 Mapping "y o r———
EtherCAT IEC Objects ="y GL10_0016ER Digital output CH2-8bit %QB33 USINT GL10
g Device status %IW34 UINT. Device|
Status
Information

[10_00165R pigital output cHt-sbit

Reset AllMapping Var| Always updatevariables | Enabled 2 (aliays in bus cyde tzsk)

g = Creste new variable

% =Mapto existing variable

Now, the functions of servo jogging and rotating for 2 revolutions have been realized in programming. A

simple programming process is completed.

3.2.8 Summary of Typical Steps of Writing a Motion Control Project

According to the above example, writing a user program with MC function generally involves the

following aspects.

-21-

D)=

3. Composition of the Motion Control Program

Application system hardware configuration: Configure network parameters based on the master
controller, expansion module, network type, servo slave, and so on.

User program writing: Based on the control functions to be achieved, write in a POU (such as POU 1) for
motion control and in another POU (such as POU 2) for general logic control.

Servo drive parameter configuration: Configure the SDOs and PDOs based on the servo name and
servo operation mode in the hardware configuration. Ensure that the required communication objects
between the MC function blocks of the user program and the servo are configured in the configuration
table.

Servo motor parameter configuration: Accurately configure the encoder resolution of the servo motor
and the transmission ratio and axis motion range of the mechanical structure, so that the control object
displacement instruction precisely matches the actual displacement.

Task arrangement: According to the timeliness requirement of the control, execute the motion control
function POU 1 in the EtherCAT task, and set the interval to 2 ms and the priority to 0. Execute the
general logic control POU 2 in a general task, and set the interval to 20 ms and the priority to 16.

Online commissioning: Connect the AM600 controller to the PC through the LAN. Then, power on the
device and download the user program for commissioning. If possible, connect the servo drive system
to the AM600 controller and then perform commissioning. If no servo system is available, you can set the
servo as a virtual axis. If no AM600 controller is available, you can simulate and debug the user program
on the PC. Eliminate possible errors in the user program until the expectation is reached.

3. Composition of the Motion Control Program

Memo No.

Date /

/

-23-

.. 4, Execution Mechanism of the

Motion Control Program

4. Execution Mechanism of the Motion Control Program

4. Execution Mechanism of the Motion
Control Program

4.1 Task and Configuration in the User Project

As shown in the preceding example, you can set the execution trigger conditions, execution interval, and
execution priority for each task group. The medium-sized PLC supports the following task types:

Task Execution

Execution Characteristics Task Example
Type
EtherCAT bus task
Cyclic The POU is executed once at each configured interval. | CANopen bus task

Common cyclic tasks

The corresponding POU is executed once when
External event the HSIO status changes or the high-speed counter
readings match.

HSIO port status interrupt response task

HSIO port counter interrupt response task

Inertial slide The task is executed circularly and continuously once

C lic task
(flywheel) the execution is started. ommon cyclictasks

Task execution is triggered once under the preset state
Event 0 1 of the Boolean variable, but not under other state Soft interrupt handling POU
combinationssuchas00,11,and 10.

The task is executed circularly under the preset state 1

) Conditional execution task POU
of the Boolean variable.

State

1) Task configuration notes

Set the task type to "Cyclic". "Task Period" refers to the interval for executing this type of task. For
general logic control with slow variable changes of the common I/0O ports, the task period can be
relatively long, for example, 20 ms. For tasks that need to be processed in a timely manner, the task
period can be set to a smaller value.

EtherCAT bus communication is a special "cyclic" task and has the top priority. The setpoint of the
task period will also be the communication period of the EtherCAT bus, which generally ranges from 1
ms to 4 ms. A smaller setpoint indicates higher precision of motion control. When more axes are to be
controlled, a longer period is required. Otherwise, the CPU may be overloaded with calculation.

Similarly, CANopen bus communication is another special "cyclic" task and has the second highest
priority. The setpoint of the task period will also be the communication period of the CANopen bus,
which generally ranges from 4 ms to 8 ms. A smaller setpoint indicates higher precision of motion
control. When more axes are to be controlled, the communication duration is longer, and a longer period
is required.

Some tasks are executed only when certain statuses are met. For example, task execution is triggered by
a status change of the HSIO port, also known as the HSIO interrupt signal, rather than by interval.

For a task configuration, you can set only one execution type, interval, and priority. If you want different
execution characteristics, add multiple task configurations.

One task configuration can include multiple POUs, which will be executed at the same interval and in the
order that the POUs are added to the task.

As shown in the following figure, there are 4 tasks under "Task Configuration" in InoProShop. Double-
click an existing task. You can see the configured parameters of the task in the right window.

4. Execution Mechanism of the Motion Control Program

Jevices * # X |3 tetworkConfigraton | & HSID PoU POU_L POU2 & ETHERCAT X
=9 rests ~| | |fEsrfgiraton |

= (@ Device (AMS0D-CPU 1508TP/TY)

@, Fault Diagnose priority (0.31 % [0]

= € Network Configuration

5 Canopen Config

8§ EtherCAT Config

Type

Cydic v| nterval e.q. te200ms): [4000 s v

Watchdog
[enable

Time (e.. ££200ms):

PLC_PRG (RG)
POU (PRG)
POU_ (PRG)
POU_2 (PRG)

= (B Task Configuration
= & canopen PoU Commen t

Sensitivity:

4 Add Call X Remove Call [Change Call | # Move Up & Move Down |~ Open POU |

5] cANOpen_Task ETHERCAT. EtherCAT Tack
- & EvERCAT PoU
8] ETHERCAT EtherCAT Task POU_L

= ¢ MainTask
&) rLc_rre
(2 Resources List

You can add a task by selecting "Task Configuration" and right-clicking.

Note that the task with the ETHERCAT.EtherCAT_Task project in the picture above will be an EtherCAT
bus task and its task priority should be set to 0.

2) Task prioritization

By default, the system software of the medium-sized PLC assigns different priorities for different types of
task configurations. This ensures that important tasks, such as motion control, are executed with priority
and the controller can be reasonably used in applications that require high-performance MC.

The task priority order is as follows (do not forcibly modify the priority order):

Default Priority Task Type Description
0 EtherCAT bus task Top priority. Only one EtherCAT task is allowed.
1 HSIO interrupt task zzifz\(je:itg.hest priority. One HSIO task is allowed for each HSIO input
2 CANopen interrupt task Third highest priority. Only one CANopen task is allowed.
3 ModbusTCP
4 ModbusRTU
16 MainPOU Lowest priority. Up to 4 tasks with different periods are allowed.

A smaller priority setpoint indicates a higher priority. High-priority POUs can interrupt the execution of
low-priority POUs, as shown in the following figure, where ECT stands for EtherCAT.

ECT period (priority 0) ECT period ECT period ECT period ECT period
10 | UPRG | MC 10 | UPRG [MC 10 | UPRG | MC 10 | UPRG | MC 10 | UPRG | MC
| Execution , Execution . Execution Execution Execution
| completed A | completed A Task period completed A completed A i completed
\ A (priority 16))M(\4
Halt 10 | UPRG. Halt UPRG| Halt 10 | UPRG.
Execytion
completed
Task period (priority;17)
Y
Halt UPRG Halt .UPRG. Halt UPRG|| Execution
completed

From the preceding figure, we can find that:

When the controller executes tasks, there is a time alignment point that is invisible to users, as shown on
the left side of the preceding figure. From this time point, the tasks are executed from top priority to the
lowest priority.

The execution of a low-priority task may be interrupted by a high-priority task. After the high-priority
task has been executed, the low-priority task interrupted previously will be resumed.

An EtherCAT task has the top priority. When this task is started based on the EtherCAT period, all POUs
under the task will be executed once before low-priority tasks are executed.

3) Requirements of execution period setting in task configuration

-26-

4. Execution Mechanism of the Motion Control Program

The medium-sized PLC system software uses a multi-tasking approach to execute "tasks" of the user
program and assigns an execution period for each "task". Some global variables may be accessed and
modified for different POUs. Therefore, global variables must be synchronized, which can be performed
at the "time alignment point" of the task. The periods of cyclic tasks are set in integer multiples.

For example, set the EtherCAT period to 1 ms, 2 ms, or 4 ms, the period of a general cyclic task to 20 ms,
and the period of a lower-priority cyclic task to 100 ms. Do not set the EtherCAT period to 3 ms, 6 ms, 7
ms, or 9 ms, as this tends to result in a non-integral multiple relationship.

4.2 Dataflow Analysis of the EtherCAT Bus Network

1) Introduction to the EtherCAT bus network

Generally, the EtherCAT bus uses a RJ45 socket and a multi-core Ethernet cable. A Cat5e cable is
recommended as it can improve the antijamming ability of the network.

Similar to a general-purpose Ethernet network, the EtherCAT bus network features a communication
rate of 100 Mbps, and the cable length of each neighboring slave can be up to 100 meters. The following
figure shows the equivalent connection relationships within the network and the communication

dataflow.
Communication | Ethernet EtherCAT Slave 1 Slave 1 Slave 2 Slave 2 Slave n Slave n
frame structure header header output data| inputdata outputdata | input data output data | input data
4 L4 LA
ESC .} E
L1 V H 2 . ! 3 Ln
™ e X |zeitige 1 RX Sl - lar

RX DG x| _ [rx[zoike jix___ ‘Esﬁ e
The ESC of the last

EtherCAT master EtherCAT slave 1 EtherCAT slave 2 EtherCAT slave n slave automatically
closes the loop and
returns the data.

Different from a general Ethernet, the EtherCAT network allows only one EtherCAT master. In addition,
the EtherCAT slave controller (ESC), which is a dedicated network control chip inside the slave, receives
communication data in real time in a communication frame and inserts response data into the data
frame. This enables the master to access multiple slaves in just one communication frame, which greatly
improves communication efficiency.

The communication data frame in the EtherCAT bus uses the UDP/IP frame structure of Ethernet data
and frame structure type 0x88A4, except that the data fields in the middle need to be prepared and
parsed according to the EtherCAT protocol, as shown in the following figure.

Frame

' check

Ethernet frame header

1 1 !
€ » l€—!
) >

| 6bytes 6 bytes 2bytes | 2bytes 44-1498 bytes | 4bytes |
Y | _———|

Destination Destination ~ |Frame type EtherCAT
address address 0x88A4 header EtL==tlicats FCs
“T1bit 1bit 4bits /_AR
EtherCAT |Reserved|
data length bit Type |Sub-message | Sub-message |Sub-message

10 bytes Up to 1486 byte‘s\\‘\zby‘t\es

Sub-message
e Data WKC

The EtherCAT data fields can be further defined and parsed by "EtherCAT frame" according to a certain
protocol. As long as the master and the slave comply with this protocol, data communication can be
achieved. Generally, the CANopen Over EtherCAT (CoE) and Sercos Over EtherCAT (SoE) protocols are
used, just like the transmission of Modbus protocol frame data (ModbusTCP) over a TCP/IP network.

The medium-sized PLC uses the CoE protocol, which is the DS402 industry standard (also known as
CiA402) whose application layer protocol is the CANopen protocol. It is a dedicated protocol for servo
motion control, with the following highlights:

4. Execution Mechanism of the Motion Control Program

1) For high communication efficiency, the master and slave do not use the request-response manner
for communication. Instead, in the initialization phase of the bus network, the master gives the slave
a list of data items to be sent, such as "PDOs", informing the slave of the data items the master will
send and their order (TPDO), as well as the data items the slave is required to send and their order
(RPDO). In this way, the slave knows how to parse the master's data frames when receiving them,
and can prepare the required response data.

When the master's data frames arrive, the network control chip (ESC) of each slave can obtain the
corresponding data segments for the slave's processor to parse according to the configuration table and
insert a response data block at the appropriate stage of the EtherCAT communication frame to return to
the master.

2) According to the timeliness requirements, the communication data is categorized into "process data
(PDO)", which is scheduled to be sent and received cyclically at a high frequency, and "service data
(SDO)", which is exchanged only when needed.

3) Aservo drive can have as many as hundreds of control command parameters, operation status
parameters, and function code setting parameters. The parameters are named in different ways
depending on servo drive brands. To ensure the interchangeability of different brands of masters
and slaves, the CiA402 protocol provides an "object dictionary (OD)", which defines all function
codes, operation commands and their setpoint meaning, as well as operation status parameters
and dimensions to be used in servo drives. The CiA402 protocol ensures the universality and
interchangeability of products developed by different suppliers so that the products can work with
the medium-sized PLC.

4) The configuration of communication objects between the master and slave is a prerequisite for
ensuring the successful execution of the MC function blocks. When executing the MC function
blocks in the user program, the controller needs to use specific "communication data objects" to
send commands to the servo slave and read the slave axis status. Programmers should configure
the required data objects in the TPDO and RPDO so that the master controller can control the servo
slave.

5) The slave device may not support all the item definitions in the "object dictionary (OD)", but the
"device description file (EDS)" from the device manufacturer defines the objects. Programmers
need to import the EDS of the slave device in InoProShop to know the supported objects before
configuring the device.

6) When writing a user project, users select and configure the TPDO and RPDO tables based on the
control needs. During operation, the master will automatically forward the data specified by the
data object tables to the corresponding slave through communication. Select only the necessary
configuration items to reduce the load of EtherCAT communication and improve the communication
efficiency.

7) The service data object (SDO) configuration items are typically used to initialize function codes of
the slave device at the beginning of system operation, and access parameters through function
blocks such as MC_SDOread during the operation process. SDO communication features relatively
low timeliness and takes up additional EtherCAT communication overhead, and even causes
synchronization timeout faults in applications with a high bus loading rate. Therefore, exercise
caution when using these configuration items.

After understanding the CiA402 OD and the slave parameter objects commonly used by MC function
blocks, you can reasonably configure the PDO and SDO tables.

2) Clock synchronization for the EtherCAT bus

Typically, a network for multi-axis motion control needs to make multiple slaves start or stop moving

-08-

4. Execution Mechanism of the Motion Control Program

synchronously. The EtherCAT network has a distributed clock (DC) mechanism, which allows all the
intelligent slaves (such as servo drives and intelligent high-speed expansion modules) to have a
consistent clock. Based on the configured synchronization trigger period, each slave will output the data
written by the master to the execution unit to achieve synchronization.

o Localclock t2 o Localclockt3 o Localclock t5
Localclocktl , Clock deviationl o, Clock deviation 2 o Clock deviation 5

o Localclocktm
(Reference clock) | Transmitdelayl o Transmit delay2 o Transmit delay 5

o Clock deviation m

© O O O O

% n wn = %
EtherCAT ~ ~ ~ 8 ~
< < < 08 <
master)))) ®
— N w 3 «

N

(___EtherCAT JT_ T T JAN J

As shown in the preceding figure, each intelligent slave has a high-resolution internal local clock (TLocal).
In the initialization phase of the EtherCAT bus, the master reads the current time of each slave and

takes the local time of the first slave as the "reference clock" of the network. In this way, the master

can calculate the "clock offset (Toffset)" of each slave relative to the reference clock and write the clock
offset to the corresponding slave for the slave to correct the clock and eliminate the static error.

In addition, in the process of transmitting communication data frames, there are transmission delays
due to the hardware network. To resolve this issue, the master sends a specific broadcast frame to

make each slave record the moment of data arrival. Then, the master reads the value of the moment
recorded by each slave and measures the total delay of returning data frames to accurately calculate the
"transmission delay (Tdelay)" of each slave. Afterwards, the master writes the transmission delay time of
each slave into the memory of the corresponding slave. With these clock correction values, the slave can
get the same clock as the reference clock t1 through calculation according to the formula of TLocal —

Toffset — Tdelay.

In an EtherCAT network, DC processing can be skipped for /O slaves that are not sensitive to the DC
clock. The EtherCAT master ignores the clock calibration for such 1/0 slaves during DC calibration.

Each slave ESC chip has a synchronization pulse width register. A synchronization unit, once activated,
regularly generates SYNC signals to validate the currently received data. For the servo drive, the received
position command is regarded as the target point to start execution.

The DC initialization and calibration of the EtherCAT network slave described above are performed
automatically by the EtherCAT master without user intervention. When the EtherCAT bus is ready, it
indicates that the DC initialization has been completed. Note that the slave with the internal clock
function should be arranged at the front end of the network if possible.

4.3 Data Process for Communication with Servo Slaves

As mentioned earlier, in the EtherCAT communication of the medium-sized PLC, the application layer
uses CoE. When the controller executes the MC user program, the communication data between the
controller system software and the servo is processed through multiple levels of functional units. The
process is shown in the following figure.

-09-

4. Execution Mechanism of the Motion Control Program

—P"Axis-B data structure | by the master
’ > Axis-1slave MC data stream

Axis-AMC data
ne write (processed by servo drive firmware)
eration

processing by the
]

S M r-——————————————— =
EtherCAT master function module

{ Axis-2 slave MC data processing
User program .
processing |
Axis _2

master

B
[| H
. >
Multi-axis MC S00data [15005604 2 P
MM functionblock [« ", On-demand === s [] 8
1 access | H 3
€ mc [3 > =
) state |11 5 > &
ﬂ—l ETC_CO_SdoRead hinef\ 11T = > &
Hi L i! | RPDO i o Cind 28> £
Single-axis MC E | L i 1 "0, = e
function block NI | | | repo s g
> e TPDO |- TPDO | a
[~ object | | object =
| misa | ! Idncuonaryl o send/ atior| \dictiona g | 3
gata || . sgr| 2
Togic variable { H & H]
L —> N MAgg(| s
S S ™ m H | A
e — 1 Ll e —a
Created and upda{éd\ = . neters of servi
automaticalty by the system USmoym;;mmmmcﬁ ‘ ‘ Configured by master peration status

AMB00 controller
EtherCAT physic
and data link

The figure shows the AM600 controller on the left side and the IS620N series servo drive and its
supporting servo motor on the right side. Network interfaces of the controller and the drive comply
with the PLCopen Specification so that both are compatible with third-party devices and can be used
interchangeably. In this way, the internal communication data process is applicable to third-party
devices complying with the CiA402 protocol. With an understanding of the function and usage of each
function block, we know the principle and approach of EtherCAT network-based motion control.

The source of MC instructions is the MC function block in the user program. The object of control
operation is the servo axis, and the status of the MC axis is stored in the content of the master controller
in the form of "axis data structure” for access by the user program.

4.3.1 Control Information Process

Step 1: Execute the MC function block of the user program and process the
command data to be sent.

When executing the user program, the controller executes the MC function block instance such as
MC_MoveRelative (Axis_1). Based on the state machine and data structure of the slave (Axis_1) in the
memory, the controller:

Checks the current state of the slave axis, and reports an MC execution error if the slave axis is not
enabled, is running in torque mode, is running in synchronization mode, is in homing operation, or is
generating an alarm.

Sends a command (ControlWord) to make the slave axis run if the slave axis is stopped, or is running in
non-synchronized position mode.

Analyzes the current running position (fActPosition), running velocity (fActVelocity), and constraints of
the slave axis such as target position, maximum allowable velocity, acceleration, and deceleration, and
calculates the required motion position instruction (TargetPosition) for the next operation period.

Waits for the data returned from the slave in the next communication period to analyze the instruction
execution of the MC function block. This enables users to know whether the instruction is being executed
(Busy), has been executed (Done), has an error (Error), is interrupted by other MC instructions (Aborted),
or is waiting for execution (Buffered).

Step 2: Place the control command data to be sent into the EtherCAT transmit
cache unit.

The command data (ControlWord and TargetPosition) to be sent to slave Axis_1 is stored in the PDO
transmit cache unit. This operation requires that these two parameters ("objects" in the CiA402) are
available in the PDO configuration table.

4. Execution Mechanism of the Motion Control Program

The PDO configuration table stores the "index number" (main index number: sub-index number) of each
control parameter to be sent and read by the master.

Purpose

This table contains a list of objects and attributes that need to be configured by the user during programming
based on the content that need to be sent cyclically for slave control.

This table is automatically sent by the controller to the slave ESC at the network initialization phase.

TPDO
configuration The controller master determines the size of the transmit cache according to this table and stores the command
table data to be sent into the transmit cache during operation.
The slave parses the received data frames according to this table during operation.
The TPDO configuration table can vary by slave.
This table contains a list of objects and attributes that need to be configured by the user during programming
based on the content to be responded automatically by the slave.
This table is automatically sent to the slave ESC at the network initialization phase.
RPDO

configuration

table

During operation, the slave prepares data according to this table and returns the data to the master by inserting
the data into the time slot of the EtherCAT data frame when the master accesses the slave.

During operation, the master parses the slave's response data in the returned data frame according to this
table.

The RPDO configuration table can vary by slave.

The following figure shows the PDO configuration table in InoProShop. The index number and data
type of each control parameter are specified by CiA402. The "index number" enables you to look up the
parameter and its width type in the "object dictionary (OD)".

€ Network Configuration & Hslo POU POU_1 pou2 g% emERcAT (¥ Hardware Configuration ({ nosveson x -
General .
@Add Edit J{Delstc Collapse Display Al ~ L62dPdc [ppoAssion [PDO Config PDO Len f“;@:tﬁ_)- 120
| Process Data(PDO Setting) Byt 260
Input/QutPut Name Index Sublndex Size Type Flag sM
Startup parameters(SDO Setting) ® O] outout | outputs 161600 16500 8.0 Editable
Online = Output Outputs 16#1701 16%00 120 F 2
" Controlword 166040 16500 20 UINT
CoE Online i Targetposition 16607A 1600 4.0 DINT
i Touch prabe function 166088 16500 20 UINT
ST i Physical outputs 16£60FE 16501 4.0 UDINT
Servo Function Code # O output | outputs 0 F
®-[] output | Outputs F
EtherCAT /O Mapping #-[] Output | Outputs F
#-[] output | Qutputs 6 F
EtherCAT IEC Objects B0 mout | Toputs 1651A00 16200 20 Editable
Status = [tput Inputs 16#1801 16400 280 F 3
“» Error code 16#603F 1600 2.0 UINT
Information 9 Statusword 1626041 16200 20 UINT
5 Position actual value 166064 1600 4.0 DINT
k] Torque actual value 1626077 16=00 20 INT
3 Following error actual value 166074 16500 40 DINT
> Touch probe status 1656083 16200 2.0 UINT
» Touch probe pos1 pos value 166084 16500 40 DINT
“> Touch probe pos2 pos value 16#608C 1600 4.0 DINT
» Digitalinputs 16£60FD 16500 40 UBINT
&[] Input Inputs. 16£1802 0 F
#- [nput Inputs. 16£1B03 F
&[] Input Inputs. 16£1B04 16500 290 F

At the initialization phase, the master sends the "PDO configuration table" to the slave. The table
contains the TPDO, RPDO, and information such as data type and width of each object, providing the
basis for the slave to parse data frames.

The TPDO configuration table stores the index number and data width information of each object.

The object storage order in the table provides a basis for the system to put data to be sent through MC
instructions into the transmit cache unit. As shown in the preceding figure, ControlWord is placed in the
first transmit unit, TargetPosition is placed in the second unit, and so on.

According to the RPDO configuration table (such as the nine "objects" in the preceding figure), the slave
stores the servo operation status data in the response cache unit based on the index number and order
of each object. When the master communication frame accesses the slave, the ESC automatically inserts
the data in the cache unit to the appropriate time slot of the data frame and returns it to the master.

The RPDO table also provides a basis for the master to parse response data from the slave.

-31-

-32-

4. Execution Mechanism of the Motion Control Program

Step 3: The master control chip sends the data in the transmit cache unit to
the slave ESC regularly, and the slave simultaneously sends the response data.

As the master, the controller generates an EtherCAT interrupt command according to the EtherCAT
clock period set by the user. After entering the EtherCAT interrupt status, the master initiates EtherCAT
communication, sends the data from the PDO transmit cache unit to several slaves through one or
several frames, and retrieves response data from slaves in the same communication frame.

Chronologically, the data from the cache unit of the controller is the command data generated from the
previous EtherCAT interrupt POU execution.

The slave's response data is not a reply to the master's query, but the current value of the "object" based
on the cyclic reply required in the RPDO configuration.
Step 4: The slave receives and parses the data sent from the master.

When the network works normally, the slave ESC receives the communication data frames sent by the
master regularly, and automatically stores the data in the communication frames into the local cache.

. . Gon Kon ity
) o vy ve eralO™ gunctOt | eloct de d
controW" xar%e“msm 1av%e‘\’e\oo 1argel O | gaes ot (%%uc\w“)be profitey 000 s WO
_ Master TPDO | Object 6040: 607A: 60FF: 6071 6060: | 60BS: 607F: RPDO 603F: | 6041
configuration table 1 Index No. 00 00 00 00 00 00 00 configuration 00 00
Type UINT DINT DINT INT SINT UINT UDINT table UINT UINT
3 Data Width } 16bit 32bit 32bit 16bit 8bit 16bit 32bit 16bit 16bit
R
Slave 1 parsesthe |~~~ == f == oo oo oo o oo o (”ea?t%rf§§ ”””””””””” i
received data string, | F1A4 5 B3205C7 01 F23201 01 E2 08 04 A0 1008 FALl 4C87 | 5DFL

After receiving a string of PDO data, the processor of the slave extracts the received data string according
to the object data type (width) specified in the TPDO table, and stores it into the control command

unit based on the parameter attributes represented by the "object index" number for servo operation
control.

Based on the object attributes and sequence specified in the RPDO configuration table, the processor of
the slave refreshes the response cache unit in the local ESC cyclically with the current operation status
and parameters of the servo axis. At an appropriate time slot, the ESC inserts the cached data into the
EtherCAT communication frame through a high-speed hardware operation and "sends" it to the master.

Step 5: The master receives and parses the data returned by the slave, updates
the axis status parameters, and determines whether execution is complete.

The controller, as the master in the EtherCAT network, sends data frames and at the same time receives
communication frames sent back from the slave network in closed loop. From these frames, the
controller extracts data strings returned by the slaves, determines the communication status of the
network, and analyzes whether the communication operation is successful.

Based on the data received from the slaves, such as Error code, Status Word, and Position Actual Value,
the controller system can determine whether the required operation position of the MC function block
instance has been reached, and refresh the status of the output variables of the MC function block
instance.

In addition, the controller system software updates the data structure of the axis status parameter in
time for access by the user program. This is one of the most powerful intrinsic functions of the medium-
sized PLC software.

To summarize, this section describes the principle of sending, receiving, and parsing EtherCAT data array
packets for the medium-sized PLC. Most of the steps are automatically performed by the system, and
users only need to understand the concept of CiA402 objects, master the common "object" types of the
servo axis, and select objects for the TPDO and RPDO configuration tables.

4. Execution Mechanism of the Motion Control Program

4.3.2 CiA402 Data Object Dictionary and Common Objects for Servo Drives

The application layer on the EtherCAT bus of the medium-sized PLC adopts the CANopen Over EtherCAT
(CoE) protocol.

CANopen is a common protocol standard, which defines different series of "industry standards" for
communication control of different types of devices, as listed below:

CiA401 for I/O modules

CiA402 for servo and motion control

CiA403 for human-machine interfaces

CiA404 for measuring devices and closed-loop control
CiA406 for encoders

CiA408 for proportional hydraulics

The EtherCAT bus communication application layer of the medium-sized PLC adopts the CANopen
DS402 (CiA402) protocol, which is the "Servo and Motion Control" Industry Standard of the CANopen
protocol. CiA402 is widely used in the motion control based on the CAN bus and EtherCAT bus network.
Controllers and servo drives (slave devices) developed by different manufacturers in accordance with
CiA402 can work collaboratively or be used interchangeably. This provides users with more options in
line with the purpose of the PLCopen Specification.

The core of CiA402 includes the following parts:

Definition of the "object dictionary (OD)" and functional attributes of its "objects", which standardizes
the communication data parsing approaches.

Periodic process communication data. The process object configuration is sent first, and then the object
parameters are sent periodically according to the configured frame structure.

Occasional data communication, which uses additional communication fields for request-response
communication.

The network communication has several operation statuses, which is convenient for the master and
slave to perform initialization for communication, diagnose the causes of communication exceptions,
and restore network communication.

CiA402 summarizes representative setup parameters, control parameters, and status parameters into
"objects" with fixed numbers (index number+sub-index number). A complete object definition table is
an "object dictionary".

Similar definition methods are used for other devices, such as BFM area address definition for PLC
modules and function code definition for motor drives. All these methods specify different numbers for
function parameters, facilitating understanding.

CiA402 object types are divided into the following index number segments by attribute.

Main Index
Number Meaning Description
Segment
Protocol type description, manufacturer Information is initialized by the manufacturer, and
0x0000 to Ox1FFF information, industry standard type description, | the configuration is done automatically by the system
configuration table description, and so on. software.
The manufacturer can design the main index number as
Objects and their functional attributes defined . ; S
0x2000 to Ox5FFF ! the function code of the servo drive, which is used to set
by the manufacturer . .
the function code parameters and static parameters.
Data objects defined by industry standard, used | Communication data between the controller and servo
0x6000 to 0X9FFF) nec By INCUStty o unicat W Y
for device control and monitoring for control

-33-

4. Execution Mechanism of the Motion Control Program

0xA000 to OxFFFF Reserved

The preceding table shows that the objects required for motion control are in the index number segment
from 0x6000 to Ox9FFF. If you want to modify the servo function code in SDO configuration, pay attention
to the index number segment from 0x2000 to Ox5FFF.

To facilitate understanding, we regard the object dictionary as a set of servo drive function code
definitions that can be accessed by EtherCAT bus communication.

Data objects commonly used in motion control applications:

Roughly, the controller controls the operation of the servo with the following types of commands:
Commands that control the servo operation status, such as enable, homing, start/stop, and alarm reset
Commands that set the server operation mode, such as position mode, velocity mode, and torque mode
Commands that set the target position, running velocity, and output torque for servo operation

Commands that read the operation information of the servo system, such as operation status, operation
mode, position, current velocity, and output torque

Commands that set or modify the function code parameters of the servo system, the operation
constraint parameters, and so on

To complete these control operations, users must set several commonly used data objects in the PDO or
SDO configuration table during programming. Some data objects can be added based on the functions
needed in the user program.

The values of the data objects introduced in this section are used for explaining the function definition
of the objects. During actual operation, controller automatically sends the value based on the required
control operation.

For the PDO configuration table, users only need to add the data objects required by the controller
during operation, and do not need to fill in the specific parameter values or variable names. During
compilation, InoProShop automatically associates the variables in the MC function block with the PDOs.

The SDO configuration table is generally used for the controller to initialize the servo function codes
(write operation). The write value is a defined constant value. Therefore, the constants must comply with
the DS402 specification. Some constants are defined based on the specific internal function codes of the
servo drive.

1) Control word 6040h

This object is a command word for the master controller unit to control the operation status of the servo,
such as enable, start/stop, and alarm reset. It is the most basic control command word. Therefore, 6040h
(control word) is a required item in the PDO configuration table.

Index 6040h
Object name Control word
Object code VAR
Access RW
Data type UNSIGNED16
Value range 0 to 65535
Default value 0
Access RW
PDO mapping Yes
Related mode All

4. Execution Mechanism of the Motion Control Program

This object is a command word for the master controller unit to control the operation status of the
servo. Its setpoints are clearly defined.

Bit Name Description
0 Servo ready 1: Active, 0: Inactive
1 Enable voltage 1: Active, 0: Inactive
2 Quick stop 1: Inactive, 0: Active
3 Servo ON 1: Active, O: Inactive
4106 Mode-specific

Fault reset is applicable to faults and alarms that
can be reset.

7 Fault reset Bit 7 is rising edge-triggered.

If bit 7 is kept to 1, other control commands are
invalid.

For the halt method in each control mode, see
8 Halt

605Dh.
9to 10 N/A Reserved
Manuf: -
11to 15 am'J .acturer Reserved and undefined
specific
Notes:

Assigning values to individual bits of a control word is meaningless. All bits in the control word must
work together to form a specific control command.

Bit 0 to bit 3 and bit 7 have the same meanings in different servo modes. Commands must be sent
in sequence to guide the servo drive into the expected state according to the CiA402 state machine
switching process. Each command corresponds to a specific state.

Meanings of bit 4 to bit 6 are mode-specific. For details, see control commands in different modes.
2) Target position 607Ah

This object is a target position command sent by the master controller for servo operation. The servo
runs in profile position (PP) mode in most cases. In MC applications with a medium-sized PLC, the servo
runs mostly in cyclic synchronous position (CSP) mode, where the controller commands the servo to run
to a target position in the next EtherCAT period. The target position is in the physical dimension set by
the user. The target position can be monitored through the axis data structure variable Axis.fSetPosition.

Therefore, the target position object 607Ah is a required item in the PDO configuration table.

Index 607Ah
Name Target position
Object code VAR
Data type INTER32
Access RW
PDO mapping Yes
Value range 0x80000000 to Ox7FFFFFFF
Default value 0
Unit Reference unit
Related mode PP/CSP
Comment

This object sets the target position in PP mode and CSP mode.

Bit 6 in 6040h Description

-35-

-36-

4. Execution Mechanism of the Motion Control Program

607A is the absolute target position of the current

0 segment.
After positioning of the current segment is complete, the
position feedback 6064 equals 607A.
607A indicates the target increment displacement of the
L current segment.

After positioning of the current segment is complete, the
position feedback increment equals 607A.

3) Modes of operation 6060h

The master controller can set the servo operation mode through object 6060h.

Index 6060h
Name Modes of operation
Object code VAR
Access RW
PDO mapping Yes
Data type INTEGERS
Value range 0x00 to Ox0A
Default value 0
Related mode All

This object selects the operation mode of the servo drive.

Value Servo Mode Supported by AM600

0x00 N/A

0x01 Profile position (PP) mode

0x02 N/A

0x03 Profile velocity (PV) mode

0x04 Profile torque (PT) mode Supported

0x05 N/A

0x06 Homing (HM) mode Supported

0x08 Cyclic synchronous position Supported; default mode
(CSP) mode
Cyclic synchronous velocit

0x09 (gSV) mode ’

OX0A Cyclic synchronous torque

(CST) mode

Precautions for servo operation mode switchover:

When the servo drive in any state switches over from the PP or CSP mode to another mode, the position
references not executed will be abandoned.

When the servo drive in any state switches over from the PV, PT, CSV, or CST mode to another mode, it
stops at ramp before entering into that mode.

When the servo drive is running in homing mode, the servo drive cannot switch to another mode. After
homing is complete or interrupted (fault or S-ON off), the servo drive can switch to another mode.

When the servo drive in running state switches over from a mode to the cyclic synchronous mode, send
the reference at an interval of at least 1 ms; otherwise, reference loss or error will occur.

4) Target velocity 60Ffh (profile velocity)

4. Execution Mechanism of the Motion Control Program

This velocity command must be set if the servo runs in velocity mode (PV or CSV).

Index 60FFh
Name Target velocity (profile velocity)
Object code VAR
Data type INTER32
Access RW
PDO mapping Yes
Value range 0x80000000 to Ox7FFFFFFF
Default value Ox64
Unit Reference unit/s
Related mode PV/CSV

5) Target torque 6071h

This command must be set if the servo run in torque mode (PT or CST) in a dimension of a percentage
(0.1%) to the motor's rated torque.

Index 6071h
Name Target torque
Object code VAR
Data type INTER16
Access RW
PDO mapping Yes
Value range OXEC78 to 0x1388
Default value 0x0000
Unit 0.1%
Related mode PT/CST

In target torque settings, 100% (readout value being 1000) corresponds to 1x the rated motor torque.
6) Max profile velocity 607Fh

This object sets the maximum operation velocity of the servo and limits the maximum velocity in PV
mode.

In ST or PT mode, this object limits the maximum velocity to avoid motor overspeed that can cause
mechanical shock.

This object is invalid in CSP mode.

Index 607Fh
Name Max. profile velocity
Object code VAR
Data type UNSIGNED32
Access RW
PDO mapping Yes
Value range 0x00000000 to OxFFFFFFFF
Default value 0x06400000
Unit Reference unit/s
Related mode All

This object sets the maximum running velocity of the servo, which is valid in PV, ST, and PT modes. It
limits the maximum running velocity of the servo motor.

-38-

4. Execution Mechanism of the Motion Control Program

For example, when the servo is running in torque mode, if the actual load torque of the motor is less
than the torque reference, the motor becomes faster and faster and will be eventually limited at the
maximum profile velocity (object 607Fh).

7) Touch probe function 60B8h

This object is used by the master controller to set the touch probe function mode and start/stop of the
servo. In the motion control system, the servo probe function detects the servo position signal when a
specific DI signal changes. The servo records the servo position in an interrupt mode when the DI signal
changes for the host controller to read. This improves the accuracy of system control.

Index 60B8h
Name Touch probe function
Object code VAR
Data type UINTER16
Access RW
PDO mapping Yes
Value range 0x0000 to OXFFFF
Default value 0x0000
Unit -
Related mode All

This object defines the functions of touch probe 1 and touch probe 2.

Bit Description

Touch probe 1 enable
0 0: Disable
1: Enable

Touch probe 1 trigger mode
1 0: Single trigger (trigger first event)

1: Continuous trigger

Touch probe 1 trigger signal selection

2 0: DI8 input signal
1: Z signal
3 N/A

Touch probe 1rising edge
4 0: Switch off latching at rising edge
1: Enable latching at rising edge

Touch probe 1 falling edge
5 0: Switch off latching at falling edge
1: Enable latching at falling edge

6 N/A

7 N/A

Touch probe 2 enable
8 0: Disable
1: Enable

Touch probe 2 trigger mode
9 0: Single trigger (trigger first event)

1: Continuous trigger

Touch probe 2 trigger signal selection

10 0: DI9 input signal
1: Z signal
11 N/A

4. Execution Mechanism of the Motion Control Program

Touch probe 2 rising edge

12 0: Switch off latching at rising edge
1: Enable latching at rising edge
Touch probe 2 falling edge

13 0: Switch off latching at falling edge
1: Enable latching at falling edge

14 N/A

15 N/A

The I1S620N drive only supports the falling edge of the Z signal.

For absolute encoders, Z signal refers to the zero point of the single-turn position feedback.

8) Servo status word 6041h

This object is used to read the operation status of the servo drive. It is one of the required items in the

PDO configuration table.

Index 6041h
Name Status word
Object code VAR
Data type UNSIGNED16
Value range 0to 65535
Default value -
Access RO
PDO mapping TPDO
Related mode All

The servo slave feeds the status back to the

master through different bits.

Bit Name Description

0 Servo ready 1: Active, 0: Inactive

1 S-ON 1: Active, 0: Inactive

2 Servo ON 1: Active, 0: Inactive

3 Fault 1: Active, 0: Inactive

4 Voltage enabled 1: Active, 0: Inactive

5 Quick stop 0: Active, 1: Inactive

6 Switch on disabled | 1:Active, 0: Inactive

7 Alarm 1: Active, 0: Inactive

Manufacturer-)
8 e Reserved and undefined
specific

0: Non-remote control mode. The IS620N series

9 Remote control products only support the remote control mode; 1:
Remote control mode
0: The target position or velocity is not reached.

10 Target reach o o
1: The target position or velocity is reached.
0: The position reference or feedback does not
reach the software internal position limit.
1: The position reference or feedback reaches the

11 Internal limit active software |nte.rr.1al p.os!tlpn l|n.1|t. After the s?ftware
absolute position limit is activated (see object
dictionary 607Dh and 200A-02h), the servo runs
with the position limit value as the target position
and stops at the limit value.

-390-

-40-

4. Execution Mechanism of the Motion Control Program

12 t

13 © Mode-specific Dependent on servo modes

14 N/A Reserved
0: Homing is not performed or complete.

15 Homing completed | 1: Homing is complete and the reference point is
found.

Notes:

Reading out a bit separately is meaningless. All bits in the status word constitute servo status feedback
together.

Bit 0 to bit 9 have the same meanings in different servo modes. After commands in 6040h are sentin
sequence, the servo drive feeds back an acknowledged state.

Meanings of bit 12 to bit 13 are mode-specific. For details, see control commands in different modes.

Bit 10, bit 11, and bit 15 have the same meanings in different servo modes and indicate the servo drive
status after a certain mode of operation is implemented.

9) Position actual value 6064h

In most cases, the servo operates in position mode. The controller must monitor the current position of
the servo in real time, and the master controller reads the actual current position of the servo through

this object. This object is one of the required items in the PDO configuration table.

Index 6064h
Name Position actual value
Object code VAR
Data type INTER32
Access RO
PDO mapping TPDO
Value range -
Default value -
Unit Reference unit
Related mode All

This object indicates user absolute position feedback in real time.

10)

Position feedback 6064h (reference unit) x Position factor 6093h (gear ratio) = Actual position 6063h
(pulse unit)

Servo error code 603Fh

This object represents the most recent error code or alarm code of the drive. For error codes and their
meanings indicated by the low 12 bits, see the IS620N guide. The master controller determines the
latest fault code of the servo based on this object. This object is one of the required items in the PDO
configuration table.

Index 603Fh
Name Error code
Object code VAR
Data type UINT16
Value range 0to 65535
Default value
Access RO
PDO mapping TPDO

4. Execution Mechanism of the Motion Control Program

11)

Related mode

All

Torque actual value 6077h

This object reflects the internal actual torque of the servo drive. The value is given per hundred (0.1%) of
rated torque. This object is one of the common items of the PDO configuration table.

Index 6077h
Name Torque actual value
Object code VAR
Data type INTER16
Access RO
PDO mapping TPDO
Value range
Default value
Unit 0.1%
Related mode All
Comment

This object indicates the internal torque of the servo drive.

12)

13)

The value of 100% (readout value of 1000) corresponds to 1x the rated motor torque.

Following error actual value 60F4h

This object indicates the deviation, in reference unit, of the current position from the target position. It is

used to determine whether a position is reached.

Index 60F4h
Name Following error actual value
Object code VAR
Data type INTER32
Access RO
PDO mapping TPDO
Value range 0x80000000 to Ox7FFFFFFF

Default value

Unit

Reference unit

Related mode

PP/HM/CSP

Comment

This object indicates the position deviation (in reference unit). Position deviation 60F4 = Position

deviation 200B-36h
Touch probe status 60B9h

This object indicates the setting status and trigger status of the servo probe trigger port to help the
master controller to read the probe position recording data and determine its validity.

Index 60BSh
Name Touch probe status
Object code VAR
Data type UINTER16
Access RO
PDO mapping TPDO

41-

4. Execution Mechanism of the Motion Control Program

Value range

Default value

Unitt

Related mode All

This object indicates the status of touch probe 1 and touch probe 2.

Bit Description

Touch probe 1 enable

0 0: Disabled
1: Enabled

Touch probe 1 rising edge value

1 0: No rising edge value latched
1: Rising edge value latched

Touch probe 1 falling edge value
2 0: No falliné edge value latched

1: Falling edge value latched
3 N/A
4 N/A
5 N/A
Touch probe 1 trigger signal selection
6 0: DI8 input signal
1: Z signal

Touch probe 1 triggering signal monitoring

7 0: DI8 is low level
1: DI8is high level

Touch probe 2 enable

8 0: Disabled
1: Enabled

Touch probe 2 rising edge value

9 0: No risin% edge value latched
1: Rising edge value latched

Touch probe 2 falling edge value

10 0: No falling edge value latched
1: Falling edge value latched
11 N/A
12 N/A
13 N/A
Touch probe 2 trigger signal selection
14 0: DI9 input signal
1: Z signal

Touch probe 2 triggering signal monitoring

15 0: DI9 is low level
1: DI9 is high level

14) Touch probe 1 position feedback 60BAh and 60Bbh (Touch Probe Pos1 Value)

Index 60BAh 60BBh
Name Touch probe 1 rising edge (Touch | Touch probe 1 falling edge (Touch
Probe Posl Pos Value) Probe Posl Neg Value)
Object code VAR VAR
Data type INTER32 INTER32

Access RO RO

4. Execution Mechanism of the Motion Control Program

PDO mapping

TPDO

TPDO

Value range

Default value

Unit

Reference unit

Reference unit

Related mode

All

All

Comment

Indicates the position value of
the touch probe 1 at rising edge
(reference unit).

Indicates the position value of
the touch probe 1 at falling edge
(reference unit).

15) Touch probe 2 position feedback 60BCh and 60BDh (Touch Probe Pos2 Value)

Index 60BCh 60BDh
Name Touch probe 2 rising edge (Touch | Touch probe 2 falling edge (Touch
Probe Pos2 Pos Value) Probe Pos2 Neg Value)
Object code VAR VAR
Data type INTER32 INTER32
Access RO RO
PDO mapping TPDO TPDO
Value range

Default value

Unit

Reference unit

Reference unit

Related mode

All

All

Comment

Indicates the position value of
the touch probe 2 at rising edge
(reference unit).

Indicates the position value of
the touch probe 2 at falling edge
(reference unit).

16) Modes of operation display 6061h

Index 6061h

Name Modes of operation display
Object code VAR

Data type INTEGER8

Access RO

PDO mapping TPDO

Value range -

Default value -

Related mode All

The object 6061h indicates the current operation mode of the servo through the following values:

Value

Description

0x00

N/A

0x01

Profile position (PP) mode

0x02

N/A

0x03

Profile velocity (PV) mode

0x04

Profile torque (PT) mode

0x05

N/A

-43-

-44-

4. Execution Mechanism of the Motion Control Program

17)

18)

0x06 Homing (HM) mode

0x07 Interpolated position (IP) mode

0x08 Cyclic synchronous position (CSP) mode
0x09 Cyclic synchronous velocity (CSV) mode
0x0A Cyclic synchronous torque (CST) mode

Homing method 6098h

For applications that use relative positioning, a homing operation is required first to allow the servo
drive and motion controller to determine the reference homing point for the position.

Index 6098h
Name Homing method
Object code VAR
Data type INTER8
Access RW
PDO mapping Yes
Value range 0x00 to 0x23
Default value 0x00
Unit -
Related mode HM
Comment -

The homing method must be set before servo homing can be commanded through EtherCAT

communication. This object is used by the master to set the homing method. For details, see the homing
method description in the Appendix.

Note: If the IS620N absolute position encoder method is selected, the 35th homing method can be used.
The result of the homing operation is that the current position is used as the homing point and the
motor does not rotate.

Homing speeds 6099h

This object can be used to set the speeds at which the servo drive runs while searching for the home
signal. This object has two sub-indexes.

Index 6099%h
Name Homing speeds
Object code ARR
Data type UNSIGNED 32
Access RW
Mapping Yes
Value range OD data range
Default value OD default value
Related mode HM

The sub-indexes define two speeds used in the homing mode: speed during search for switch and speed

during search for zero.

Sub-index 0 1 2
Number of sub-ind fi
Name um' erotsub-indexes for Speed during search for switch | Speed during search for zero
homing speeds
Data type UNSIGNED8 UNSIGNED 32 INTER32
Access RO RW RW
PDO mapping No Yes Yes
0x00000000 to 0x00000000 to
Value range 2
OXFFFFFFFF OXFFFFFFFF

4. Execution Mechanism of the Motion Control Program

19)

Sub-index 0 1 2
0x001AAAAB 0x0002AAAB

Default value 2

Unit Reference unit/s Reference unit/s

Notes:

The first sub-index defines the speed during search for switch. A large value helps prevent the homing
timeout fault Er.601.

After finding the switch, the slave decelerates and blocks all home signal changes during deceleration.
To prevent the slave from encountering the home signal during deceleration, set the switch position of
the deceleration point signal properly to leave sufficient deceleration distance or increase the homing

acceleration rate to shorten the deceleration time.

The second sub-index defines the speed during search for zero. Set this sub-index to a small value to
avoid overshoot due to stop at a high speed, preventing excessive deviation between the stop position
and the preset mechanical home.

Homing acceleration 609Ah

This object sets the acceleration rate at which the servo drive runs while searching for the home signal.

Index 609Ah
Name Homing acceleration
Object code VAR
Data type UNSIGNED32
Access RW
PDO mapping Yes
Value range 0x00000000 to OxFFFFFFFF
Default value 0x682AAAAB
Unit Reference unit/s2
Related mode HOME

This object sets the acceleration during homing. The setpoint is activated after homing is started.

In homing mode, if 605Dh (Halt option code) is set to 2, the servo drive decelerates to stop according to
609Ah.

This object dictionary indicates the position reference (reference unit) increment per second. The
setpoint 0 will be forcibly changed to 1.

Example homing method:
6098h =1

This setting is suitable for applications with the following mechanical structure. There is a limit switch at
each end of the slider travel and no zero switch signal, as shown in the following figure.

-45-

4. Execution Mechanism of the Motion Control Program

Negative limit Positive limit

@)

@ﬂﬂ?ﬂﬂﬂ(([dedadad

Motion profile (|

Motor Z signal

Negative limit signal

The mechanical home uses motor Z signal, and the deceleration point is the negative limit switch (N-OT).
@ Deceleration point signal inactive at start of homing

Note: In the figure, "H" represents 6099-1h (Velocity during search for switch), which is high speed, and
"L" represents 6099-2h (Speed during search for zero), which is low speed.

The N-OT signal is inactive initially, and the motor starts homing in negative direction at the high
velocity. After reaching the rising edge of the N-OT signal, the motor decelerates and changes to run in
positive direction at the low velocity. After reaching the falling edge of the N-OT signal, the motor stops
at the first motor Z signal.

@ Deceleration point signal active at start of homing
Negative limit Positive limit

0]

E—
@Z ([Td@qddadddadaaadad @ @o

Motion profile | >

Motor Z signal

Negative limit signal

The N-OT signal is active initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the falling edge of the N-OT signal, the motor stops at the first motor Z signal.

According to the functions of the objects above, we can regard the object dictionary as a set of servo
drive function code definitions that can be accessed by EtherCAT bus communication, which facilitating
understanding.

4.3.3 Configuration of Servo Axis Motor Parameters

The motion control action is ultimately achieved through the operation of the servo motor. To

make the servo motor run as expected, the controller needs to know the servo motor parameters,
characteristic parameters of the mechanical transmission mechanism of the application system, and
the operation characteristics desired by the user so that the controller can send appropriate operation
position commands. This requires users to set these characteristic parameters for the controller during
programming.

The following figure shows how to set the servo motor parameters. Double-click the servo drive under
the servo motor. Then, you can set the motor parameters in the right window.

4. Execution Mechanism of the Motion Control Program

8) Onthe "Basic Parameters" tab, set the axis location counter mode value. If the servo motor is
characterized by round-trip operation, such as the reciprocating operation of the screw, you can
select "Linear Mode" (also called multi-turn mode or finite-length mode), which enables the
positioning in the absolute position mode when the servo motor rotates for multiple revolutions.

9) If the servo motor runs infinitely in one direction, such as the operation of a flying shear roller, you
can select "Cyclic Mode". The position counter starts counting from 0 during each operation period,
which avoids the overflow of the position counter.

‘‘‘‘‘‘ <8 x|[% networccontigwaton | & o0 vou Pt o2 | erencar | Bg HadnaeCoguston |3 tesvein s Ads x

| Generlsextng ot tpe and s

[virtual mode ~ S°

Scaling
pulse
Homing Setting

O Wodulo Positive 1000.0] pulse
Mapping O quadratic

®
POU (PRG)
POU_L (FRG)
POU_2 (PRG) Max Distance o] pulse o o

Gverlimits reaction O quadstic(smooth)
®Finite Deceleration 100] pulsese:

-_GenericDSP402: /O Identification

SM_Drive_ETC_GenericD SP402:
= (& Task Configuration IEC Objects

= & canoren
&) canopen_Task
= & ETHERCAT Information
& ETHERCAT EtherCAT Task
& pou
& rou_1
=& o
& pou_2
=& MainTask
& ric PRG
{5 Resources List
"3 SoftMotion General Axis Pocl
[l +16H_SPEED_I0 (High Speed 10 Module)

Status CNC Dynamic fimits

Vel: pulse/s Acc: pulse/st Dec: pulse/st etk pulse/ss

o |)

= (@ Tnosvea0N (5V630._
B s (i

B Canopen (Catopen Mastr)

[JNote that the above setting rules are applicable to both incremental encoder servo motors and
absolute encoder servo motors. The above values are not sent to the servo drive. The current position
of the motor is accumulated and the span is calculated automatically by AM600 based on the position
signal returned from the motor. Therefore, to retain the servo position upon power failure, you need to
back up the current position of the axis to the power failure retentive variable in the user program and
then restore it to the relevant parameter in time after power-on.

The "Software Limitation" in the preceding figure refers to the travel overlimit protection of the

servo motor through the AM600 software, which prevents AM600 from sending overlimit positioning
instructions. This is very useful in MC application systems with the absolute position encoder and
absolute positioning instructions. The figure also shows options of acceleration and deceleration
characteristic curves. Select an option as needed during commissioning to make the mechanical system
run smoothly.

10) Asthe operation position command of the controller is to make the servo run a certain number of
pulses, the controller must know the pulse value per revolution of the servo motor encoder, as well
as the mechanical parameters such as the reduction ratio of the operating mechanism, screw lead,
and pulley circumference. You can configure these parameters on the "Zoom/Mapping" tab page, as
shown in the following figure.

47-

4. Execution Mechanism of the Motion Control Program

levices > B X | Ff NetworkConfiguration & Hsi0 PoU POU_L POU_2 & ETHERCAT ¥ Hardware Configuration [1tnosveson Be Axis X
=% Network Configuration =
g canopen Config General Setting Unitin application
i EtherCAT Config Scaling @puse Omm O um Qnm QOdegree Qlinch
4 Localbus Config Travel Distance
= Bl PLC Lodic Haring Setting [invert Direction
= €3 Application
o Command pulse count per motor rotation 164100000 pulsefrey
(@) Lirary Manager
@ Do not use gearbox
PLEPRG (PRE) Commissioning
PO (PRS) Work travel distance per motor rotation pulserrev
POU_L(PRG) fqlg';l;‘r’\"\‘gE,ErC,GMEHEDSPWZ: o
POU_2 (PRG) Reference: Unit conversion formula
= SM_Drive_ETC_GenericDSP402:
=@ Task Configuration IEC Objects Command pulse count per motor rotation [DINT]
- Number of pulses [pulse] = * Travel distance [Unit in application]
7§ CANOPEN Status ‘Work travel distance per motor rotation [LREAL]
] canopen_Task
= & ETHERCAT Information O Use gearbox
5] ETHERCAT EtherCAT Task Work travel distance per work rotation 1 pulsesrev
& rou (Please refer to the Modulo value in General Setting if the Axis type is Modulo mode)
&1 pou_t
B Numerator of the gear ratio (the number of teeth (5) in the following picture) 1
8] rou_z Dencminator of the gear ratio (the number of testh (4) in the following picture) 1
= 2 MainTask
7 & rcrre The Axis type is Linear mode
13 Resources List
"3 SoftMotion General Axis Fool Reference: Unit conversion formula
. HIGH_SPEED_IO {High Speed IO Module) Command pulse count per motor rotation [DINT] Numerator of the gear ratio [DINT]
5 Number of pulses [pulse] = - * Travel distance [Unit in application
ETHERCAT (EtherCAT Master SoftMotic
= (EherCAT Haster SoftHoton) Work travel distance per work rotation [LREAL] Denominatar of the gear ratic [DINT]
= InoSVB30N (SV630_1Axis_03715)
B Axis (Axis) M: Motor, W Work
B canopen (Canopen Master)
v

In the preceding figure, item 1 is used to set the number of pulses per revolution, which can bein
hexadecimal.

Item 2 is used to set the reduction ratio of the reducer. The ratio 5:1 in the figure means that for every
five revolutions of the servo motor axis, the output axis of the reducer will rotate one revolution. If no
reducer is used, the reduction ratio is 1:1.

Item 3 is used to set the physical distance that the workpiece runs for every one revolution of the output
axis. Examples:

@ Ifyou use aflying shear roller, the rotation angle is regarded as the physical distance. If the parameters
are configured as follows:

Unit in application
O pulse O mm Qum O nm @ degree Oinch
Travel Distance

[Invert Girection

Command pulse count per motor rotation |Custumlze v ‘ I 16#100000] pulsesrev

(® Do not use gearbox

Work travel distance per motor rotation 360 degree/rev

the execution result of instruction MC_MoveRelative(,distance:=1,) is that the mechanism rotates by 1°;

the execution result of instruction MC_MoveRelative(,distance:=360,) is that the mechanism rotates by
360°.

@ Ifyou use a screw with a lead of 5 mm, that is, for every 1 revolution of the screw, the slider on the screw
moves for 5 mm. If the parameters are configured as follows:
Unit in application
Opulse @ mm Oum Onm Odegree Qinch

Travel Distance

[Invert Direction

Command pulse count per motor rotation |Custnm\zE ~ | ‘ 1681 [)D[)[)Dl pulsefrev

(® Do not use gearbox

Work travel distance per motor rotation l:l mm/rev

the execution result of instruction MC_MoveRelative(,distance:=1,) is that the slider mechanism travels 1
mm.

@ Ifyou use a synchronous gear with a diameter of 63.7 mm, the synchronous belt moves a distance of
63.7 mm x 3.14 = 200 mm for every 1 revolution. If the parameters are configured as follows:

Unit in application

O pulse @ mm Cum O nm O degree Olinch
Travel Distance

[Invert Direction

Command pulse count per motor rotation ‘Custumlze V‘ [16#100000] pulse/rev

(@ Do not use gearbox

Work travel distance per motor rotation mm/rev

48-

4. Execution Mechanism of the Motion Control Program

the execution result of instruction MC_MoveRelative(,distance:=100,) is that the belt mechanism travels
100 mm.

The examples show that we can make the physical unit of the application system be consistent with the
unit of the MC operation instruction by configuring items 1 to 3 accurately. This makes the user program
instructions clearer, which facilitates variable configuration and reduces errors.

LJNote that the motor parameters are set for the conversion of electronic gear ratios when AM600 sends
the final (number of pulses) position instruction. The parameters are not downloaded to the servo drive.
The electronic gear ratios set by the function codes in the servo will likewise attenuate the operation
instructions. In this way, the actual effect on the servo motor is calculated as Rc x Rd, as shown below:

(AM600 A | useN |
Electronic gear | Electronic
o of !
| MC program —— ct;ittlg)‘l)ler EtherCAT | g:fa(rj:iavtéo Drive 59":0
| Rc | | | Rd | motor
NS L]

Therefore, to ensure that the user program has the same performance in all application devices, you
need to initialize the function code of the servo electronic gear ratio to the specified parameter value
through the SDO operation; otherwise, differences in the operation response will be caused by different
settings of the servo function code.

[DINote that, for MC programming, the first step of commissioning is to ensure consistency between the physical unit of the
application system and the unit of the MC operation instructions. Otherwise, the programmer cannot determine whether the
expected operation effect is achieved, and device damage or personal injury may be caused due to overlimit positions.

4.3.4 EtherCAT Network Status Initialization and Management

20)

21)

Initialization and status determination of the EtherCAT network

The AM600 controller starts automatically upon power-on and finishes loading the operating system and
user program in about 10 seconds. If the EtherCAT bus is not used in the user program, the controller
starts executing the user program after initialization of the bus used by the user program.

If the EtherCAT network is used in the user program, AM600, as the EtherCAT master, initializes the
EtherCAT bus in the following steps:

11) Configure the master according to the user's EtherCAT configuration. This takes about 3 seconds.

12) Send a network initialization command to allow the ESC chips of all slaves to start the initialization
operation, read the information of slaves in the EtherCAT network one by one, compare the
information with the EtherCAT network configuration in the user program, and report an error if
there is a discrepancy in the number and order of slaves.

13) Send the SDOs and PDOs to the ESC chip of each slave one by one if the network configuration is
normal.

14) Make the network enter the Pro-OP, Safe-OP, and finally OP status.

The above operations are completed automatically by AM600 without user intervention. It takes about 2
seconds to configure each slave. More slaves mean longer network initialization time.

The simplest and most reliable way for the user program to determine whether the network status of the
application system is normal is to detect whether MC_Power.status of each servo axis is true. If yes, the

network and the servo are ready for normal operation.

Communication disconnection and recovery

As we know, the prerequisite for an EtherCAT slave to communicate with the master is that the slave
ESC enters the Pro-OP, Safe-OP, and finally OP network status after being configured by the master. The

-49-

-50-

4. Execution Mechanism of the Motion Control Program

22)

typical internal configuration of the ESC includes the PDO configuration table, which can be obtained by
the slave ESC only when the master sends the network configuration. Once the master network enters
the OP status, no more configuration information can be sent. Therefore, if the slave is powered up after
the EtherCAT network master enters the operation status or is powered up again after it has a power
failure during operation, the slave cannot enter the network OP status.

Currently, only restarting the master can restore network operation after an EtherCAT slave has a
power failure. For example, toggle the RUN/STOP switch to restart the master. However, this will affect
the operation of other slaves.

Slave addressing and address settings

During programming, by default, the AM600 master controller automatically performs addressing based
on the connection order of network cables for EtherCAT slaves. This addressing method frees users
from naming and renaming devices and only requires users to follow the bus network configuration in
the user program, making it easy for the master controller to check the network configuration and find
hardware connection errors. The following figure shows the rules for AM600 to automatically name the
slaves added in the user program.

= [Device (AME00-CPU1608TP)
@ Device Diagnosis
= % |Network Confiquration
& EthercaT config
£ Localbus Config
=Bl rc
+.1C} Application
"3 SoftMotion General Axis Pool
=8 Embedded Function
B HiGH_SPEED_I0 (High Speed 1q
& serial Port 0
3 Serial Port 1
‘2 CANOpen Field Bus
3 CANLink Field Bus
=& EtherCAT Field Bus
= [W] ETHERCAT (EtherCAT Master)
=) BEIARR Oss20N_ECATv2 || £ Lo s .
B asxis_23 (Axis) : 1001 :
= [%EIFERR (1S620N_ECAT_v2.
B asis_FI (Axis)
= [T HEERS AR (156200 ECAT v
B9 Axis CONVERY (Asxis)

1S620M 1S620M

? I
@
o
o

a ;x\s Fl a
IR {
0 0

MC_P1: MC_Power;//Declare the instance MC_P1 of MC_Power.

MC_P1(Axis:= Axisl,

Enable:=1,

bRegulatorOn:=1,

bDriveStart:=1,

Status=>,)//Execute the instance MC_P1 to enable the servo axis Axis1.

The slave serial number starts from 1001 and increases by 1 upon addition. During operation, the
servos are named based on the connection order of network cables of the servo, and the servo directly
connected to AM600 is named 1001. The axis control function in the user program is assigned to the
servo with the corresponding serial number. The key point of this addressing method is that the
connection order of the EtherCAT network cables must follow the network configuration order in the
user program.

However, in some applications where the functions and names of some axes have been clearly defined,
the user program of the AM600 master controller must perform addressing based on the pre-defined
names. In this case, users must set the addressing method of the network slave to addressing by "slave
alias" during programming and set the corresponding "slave alias" in the servo.

15) The following figure shows how to set the addressing method of the slave to addressing by "slave
alias".

4. Execution Mechanism of the Motion Control Program

Devices ~ B X || “3 Network Configuration & Hsio POU POU_t PoU2 |'g® ETHERCAT [Hardware Configuration [TnoSV630N X (A2 Axs
=3¢ Network Configuration ~ln
#® “ General Address Additional
g caNOpen Config Eth erCAT_-“'
i EthercAT Confi AutolncAddress [0 [Enable Erpert Settings *
a9 Process Data(PDO Setting) - i
& optiona
B Locabus confg EtherCAT Address [1001 g " } .
= B0 PLC Logic Startup parameters(SDO Setting) Enable can be set in the "Overview
interface of the master station
=€ Application
) Ubrary Manager T Distributed Clock
PLC_PRG (PRG .
FRG BRS) EuECd Select DC DC-Synchron v
POU (PRG)
Pou_1 RE) Eoesettings enable 00| syncunic oyce ()
POU_2 (PRG) Synco
= Task Configuration Serve Function Code Enable Sync 0
= canceen EtherCAT /0 Mapping Sync Unit Cyde (X1 [4000 =] cyceTime sy
) canopen Task User Defined o | shifeime (us)
= & ETHERCAT EtherCAT IEC Objects
& h b
] ETHERCAT EtherCAT Task Syncl
&) pou Status Enable Sync 1
& pou_t S sync unit cycle [R1 %000 +] crdeTime (us)
e
& Hsto User Defined o 2| shifeime (us)
&) pou_2
= & MainTask
“‘@a‘" o Identification (Alias can be set through the "Overview" interface of the master station)
PLC_PRG
(5 Resources List Disabled
3 Softhloton General Axis Pool Configured Station Alias (AD0 0:0012) |14
[HiGH_SPEED IO (High Speed 10 Module)
=[] ETHERCAT (EtherCAT Master Softotion)
2 [1noSV830N (5V630_Laxis 03715) Explicit Device Identification (ADO 040134)
ods (A Data Word (2 Bytes) D0 (hex) 15
B s (axis) d() (hex)
B canopen (CANopen Master)
v

16) Set the slave alias in the servo slave.
For example, for IS620N, we can set its "slave alias" function code HOC.05 to 11.

After the user program is configured in this way, regardless of the access position or order of the servo
with the alias "11", it is possible to find the servo and assign the servo axis operation function in the user
program to the axis.

EdNotes:

In the user program, one or more axes can be named in this way, as long as the names are not duplicate.
Currently, the ECT remote expansion module does not support slave setup for addressing by "slave
alias".

If some of the servo axes in the application system are automatically named, the system will first
identify the slave with an "alias" and process the rest of the slaves according to the automatic naming

rules.

4.3.5 Servo Axis and 1/O Port Control Data Refresh

There are three types of I/0s for AM600: HSIO built into the master module, I/0 of the main rack
expansion module, and I/O of the expansion rack module. The expansion rack is connected to the AM600
master module as an EtherCAT slave, just like the servo axis. The access refresh time of these peripherals
has the following characteristics.

/
' External interrupt task
|
|
|

High-speed .
_| /0 instruction | / Immediate refresh N - P
HC_xxFB /|co- | ___AsHSIO___
- ! LC processor| As common I/0
L A g
. R [\\
i Maintask task Logic control section !
|
|
|
§ Refresh per Maintask period
alm E S y/
Logic control S @
instruction B E Local I/O expansion
3 g rack/module
E} g
| s 3
| o
\;7777 777777 //
EtherCAT task Motion control section \g

MC state EtherCAT ECT expansion rack/module
=) machine |=——) master

function
module

Axis variable {

(—=)/and axis state =) Servo axis slave
data structure i
|

Refresh per EtherCAT clock period

I
|
|
|
1
i
|
I
|
i MC instruction
|
i
I
I
|
I
1
|
I

-51-

4. Execution Mechanism of the Motion Control Program

The AM600 controller has a built-in HSIO with 16 inputs and 8 outputs, and it is equipped with an
internal co-processor for processing high-speed applications, such as interrupt signals, pulse counting,
pulse characteristic measurement and other input signals. It can also carry out control outputs with real-
time requirements, such as PTO, PWM, and pulse positioning. When executing Inovance's proprietary
high-speed processing function block, it will immediately trigger the execution of the co-processor to
update the output timely.

When the HSIO port is configured as a general port, the refresh period of its output refresh port can be
set to the general task period, as shown in the following figure.

levices v B X | Netork Configuration & Hsio FOU FOU_t POU2 [ETHERCAT [§g Hardware Configuration [@ nosve3on s Axis 1) HIGH_SPEED_IO x| -
=3¢ Network Configuration A - 5
Hardware Port Configuration Find Filter Show all ~ Add FB for 10 Channel.. Go to Instance
¥ canOpen Config
#g EthercaT config T Variable Mapping Channel Address Type Default Value Unit Description
#% LocaBus Config Ea InputData SLIWO UINT
=81 pLc Logic Axis Parameters E] OutputData %QBO0 BYTE
=¥ Application
) Lirory Maroger Internal /0 Mapping
PLC_PRG {PRG) Status
POU (PRG)
POU_1 (PRG) Information

POU_2 (PRG)
=@ Task configuration
= g% canopeN
&) caNOpen Task
= & emEcaT
&) ETHERCAT.EtherCAT Task
8] rou
& pou_t
= Hslo
& pou_2
= MainTask
&) pLc_PrG
(3 Resources List
" Softvotion General Axis Fool
6+ _SPEED_10 (Hioh Speed 10 Moduie)
= [B] ETHERCAT (EtherCAT Master SoftMotion)
= [1mosve30N (sV630_1Asis_03715)
B Axis (Ais) = Create new variable “§ = Mapto edstingvariable
B canoren (CANopen Master)

Reset All Mapping Var| - Alviays updatevariables |Enabled 1 (use bus cyde task ifnotused in any task) ~

) Bus Cydle Options
> Buscycletask [Use parentbus yde setting
3 POUs |32 Devices Use parent bus cyde setting

B Config Device Information outpuq IE Messages - Total 0 error(s), 0 warning(s), 1 ms;sags(sﬂ

La{MainTask v Current user: (nobody) %)

The AM600 main CPU module is connected to the 1/0 expansion module on the rack through the "local
bus", and the refresh of 1/0 status is controlled by the CPU module. Its refresh interval is the same as that
of the general task period, which can be set in InoProShop.

Devices * B X ation % HsI0 POU POU_L POU_2 &2 ETHERCAT Hardware Configuration InOSVE30N RS Axis HIGH_SPEED_IO Device X ¥
= &
=) restaproject =]~
c tion Setti : v
= (B Device (AME0O-CPUISOSTPTN) ommunication Settings Aapplication for /0 handling: | Appiication
o "
Fault Diagnose (e PLC settings
=B Network Configuration [update 10 whilein stop
5 canopen config Ty el Behaviour for outputs in Stop: |Setall outputs to defadlt v

B3 EthercaT Config
¥ Localbus Config

= Edit Licenses...
B0 rLcLogc Users snd Groups

PLCsettings Always update variables: Disabled (Update only if used in 2 task) o

= G Application Bus cydle options
Library Manager Files Bus oycle task: <unspecified> .
PLC_PRG (PRG)
POU (PRG) [ieci=] Additional settings AT
POULL (PRG) i Generate forcevaraplesfor IHEI0
POU_2 (PRG) [show 10 warnings as errors TS T0Address by ndex
=-[E3 Task Configuration System Setting
=& canosen
) canOpen Task
= ETHERCAT
&) ETHERCAT EtherCAT Task
& rou Information
8] pou_1
=& w0
& pou_2
= MainTask
& pLcPRG
(= Resources List

Upgrade

Status

2 softMotion General Axis Pool

H +i6H_SPEED_10 (rich Speed 10 Moduie)
=[] ETHERCAT (EtherCAT Master SofiMation)

S 1 cveanw reuczn aui nae

< >

P POl %0 Devices < >

The AM600 controller is based on the remote I/0 of the EtherCAT bus expansion rack. Its /0
communication data is transmitted in the same frame with the servo axis communication, for example,
data is transmitted every 1 ms, 2 ms, or 4 ms. However, the logic control POU is generally executed in the
general task, and the actual update period of the I/0 status is the task period, for example, every 20 ms.

4.4 Timing of MC Data Transmission

The AM600 enters the EtherCAT interrupt according to the EtherCAT period set by the user and executes
an entire EtherCAT task. Firstly, the communication operations between the master controller and each

-52-

4. Execution Mechanism of the Motion Control Program

EtherCAT slave are executed, and then all the user-configured POUs under the task are executed. The
execution order is the same as the order of POUs in the task configuration table.

The communication operations between the master controller and each EtherCAT slave are as follows.

17) The EtherCAT bus transmit operation is initiated. The data in the TPDO transmit buffer prepared by
the system in the previous EtherCAT period is sent to the corresponding slave in order. According
to the RPDO configuration, several bytes of slots that are required by the slaves' response data are
reserved in the communication frame to fetch the data from each slave.

The data in the TPDO transmit buffer is transmitted in the order of slave connection. The transmitted
data contains the data of the general I/Os and the control data of the MC axes.

When there are many slaves and the data length exceeds the allowable length of one communication
frame, multiple communication frames will be used.

If the user program performs an SDO read/write operation, an SDO send request is sent at the end.

18) The master controller parses the returned frames, takes out the response data of each slave, and
analyzes the response data for the MC slave axes. The master also updates the axis status and data
structures such as position, velocity, and torque, and determines and updates the execution status
indication of the MC function block for access by the user program. At each EtherCAT interruption,
the axis parameters read by the user program are the data that has been automatically processed

and updated in this section.

4.5 Processing Mechanism for Executing MC Function Blocks

4.5.1 Cyclic Synchronous Position Control Mode for Servo Motion Commands

The "cyclic synchronous position mode" allows the AM600 controller to calculate the required position
(TargetPosition) for the next period point by the relevant MC function block during each EtherCAT task
execution based on conditions such as the desired position of the slave axis, allowable running velocity,
acceleration, and EtherCAT bus period and send it to the servo drive. The servo will move to the next
target point according to this distance/time command. In this operation mode, AM600 is responsible for
planning and calculating the servo operation position and velocity at each point of time, while the servo
only knows the target point to be reached and the running velocity for the next EtherCAT moment.

Distance
A

User target position

|

| Themaster sends the

| targetinstruction only for
| thenext period at a time
|
|
1

(TargetPosition)

\j
[l

0 t (&)
‘ o, .
Current position
Note that when the servo is running in the "position mode" or "velocity mode", AM600 adopts the "cyclic
synchronous position mode" to command the servo to run.

On the other hand, for a running servo axis, there must be an effectively triggered MC function block that
continuously monitors the running of the servo axis. If no MC block is running for this axis due to the
logic jump of the user program, the servo will stop after this state lasts for several EtherCAT periods, and

the controller will generate an alarm for the error.

-53-

4. Execution Mechanism of the Motion Control Program

4.,5.2 Data Structure of the Servo Axis

In AM600, the servo slave is managed as a special "axis", and an axis is an important object. In the system
software of AM600, the system automatically declares a data structure for each servo axis configured by
the user and automatically updates and maintains it in real time during the execution of each EtherCAT
interrupt. The user program can access the data structure to learn about the current command value,
operation status, operation position, velocity, acceleration rate, torque, and other parameters of the
servo axis. There are more than 100 data structure variables in total, which provide a comprehensive
description of the axis status.

The following figure shows an example of the Axis monitoring window in the user program. The
information comes from the data structure of the axis.

tevices ~ # X || Configuration & Hsl0 POU POU_1 POU2 [gh ETHERCAT ¥4 Harcnare Configuration [nosve3on ne Axis X | [fJ HIGH SPEED IO

@ oevee

@ Fault Diagnose ~[a

=3 Network Configuration

8 Canopen contis

Expres

Application Type

B EthercaT confi
9 Localus Config
= B picLogic
= 102 Application [stop]
i) Library Manager
PLC_PRG (PRG)
POU (PRG)
PouU_1 (RG)
POU_2 (PRG)
= (@ Task Configuration
=& canopen
8] canOpen_Task
- & ETERCAT
8] enercaT Etherca
& rou
) rou_t
- S0
& rou2
= & wanTask
& pic_pre
(2 Resources List o
2 softiotion ol
5 @ HicH_speeD jh Speed 1
= [ETHERCAT (EtherCAT Master Sof
= A (@ ToSV630N (SV630_tAis. 03
ARG axs ()
5[l CANOPEN (CaNopen Master)

= @ ToConfig_Globalsis Device. Application

* wAxisStructiD
*p naisState

*p bRegulatoron
* bDrivestart

*p bCommunica tion

*$ wCommunicationstate

* bDriveStartRealState
* wDriveld

“§ iOwner

9 iNoQwner

#p feycleTmespent
fTaskCycle

* bEmorada
“p bDisableErrorLogging

4 foeFsEmor

* dviRatioTechUnitsDenom

fFactorAcc
4 fractorTor

SM3_Drive ETC,

WORD

SMC_AXIS_STATE

Bo0L
Bo0L
Bo0L
wWoRD
unr
Bo0L
Bo0L
woRD

B00L

ARRAY [0..g.S.

DWERD
omr

MC_DIRECTION

wreAL
=N
LREAL
wreAL

positive
1

1
1
1

Prepared value Exccutionpoint Ac
Cydic Monitoring
Cydic Monitoring

Cydic Monitoring

Cydic Monitoring v

< >

>
B Wnteht [T Aokt

Note the following characteristics of the axis data structure:

@ When the user configures a servo axis for the application network, the system automatically declares
the data structure, the name of which is the same as the axis name. The variable names and data types
in the data structure are defined by the system.

@ Inthe user project shown above, there are three servo axes (Axis, Axis_1, Axis_2), and each axis has the
corresponding data structure.

@ Ifthe user program uses virtual axes, including encoder axes, the system also declares and maintains an
axis data structure for them, only some of the structure variables may change.

€@ The axis data structure variables are global, that is, they are accessible in all POUs of the user project.

@ Thereis no explicit limit to the number of axes allowed by the system as long as the controller
computing power meets the requirements of the application. There is a corresponding number of axis
data structures.

€@ Oncethe controller has started running, the servo feedback values are automatically updated into this
data structure after the controller gets the slave response data during each EtherCAT task operation
phase. The variables of this data structure are accessible during the execution of user POUs.

\ 4

........... doeocaooenoe,

*"The user program can %,
query the current H

\._ axis datastructure. ¢

EtherCAT task execution time
! 1/0 refresh 3 1/0 refresh
i i
| I e | g
I | o0 B o0
| € € o € c
Output | t 7 . 7
| L;Ja?: Data refresh ge?tua 23 Execution of the § 28
! 8 user program z |#8
| e S <3
| [= a
i H
t
T |
i 1
i 1
i |
1 i

the system, invisible to users

4. Execution Mechanism of the Motion Control Program

@ Axis data variables are specified in the format of "Data structure name.Structure variable name".
Generally, the following parameters are used in the data structure:

Axis.nAxisState: Current running state of the axis, which is the state parameter that the servo feeds back
to the controller

Axis.fSetPostion: Axis set position, which is sent by the controller to the servo axis

Axis.fActPostion: Actual position of the axis, a status parameter returned by the servo to the controller, in
the dimension the same as the command unit set by the user program

Axis.fActVelocity: Actual velocity of the axis, a status parameter returned by the servo to the controller, in
the dimension the same as the command unit set by the user program

In the user program, these variables can be used as the basis for motion control calculation and
judgment. Some of the variables in the axis structure are command data sent from the controller to the
servo axis. In the user program, you can assign values to these variables to control the servo axis. The
following ST statement is an example:

Axis.fSetPostion = 500;//The unit of this parameter is the same as the command unit of the command

4.5.3 Servo Axis Status and Transition Rules

AM600 complies with the PLCopen Specification. In a motion control system, the operation status of an
axis is divided into several logical statuses. The direct transition of each logical status requires a specific
condition or a specified MC instruction. The division enables the axes to be controlled according to the
motion modes. The axes can only be in one logical status at one time, and the transition of the logical
status must follow the rules. In this way, it avoids operation chaos due to the false triggering of different
MCs.

The axis data structure variable (Axis.nAxisState) indicates the current operation status of the axis. Axis.
nAxisState is an enumerated variable, with 8 possible statuses:

0: Power_off (Disabled): The axis is not powered on or enabled. You need to execute the MC_Power

instruction.
1: Errorstop;------------------- First execute the MC_Reset/MC_Power instruction.
2: Stopping;-------------------- Wait for the stopping operation to be completed.
3: Standstill;------------------- The axis has stopped running and is out of synchronization.
4: Discrete_Motion;--------- The axis is in the state of discrete motion.

5: Continuous_Motion;----- The axis is in continuous motion.
6: Synchronized_Motion;--- The axis is in synchronous motion.

7: Homing;---------------------- The axis is in homing operation. Wait for the homing operation to be
completed.

The following is an axis status transition diagram. The transition of statuses requires specific conditions
such as running the MC instruction, or external faults for which the user cannot reset the status. During
programming, users must run the relevant instructions according to the logic requirements.

4. Execution Mechanism of the Motion Control Program

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_MoveSuperimpose

MC_Gearln (Slave)
MC_GearInPos (Slave)
MC_Camin (Slave)
MC_CombineAxes (Slave)

Synchronized
Motion

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_TorqueControl
MC_MoveContinuousAbsolute
MC_MoveContinuousRelative

Continuous

Discrete Motion

MC_Home

Motion

Note 4 Note 3

Homing

Note 5 \{ Disabled n

Note 2
Note 3
(Note 4:
INote 5
(Note 6:

Note I: From any state. An error in the axis occurred.

From any state. MC'_Power.Enable = FALSE and there is no error in the axis.

MC_Reset AND MC_Power. Status = FALSE

MC_Reset AND MC_Power. Status = TRUE AND MC_Power.Enable = TRUE

MC_Povwer.Enable = TRUE AND MC_Power.Status = TRUE
MC_Stop.Done = TRUE AND MC_Stop Execute = FALSE

The MC function block in the figure enables the axis status to transition to the specified status, as shown
in the figure:

@ Inthe axis stop state (Standstill, that is, Axis.nAxisState = 3), it is possible to transition to various
operation statuses.

@ Itis possible to transition from multiple statuses to the stop state (Standstill, that is, Axis.nAxisState = 3).

@ Ifthe servo axis has an alarm (Errorstop, that is, Axis.nAxisState = 1), you need to run the MC_Reset and
MC_Power instructions to make the axis enter the Standstill status before the axis can run again.

€ Ifyou do not use the MC instruction to command the axis to move according to the above transition
diagram, the axis will not respond, and an alarm message will be generated for the MC function block.

In the user program, sometimes you need to start the subsequent control logic according to the axis
status. In this case, the judgment based on Axis.nAxisState is more accurate and reliable than the
judgment for the done signal of the MC function block.

Familiarize yourself with the transition conditions shown in the axis status diagram and pay attention
to the logic and sequence of MC instructions during programming to make the application stable and
reliable.

4.5.4 Execution Logic of the MC Function Block

Axis control commands related to servo slaves are mostly in the form of MC function blocks (also called
instructions). Since MC function blocks need to be executed continuously in short intervals and the servo
operation response must be monitored in time, MC function blocks for axis motion can only be called for
execution in an EtherCAT task. The internal processing of the system is as follows:

19) Only MC function blocks that have been effectively triggered will be executed. For multiple instances
of the same MC function block (for the same axis object), the one that is triggered later will be
prioritized.

20) For MC commands for servo axes, the system first checks the validity of the operations in accordance
with the axis status transition rule. Then, the system performs operations including the axis status
transition and update of the axis target parameters and prepares the axis control command data.

21) The system software for EtherCAT bus control makes the axis control command parameters into

4. Execution Mechanism of the Motion Control Program

PDO transmit buffer data according to the TPDO configuration table and object dictionary of each
servo slave axis set by the user.

22) The system software for EtherCAT bus control will, according to the RPDO configuration table and
object dictionary of each servo slave axis set by the user, reserve several bytes of slots required by
the slave response data in the EtherCAT frame receive section. Finally, it "assembles" the axis status
parameters to be read by the master to the EtherCAT frame transmit buffer and sends them to the
slave at the next EtherCAT period.

23) The results of the EtherCAT remote I/O operation are stored in the buffer according to the connection
order of the slave racks and are sent together with the servo slaves. However, the status of the data
in the transmit buffer is updated after the completion of a general task period (task priority of 15 or
lower, such as a 20-ms period).

24) The following figure shows the timing for the master controller to execute the user program and
send/receive data via EtherCAT:

Task period = EtherCAT period Task period = EtherCAT period ‘

Actual time required for task execution Actual time required for task execution

1/0 refresh 1/0 refresh 1/0 refresh 1/0 refresh

[Outpu
data

Input Execution of the
Data refresh data

user program

Output]
data

Input

Execution of the
Data refresh | 4o

user program

U " remporarily stored f Taking effect U iTemporarily stored

Axis control Data from the Axis motion S h EtherCAT period ‘ Data from the Axis motion
instruction sent servo slave controlinstruction| Sentin the next EtherCAT period_| servo slave takes ontrol instruction|_ Sentin the next EtherCAT period
to the slave takes effect. and data effect. and data

System
processing 1
MC processing
System
processing 2
System
"Brocessing 1
MC processing
System
processing 2

25) Inthe MC user program, if the servo system is in operation, an MC function block that has been
triggered for execution must be monitoring the servo axis, to avoid the absence of MC monitoring of
arunning servo axis due to the program logic jump. Using MC_Stop to make it stop is also a kind of

monitoring.

It can be found that the axis control commands involved in an EtherCAT task are not sent out during the
current POU execution period, and there is a delay of one EtherCAT period. The error caused by such
delay must be taken into account in applications requiring precise position and length control, such as
the triggering of MC_Camln for multi-axis synchronous control, as shown in the following figure.

EtherCAT bus send/receive -, .- MC program operation
EtherCAT interrupt
POU execution t
A A
'
<> .e
Digital discrete deviation i Error E Refer_er_lce .s=" b
H position 7
P Offset o’)
Calculation control instruction - ————ee==="" Position required by process quter
= o » axis
H L.
' position
<P
Delay
elay E Actual position
¥ Position control
Motion control & instruction
e . instruction triggereds actuall t
Position instruction actually sent in advance ,.i,ac At Master
R » axis
position

EdNotes:
Measures can be taken during programming to deal with the error caused by the above delay:

Trigger the MC instruction 1 EtherCAT period in advance.

The MC start required by the control process is not necessarily at the beginning of the EtherCAT period,
and it can be in the middle of the period. The elimination of this discretization error should be taken into
account during programming. The Offset parameter provided by the MC function block can be used for
compensation.

26) To eliminate the discretization error, estimate the error caused by this kind of communication

-57-

4. Execution Mechanism of the Motion Control Program

mechanism based on parameters such as the current object's operation position, velocity, and
acceleration rate. A smaller EtherCAT bus period is conducive to reducing uncontrollable errors.

4.,5.5 Data Interaction Between POUs of Tasks of Different Priorities

To support variable interaction between multiple POUs, it is necessary to use global variables, that is,
you need to declare them in the global variable list (GVL). However, if the POUs are in tasks with different
priorities, the data interaction is not in real time, and the result of the data update depends on the task
priority, task period, and type of variable access. Pay attention to the following mechanism:

When the user program is executed, for tasks with different priorities and different periods, AM600
internally adopts the rule of start time alignment, that is, there is a common point for calculating the
start time of the task period. If the period of one task is an integral multiple of another task, then the
tasks will have a regular coincident time point (alignment point), which is often used as the GVL data
interaction point.

@ Only after a task has been executed, the modifications made by its POU to variables are written to the
GVL buffer. Modifications made by low-priority tasks to GVL parameters only take effect at the end of
their task period.

@ Rewrite operations performed by high-priority POUs to the GVL take effect immediately.

@ Low-priority tasks will copy the GVL value from the GVL buffer once before the execution of the first
task from the alignment point, as a basis for use during the POU execution of this task. The GVL buffer
variables will not be read again during the execution of this task.

| ECT task period ECT task period ECT task period ECT task period | ECT task period
< < » » »< >
ECT task | ECT task | ECT task | ECT task ECT task

| ¢ Write ¢ Write ¢ Write Write |k. ¢ Write

| GVL variable GVL variable | ’,

| ™ Taking effect “XNot read "X Not read "X Not read % ™, Taking effect
R | A 4) 4 | 4 v A 4
Main tas | Main task Main task Main L Main
[task ot | task

I W Write W Write |

| ~ aie] - |

< >

N . . 1

Task period Main task period Task period
alignment point alignment point

@ The servo axis data structure is a global variable automatically defined by the system. The system will
automatically refresh the data structure every time the ECT task is executed. If the variables of this data
structure are to be read in the Main task POU, the readings will be the data updated by the first ECT task
after each "task period alignment point". Similarly, if the variables in the data structure needs to modify
in the Main task POU, they will be sent to the servo axis in the first ECT task after the next "task period
alignment point”, with a delay of about one Main task period.

@ Forevent-triggered execution of tasks, such as interrupt task POU execution triggered by HSIO, the
latest variable values in the GVL will be used. As shown in the following figure, the updated GVL values
between the EtherCAT task and the HSIO interrupt task can be interacted in a timely manner. When the
execution of a lower-priority HSIO task is interrupted by an EtherCAT task, the GVL value modified by the
HSIO task is valid only when the next EtherCAT task is executed after the HSIO task has been executed.

4. Execution Mechanism of the Motion Control Program

< ECT task period —l ECT task period iy ECT task period g ECT task period
| ECT task ECT task ECT task ECT task | ECT task
¢Write A ¢ Write ¢ Write i Write A Write
(6. arbie]. [ELabe] rne |]
™ Taking effect; . effect "X Notread
I 4 I ; AN
! ex*g'rgal ! HSIO | HSIO | ;
Lnterpt || task | iTakingeffect ___________________ T i
Write | +Write.:'
[GVL variable [Taking effect

dNotes:

It can be found that, in the user program, the period of a general main cyclic task must be an integer
multiple of the period of an EtherCAT task. For example, set the period of an EtherCAT task to 2 ms
or 4 ms and that of a general main cyclic task to 20 ms; otherwise, an exception will occur during the

interaction of GVL parameters.

In tasks with different priorities, if there are modification operations on the same GVL variable, the
values may overwrite each other. During programming, it is recommended that only one POU is allowed
to perform rewrite or reset operations on a global variable, and the other POUs can only read and refer
to it or reset the operation; otherwise, unanticipated errors will occur.

-590-

.. 5 Application of the User

Program

5. Application Programming of User Program

5. Application Programming of User
Program

5.1. MC Programming For Single-axis MC Positioning

5.1.1 Notes for MC Application Programming

The motion control is achieved based on the EtherCAT bus network with the cooperation of the AM600
controller and servo axis such as IS620N. Different from the previous method of hardware output pulse,
it uses only software, that is, servo control is achieved by carrying out a calculation and issuing a control
command once in each short EtherCAT bus period. Therefore, pay attention to the following points:

@ The MC user program is executed based on the EtherCAT task period. MC-related POUs must be
configured so that the POUs will be executed under EtherCAT tasks. Most MC function blocks cannot run
normally if they are placed in the POUs of low-priority Main tasks.

@ The execution of MC function blocks requires the transmission of data objects in communication.
Therefore, there must be required configuration items in the PDO configuration table. If the
configuration-related data objects are omitted, the servo may not run normally and there will be no
error alarm.

@ The controller can initialize the settings of the servo function code through the SDO configuration and
determine the servo operation mode (generally CSP mode), servo motor encoder mode, and electronic
gear ratio, to ensure that the control commands correspond to the physical operation position. The
initialization of the servo improves the commissioning efficiency of the device and reduces errors in
parts replacement.

@ The servo axis control must follow the rules and logic of axis status transition. Use the appropriate MC
function block for control based on the current status of the axis and the desired motion.

@ Theuser program uses an instance of the MC function block. An MC instance can only be used for the
control of one servo axis. If it is used for the control of several servo axes at the same time, the control
will be out of order.

€ Forarunning servo axis, there must be an MC function block that continuously monitors the running of
the servo axis. Even using MC_Stop is a kind of monitoring. If the servo axis is not monitored by an MC
function block due to the logic jump of the user program, the system will stop and generate an error,
which is not easy to detect.

@ Pay attention to the safety during commissioning. If the servo system uses an incremental encoder,
there must be a homing operation before normal operation. The DI signal input port of the servo drive
can access the home position signal. For motion in a limited range (such as a screw), there should be a

limit and safety protection signals before commissioning.

5.1.2 MC Function Blocks Commonly Used for Single-Axis Control

An MC function block (FB) is also known as an MC instruction. To be precise, what is used in the user
program is the object instance of the MC FB, and the servo axes are controlled through MC object
instances. Example:

MC_Powerl:MC_Power;//Declare the instance MC_Powerl

MC_Powerl (Axis=Axis1)

-61-

5. Application Programming of User Program

Single-axis control is generally used for positioning control, that is, the servo motor drives the external
mechanism to move to the specified position. Sometimes the servo must run at the specified velocity or
torque. In the single-axis control, the following MC function blocks are usually used:

Control Operation Required MC Command Description

Servo enabling MC_Power Run this instruction to enable the servo axis for subsequent
operation control.
Servo jog MC_Jog Jogging of the servo motor, commonly used in low-speed test

runs to check the device or adjust the position of servo motor.

Relative positioning MC_MoveRelative Take the current position as the reference and run for the

specified distance.

Relative superposition MC_MoveAdditive

positioning

Move for the specified distance based on the current operation
instruction of the servo.

Absolute positioning MC_MoveAbsolute Command the servo to move to the specified coordinate point.

Velocity control

MC_MoveVelocity

Command the servo to run at the specified velocity.

Torque control

SMC_SetTorque

Command the servo to run at the specified torque.

Servo halt MC_Halt Command the servo to halt. If MC_Movexxx is triggered again, the
servo can run again.

Emergency stop MC_Stop Command the servo to stop urgently. Only after the stop
command is reset and MC_Movexxx is triggered, the servo can run
again.

Alarm reset MC_Reset When the servo stops with an alarm, run this instruction to reset.

Servo operation mode
switchover

MC_ControlMode

Command the servo to select the "Position", "Velocity" or
"Torque" mode.

Servo homing MC_Home Command the servo to start the homing operation. The home
signal of the application system and the limit signals of both sides
are connected to the DI port of the servo.

Controller homing SMC_Homing The control system starts the homing operation. The home signal

of the application system and the limit signals of both sides are
connected to the DI port of the controller.

5.1.3 MC Commands and PDO/SDO Configuration

When AM600 executes the servo axis MC commands of the user program, it is necessary to add the
information items required for interaction with the servo to the communication PDO/SDO configuration
table to achieve the control function.

MC Command

Required TPDO

Required RPDO

MC_Power
MC_Halt
MC_Stop
MC_Reset
MC_Home
SMC_Homing

ControlWord (control word)

StatusWord (status word)

Errorcode (error code)

MC_Jog

MC_MoveRelative

MC_MoveAdditive

TargetPosition (target position)

MC_MoveAbsolute

Position actual value (current axis position)

Following error actual value (current
following error)

MC_MoveVelocity

Target velocity (target velocity)

Max profile velocity (max. Profile velocity)

SMC_SetTorque

Target torque (target torque)

Torque actual value (current torque)

5. Application Programming of User Program

16#6060=8: Cyclic Synchronous Position
(CSP) mode

16#6060=9: Velocity mode
16#6060=10: Torque mode

MC_ControlMode Modes of operation (operation mode)

The above TPDO and RPDO are basic configuration items required to perform single-axis control.

In MC control, the servo usually runs in position mode. In EtherCAT bus-based applications, the servo
runs in Cyclic Synchronous Position mode. Therefore, set the servo operation mode to CSP in the SDO
configuration during programming. For example, the following items are generally initialized in SDO for

IS620N:
Initialization Operation for . .
P Required SDO Description
Servo
Set to Cyclic Synchronous Modes of operation (16#6060) Setto 8.

Position mode.

1:1is recommended.

s l 16#6091-1:
etting electronic gear ratio i ingi
g g 1646091-2: (Function code setting is not
recommended.)
0: Incremental; 1: Absolute finite length;
Setting motor encoder type 16#0201 (1S620N function code)

2: Absolute infinite length

Setting maximum allowable Applicable to velocity mode and torque

Max profile velocity (16#607F)

velocity mode.

tSoert:Seg maximum allowable Max torque (1646072) ,:qpopcii;able to velocity mode and torque
Setting homing mode Homing method (16#6098)

Setting homing velocity Homing speeds (16#6099)

Touch probe function Touchprobe function (16#60B8)

5.2 Motion Control Programming for Multi-axis Cam Synchronization

Cam motion adopts the concept of relative motion between the mechanical cam and the tappet.
Based on the specific nonlinear relationship for the relative position, the controller makes the servo
slave axis follow the master axis for continuous and synchronous motion to meet the required

motion characteristics of the device. Cam motion is extensively used in applications requiring the
synchronization function, such as fixed-length cutting, chasing shear control, flying shear control, and
multi-color overprint.

The master-slave axis position relationship of the electronic cam curve is shown below. The horizontal
axis indicates the position of the master axis, and the vertical axis indicates the position of the slave axis.

Paostion

Slave axis l
. Cam curve
Slave axis

- = Pasition
Master axis

AM600 adopts software to achieve cam motion control, that is, it uses the digital "cam table" to replace
the mechanical cam, which is also called electronic cam control. Compared to the mechanical cam, cam
motion control has the following features:

@ Easy creation of cam shapes: Cam tables, cam curves, or arrays are used to describe cams.

@ Diverse cam shapes: Multiple cam tables are available and can be switched dynamically during
operation.

-63-

5. Application Programming of User Program

Easy modification of cam shapes: Cam table key points can be modified dynamically during operation.
Multiple cam slave axes: Multiple cam slave axes are supported.
Cam tappet: Multiple cam tappets and multiple setting intervals are supported.

Cam clutch: During cam operation, the user program can make it enter and exit the cam operation.

* 6 6 0 0

Features of electronic cam: Support for virtual master axis, phase shift, and output superposition

The cam operation of AM600 is carried out by software only. In cam running status, the next target point
of the slave axis is calculated every time the EtherCAT task is executed, thus providing higher functional
flexibility than hardware cam operation.

Three elements of electronic cam control are as follows:
27) Master axis: A reference axis used for synchronous control

28) Slave axis: A servo axis that follows the master axis according to the desired non-linear
characteristics based on the position of the master axis

29) Cam table: A data table or cam curve that describes the relative position, range, and periodicity of
the master axis and slave axis

During programming, users need to design the cam table to specify the master axis and slave axis.
Then, trigger the cam at an appropriate moment during running so that the slave axis can enter the cam
running status.

The basic instruction function blocks of electronic cam control are as follows:

Control Operation Required MC Command Description
Select cam table MC_CamTableSelect cR:rr;tt:i;lz)mmand to associate the master axis, slave axis, and
Enter cam running MC_Camin Make the slave axis enter cam running
Exit cam running MC_CamOut Make the slave axis exit cam running
Correct cam phasing MC_Phasing Modify master axis phasing

5.2.1 Main Function Blocks For Cam Running

1) MC_CamTableSelect FB for Cam Table Selection

This function block is used to associate the master axis, slave axis, and cam table, and to set the period
of cam running as well as the position mode (absolute position or relative position) of the master and
slave axes. This command is a management-type command, that is, once this command is triggered and
executed once, the relevant master and slave axes can run according to this characteristic. To modify
the cam table or change the master or slave axis, you need to trigger the execution of this function block
again.

MC CamTableSelect 0

MC CamTableSelect
Master SMaster Done ————
slave —2slave Busy —

Cam —=CanTable Error
—Execute ErrorID
—Pericdic CamTableID — CamID

false —MasterAbsolute
false —{SlaveRbsolute

5. Application Programming of User Program

mode

mode

MC_CamTableSelect(

Master:=, //Cam master axis
Slave:=, //Cam slave axis
CamTable:=, //Cam table
Execute:=, //Command-triggered

variable, rising edge-triggered

Periodic:=, //Set the cam periodicity
MasterAbsolute:=,//Master axis position

SlaveAbsolute:=, //Slave axis position

Done=>,//
Busy=>,
Error=>,
ErrorlD=>,
CamTablelD=>);

MC_Camin(
Master:=, //Cam master axis
Slave:=, //Cam slave axis
Execute:=,//Execution-triggered,
rising edge-triggered

StartMode:=, //Slave axis trigger
position mode

CamTablelD:=, //Cam table pointer

VelocityDiff:=, //Velocity deviation

Acceleration:=, //Acceleration rate

Deceleration:=, //Deceleration rate

Jerk:=, //Jerk

TappetHysteresis:=, //Tappet
hysteresis

InSync=>, //Synchronization
indication

Busy=>,//Running

CommandAborted=>, //Command
aborted

Error=>, //Error

ErrorlD=>, // Error ID

EndOfProfile=>, //Executed at end of
cam

Tappets=>,// Tappet active

);

MasterOffset:= ,//Master axis position

offset

SlaveOffset:=, //Slave axis position
offset

MasterScaling:=,//Master axis scaling
ratio

SlaveScaling:=, //Slave axis scaling
ratio

The input and output variables of this function block are as follows:

MC_CamTableSelect

This function block is part of the library SM3_Basic library. It is designed for selecting the cam tables by setting connections to relevant tables

Type Initialization
VAR_IN_OUT

Master AXIS_REF

Slave AXIS_REF

CamTable MC_CAM_REF

VAR_INPUT

Execute BOOL FALSE
Periodic BOOL TRUE
MasterAbsolute BOOL TRUE
SlaveAbsolute BOOL TRUE
VAR_OUTRUT

Done BOOL FALSE
Busy BOOL FALSE
Error BOOL FALSE
EmorlD SMC_ERROR o
CamTablelD MC_CAM_ID

2) MC_Camin function block for cam running

Description

Reference to master axis, see AXIS_REF_SM3
Reference to slave axis, see

Reference to cam description, see MC_CAM_REF

A ising edge of this input value will start the execution of the function block
TRUE = periodic, FALSE = non periodic
TRUE = absolute, FALSE = relative coordinates

TRUE = absolute, FALSE = relative coordinates

TRUE, if preselection has been done

TRUE, if execution of function block is not finished

Signals that an error has occurred within the function block
Error identification, see SMC_Error

Identifier of cam table, to be used for function block MC_CamiD

-65-

5. Application Programming of User Program

After the MC_CamTableSelect function block is run, users can run this function block to make the
slave axis enter the cam running status (Synchronized_Motion, that is, Axis.nAxisState = 6). The system
executes this function block once every time it enters an EtherCAT task to calculate the next target
point of the slave axis based on the current position of the master axis and the cam table. If the MC_
CamTableSelect function block is not run beforehand, an error will be reported if this function block is

triggered.
MC_CamIn 0
MC_CamIn
Master —SMaster InSync ——
slave —S5lave Busy —
—Execute CommandAborted —
—MasterOffset Error -
—SlaveOffset ErrorID
—MasterScaling EndOfProfile —
—Slavescaling Tappets —
—{StartMode
CamID —CamTableID
—{VelocityDiff
—Acceleration
—|Deceleration
—Jerk
—{TappetHysteresis

MC_CamOut(

Slave:=, //Cam slave axis

Execute:= ,//Trigger variable, rising
edge-triggered

Done=>, //Execution completed

Busy=>, //Execution in progress

Error=>, //Error

ErrorlD=>//Error ID

);

This instruction makes the cam slave axis enter into the state of synchronous operation with the cam
master axis. It controls the cam slave axis to adjust to the corresponding target point according to the
current position in the master axis and the position correspondence of the cam table. The execution of

this instruction has no impact on the master axis.

Slave axis position

Cam curve
e T
. A
Trigger MC_Camln to
enter cam running
P Master axis position
0 360
400 A 800

1al master axis position
Master . fActPosition MC _Camin .Execute =1

Once MC_Camln is triggered, the slave axis moves by following the position of the master axis based on
the position correspondence in the cam table. Note that the position correspondence, not the velocity
correspondence, must be followed.

After entering cam running, the system will parse the CAM cam table for every EtherCAT interrupt,
calculate the next target point of the slave axis based on the current position of the master axis, and
send the next target position to the slave axis to make it run.

5. Application Programming of User Program

@m am ¥ | BT BIEE

)
-)
= 2 i
s iR —
30048 :
z —t 1
3
200 E /./?q $$
/_/' : Bina
100 :
,,H”’/t | EH
L o 4 i i Hire, master position [u]

0 20 40 &0 &0 100 120 140 160 180 200 220 240 260 280 300 320 340

5.2.2 Master and Slave Axes in Relative Position Mode

Slave axis position

Master axis in relative position mode
MC _CamTableSelect. MasterAbsolute:= False

| Master axis position

p»————————————— = — = »
0 360
--+++++++++++t+++++-++++++-+++++++++t++++++++++t+t+t+t+t ¢
0 A

Actual master axis position
AxisMaster. fActPosition

MC _Camln. Execute =1
When the master axis is in relative position mode, the cam operation module will use the current
position as the start point X=0 of the master axis when entering the cam status.

When the slave axis is in relative position mode, the cam operation module will use the current position
as the start point YO0 of the slave axis when entering the cam status, based on which the cam output
results thereafter will be superimposed.

5.2.3 Master Axis in Absolute Position Mode and Slave Axis in Relative Position
Mode

Slave axis position

Master axis in absolute position mode
MC _CamTableSelect . MasterAbsolute:= True
Slave axis may have velocity jump
~a |
|
I | Master axis position
| o — - ——— —————————— = >
0 360
. t
0 A
Actual master axis position MC _Camin.Execute =1

AxisMaster . fActPosition

When the master axis is in absolute position mode, the cam operation module will calculate the slave
axis position based on the current position of the master axis when entering the cam status. Therefore,
pay attention to the following points:

€@ High-speed rotation during slave axis position adjustment in cam running will cause impact or damage
to the device.

@ Ifthe current position is beyond the value range of the cam table, the slave axis will not move and an
alarm will be generated.

@ Ifthe camtableis in cyclic mode, the next cam period starts when the execution of the current period is

-67-

5. Application Programming of User Program

completed.

5.2.4 Master Axis in Relative Position Mode and Slave Axis in Absolute Position
Mode

Slave axis position

Slave axis may rotate at high velocity
— /
/ Slave axis in absolute position mode
l‘ // MC _CamTableSelect. Slave Absolute:= True
| /
‘ \ Master axis position

>

0 360

t

MC Camlin Fvernte =1
When the slave axis is in absolute position mode, it will move to the position required by the cam when
entering cam running. If the deviation is large, automatic adjustment of high-speed motion will occur.

Take measures according to the application characteristics:

@ Fordevices requiring the alignment operation, such as the revolving knife for fixed-length cutting, the
absolute position must be adopted for the cam slave axis. During programming, perform the homing
operation for the revolving knife before its first rotary cutting action.

@ Reasonably set the master axis position range for the cam table to avoid reverse cam position
adjustment at the beginning of the next period.

€ Run SMC_GetCamSlaveSetPosition to set the slave axis position of the cam entry point to the current
coordinates of the slave axis.

@ Forapplications supporting relative position mode, use relative position mode:

MC_CamTableSelect.SlaveAbsolute = False; or MC_Camln.StartMode = 1; (relative mode)

Notes:

When the slave axis is set to absolute mode of "finite length", the controller will choose a closer direction
when making homing adjustment if it is possible to turn left or right for the homing operation. When
designing the range of the cam table, make sure that it does not exceed the actual range of operation
required; otherwise, instantaneous high-speed rotation adjustment of the servo slave axis will occur,

resulting in @ mechanical shock.
5.3 Cyclic Mode Characteristics of the Cam Table

The following figure shows the result of single-period cam running. When the cam table is set to single-
period mode (Periodic = 0), the slave axis exits the cam running status after one cam table period is

completed.
MC _CamTableSelect . Priodic=0

Slave axis position

|

| -
| Slave axis position
|

|

|

- "
Master axis position ? 360 360 360
—++ e

0 A

MC _Camin .Execute =1

-68-

5. Application Programming of User Program

When the cam table is set to cyclic mode (Periodic = 1), the slave axis starts to run the next cam period
after running for one cam table period, until a user program commands it to exit the cam running status,
as shown below:

Slave axis in relative position mode
MC _CamTableSelect. Slave Absolute:= False

Slave axis position Slave axi
|

| Slave axis position

) . -
Master axis posmon? 360 360 360
—++ e
0 A

MC _Camln.Execute =1

The preceding figure shows the result of cyclic cam running. Once the master axis position range
in the cam table is completed, the motion of the next cam period starts automatically.

5.3.1 Offset for Camin Operation

Slave axis position

Master axis in absolute position mode
MC _CamTableSelect . MasterAbsolute:= True
—
I
|
: P Master axis position
0 360
—H%%—H—!—H%%%—I—FFFFFFFFFFFFH%%—FFFFFFFFFFH%—FFFFFFFFH—F t
0 A

Actual master axis position MC _Camin. Execute =1

AxisMaster . fActPosition

Slave axis position

A

Master axis in absolute position mode
MC _CamTableSelect. MasterAbsolute:= True
MC _Camln. MasterOffset

F ’ /]

— il

P Master axis position
0 360

--+++-++-++-++-++-++-++++++++++++—+++-++++++++++++++++++++++t+» ¢
0 A
Actual master axis position MC Camln.Execute =1

By setting an offset for the cam master axis, you can modify the start point of the cam slave axis. Based
on the current actual position of the master axis, calculate the offset value, which can start at point 0 of
the cam table:

MasterOffset = 0 - AxisMaster.fActPosition

5.3.2 Calculation of Master Axis Scaling During Cam Running

By default, MasterScaling is set to 1 in the system. If the user program modifies this variable:

-69-

5. Application Programming of User Program

Slave axis position

Cam table

B P Master axis position
360

Master axis in relative position mode Equivalent cam table
MC _CamTableSelect . MasterAbsolute:= True

MC Camln Fvaruta=1

After setting MasterScaling for the cam master axis, you can perform linear scaling of the master axis
position so that the position correspondence with the cam table meets the requirement.

If the offset value of the master axis is considered, the calculated position of the master axis (X) in the
cam tableis:

X = MasterPosition x MasterScaling(n) + MasterOffset

This parameter can be used for dimensional fine-tuning of processing workpieces.

5.3.3 Calculation of Slave Axis Scaling During Cam Running

By default, SlaveScaling is set to 1 in the system. If the user program modifies this variable:

Slave axis position

A

Cam table

P Master axis position

0 360

Slave axis position

Slave axis in relative position mode
MC _CamTableSelect .Slave Absolute:=True

Equivalent cam table

i 4 — —
SlaveOffset i Y = CAM (X)*SlaveScaling (n) + SlaveOffset
P Master axis position
0 360
-+ttt -+ttt

After setting SlaveScaling for the cam slave axis, you can perform linear scaling of the slave axis position
so that the output of cam control meets the requirement on the slave axis motion position.

If the offset value of the slave axis is considered, the output position of the cam slave axis (Y) is:
Y = CAM(X) x SlaveScaling(n) + SlaveOffset

This parameter can be used for dimensional fine-tuning of processing workpieces.

5.3.4 Characteristics of and Precautions for Using Offset and Scale in Cam Running

-70-

5. Application Programming of User Program

It is recommended to adopt the relative mode for the master axis position mode and the slave axis
position mode, unless otherwise required by the application system. This can make the programming
simple and lower the possibility of a mechanical shock.

The master axis start and stop ranges, offset, scale and other values of the cam table can make up
for the design deviation of the cam table. It is recommended to use the default settings to facilitate
commissioning and maintenance and reduce possible running errors.

When the cam table period is executed/aborted or after the cam table is switched, the system will clear
the values of the offset and scale in the memory and restore the default values when MC_Camin is

executed again.

5.3.5 MC_CamOut FB for Exiting Cam Running Status

When the slave axis is in cam running status, triggering the execution of this function block can make the
slave axis exit the cam running status and enter the continuous running status (Continuios_Motion, that
is, Axis.nAxisState = 5). The execution of this instruction has no impact on the master axis.

MC_CamOut_0

MC CamOut
slave —“slave Done ——
— Execute Busy —
Error [—
ErrorID |-

VAR i: INT;

CAM: MC_CAM_REF:= (
byType:=2, (* non-equidistant *)
byVarType:=2, (* UINT *)
nElements:=128,
xStart:=0,
xEnd:=360);

Table: SMC_CAMTable_UINT_128_2:=(
fEditorMasterMin:= 0, fEditorMasterMax:= 360,
fTableMasterMin:= 0, fTableMasterMax:= 6000,
fEditorSlaveMin:= 0, fEditorSlaveMax:= 360,
fTableSlaveMin:= 0, fTableSlaveMax:= 6000);

END_VAR

Note: When you execute this instruction, the slave axis exits the cam running status. However, it will
continue to run at the velocity the same as that when it exited the cam status, just as the driven gear
continues to run by inertia even after being disconnected from the mechanical clutch. In this case,
another MC function block is required to take over the motion control of the slave axis, such as MC_
Movexxx, MC_Halt, and MC_Stop.

5.4 MC_Phasing FB for Cam Master Axis Phase Adjustment

In the cam synchronous operation of some devices, sometimes it is necessary to correct the relative
phase between the cam master axis and the slave axis. In this case, you can use the MC_Phasing
instruction.

This instruction modifies the calculation result of the cam slave axis position. You can set the velocity
and acceleration constraints generated by the phase adjustment. During the adjustment, the running
velocity and position of the slave axis remain continuous. After the adjustment, the phase difference is
kept in continuous operation.

-72-

5. Application Programming of User Program

Example of [[e8: EH - itiming
& Phase shift Position of the slave axis
<50 Position following the master axis

P
Contindous. "

adjustment T

Physical master
axis position

MC_Fhasing. Execute=1

l Phase velocity

Velocit;
¥ Master axis velocity

t

This instruction can be used to adjust the position of the color mark in the sheared workpiece
segment in synchronous control.

5.5 Cam Table Design and Its Data Structure

The cam table is one of the items for writing a user program for cam running. It determines the
characteristics of cam running and can adopt the graphical or tabular form.

5.5.1 Characteristics of the Cam Table

The following figure shows the cam table in graphical form. The horizontal axis indicates the master
axis position, and the axis length is the travel of cam running. There are four coordinate curves, and
the vertical axes indicate the slave axis position, the slave axis velocity, the slave axis acceleration
rate, and the slave axis jerk, respectively. We tend to focus on the position curve and velocity curve
during programming commissioning, and also the acceleration rate curve during the smoothness

commissioning.

5. Application Programming of User Program

4

iCam il Cam table I Tappets I Tappet table

(]
o
= I
= T
300 g T
g {I.—'-"'-FH-F
—_ |
2001E
L—=—"7
,:—"'_'-'_‘-
o
100
-”-/
] master position [u
I
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
il
o
F
15
112 & &
=
0.54%

master pos ;Rmm

140 160 180 200 220 240 260 280 300 320 340

(o
ra
=
&
2
o
=
S
—u
P
=

0.03
0.02
0.01

0
-0.0H
-0.02
-0.0F

./ master posijtion Jul

0 240
o

13

o

¥,
Ay

-1

|
o T

L

=}

b,

[+

-]
[4%)

-1

] U !131975'3‘:3\3;1 1S

The cam curves have the following characteristics:

In the master-slave position curve coordinates, the vertical axis indicates the allowable motion range
of the slave axis. For the other three curves, the vertical axes indicate the velocity ratio and acceleration
ratio between the slave axis and the master axis.

The cam curve is monotonic in the vertical direction, that is, each coordinate of the master axis can
only correspond to a unique coordinate of the slave axis. During cam execution, the coordinates of the
master axis move in the ascending direction.

The cam curve can have several key points. The line type between two key points can be set as a
straight line or a quintic curve. The system will make the best optimization for each quintic curve to
minimize the abrupt changes in velocity and acceleration rate.

The start and end coordinates of the horizontal axis (master axis) start from 0 and end at 360 by default.
Users can modify them based on the actual physical travel.

5.5.2 Input Mode of the Cam Table

30) When users want to create a cam table, the system will automatically set up the simplest cam curve,
based on which users can make modifications as required.

31) Users can increase or decrease the number of key points and modify the coordinates of the key
points of the cam curve.

32) Users can modify the line type between any two neighboring key points, which can be quintic curve
or straight line.

33) By default, the system uses a quintic curve to link two neighboring key points in the cam curve,
ensuring the continuity of the velocity during operation and reducing the mechanical shock.

-73-

5. Application Programming of User Program

=[] Device (AMB00-CPU1G0STR/TH)
@ Fault Diagnose
= gﬂ Network Configuration B = .

Properties - Cam [Device: PLC Logic: Application] x I:

E,i CANOpen Config E 1

® EthercaT config | Common ©am Access control Buid

!,i LocalBus Config

= El] PLC Logic Dimensions
. "J‘ Application Master start position: l:l Master end position:
x d__,.;::”"ﬂ_’ Slave start position: IC' Slave end position:
Copy
Period
E Paste e
= Smooth transition Slave period:
E & cut
= @ » Delete Continuity reguirements

Pasition Velocity Acceleration []Jerk

Browse »

o
=]
1]
=]

Refactoring » ——= Compile format
= olynomial A
| Properties. .. @ poly beva)

(C) one dimensional point array Elements: 256
Add Object

413 AddFolder...
1" Editobject
Edit Object With. ..

() two dimensional point array

Collapse Application

= R reesost
| e cance ooy
% SoftMotion General Axis Poal 20 240

. HTRH SPFFM TN MHinh Snesd TO0M 1 | |

The key points in the cam curve are related to the mechanical motion requirements of the control
object. Example:

34) Forchasing shear applications, it is recommended that the coordinate range of the master axis
correspond to the physical travel of the running interval for easy analysis.

35) The key points include the start and end points of the round trip of the slave axis, the start position
point of the synchronous operation interval, and the position point for out of synchronization.

36) For proportional synchronization intervals, the line segments of the cam curve should be straight
lines. The line type for other intervals should be quintic curve.

Cam Cam table Tappets Tappet table

iy
o
=
@
=
30012
=
3
200 [= e 1
.—o—"'_'_'_'-'_'_
’,_:—'—"'_'_FF;
100 —
,__—f’”f e
L fiEsteepasition [y
I
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
R
o
3
a an
i @
(=]
[} e
0 ==~' tnaster pasition uy
g 20 40 60 80 160 120 140 160 180 2060 230 240 260 280 300 320 3
-1

5.5.3 Internal Data Structure and Arrays of the Cam Table
For each cam table in InoPro, there is a data structure describing the characteristic data of the cam table.

The following figure shows the data structure describing the cam table "CAMOQ". Pay attention to the
names of variables in the structure:

-74-

5. Application Programming of User Program

Expression Application Type Value Pr\?gl?zr:d Executionpaoint
= ca_n:lg “““““““““““““““ Device.Application MC_CAM_REF Cyclic Monitoring
_.".’@ wiCamStructID ’ WORD 56372 Cyclic Monitoring
% byType BYTE 3 Cydlic Monitoring

* *& byVarType BYTE 0 Cyclic Monitoring
.’.‘@x'Start'" B (= ——— perese : oydic Monitoring
: ¢ xEnd LREAL 360 E Cydlic Monitoring
: E % nElements INT 5 _E Cyclic Monitoring
'-gé.T_I:I_.ab.p.gt.s.......................'......................IIQ:I_ g Cyclic Monitoring

* pee POINTER TO BYTE 16#B436... Cyclic Monitoring

% pt POINTER TO SMC_CAMTappet 16+0000... Cyclic Monitoring

% dwTappetActiveBits DWORD 0 Cyclic Monitoring

4% strCAMName : STRING ‘Cam0’ Cyclic Monitoring

*% bylInterpolationQuality BYTE 1 Cyclic Monitoring

% byCompatibilityMode é BYTE 0 Cyclic Monitoring

% bChangedOnline _: BOOL Cyclic Monitoring
._"@ xPartofLM .__-'- BOOL Cydlic Monitoring

InoPro has an internal data structure that describes the characteristics of the cam table. Users can also
write a cam table manually, as shown below:

Although it is not necessary to manually write a cam table, we can modify the desired cam characteristic
data by accessing the data structure.

Note: When declaring the cam table CAMO, the system automatically declares the CAMO data structure of
the global variable type by default, along with the CAMO_A[i] array.

For example, to modify the number or coordinates of key points of the cam table CAMO in the user
program:

CAMO. nElements:=20; //Change the number of key points to 20
CAMO. XxEnd:=500; //Change the end point of the master axis to 500. //For example, modify the coordinates of 2 key points in
the user program:
CAMO_A[3].dx:=30;
CAMO_A[3].dy:=45;
CAMO_A[3].dv:=1;
CAMO_A[3].da:=0;

CAMO_A[4].dx:=60;
CAMO_A[4].dy:=T75;
CAMO_A[4].dv:=1;
CAMO_A[4].da:=0;

Method of modifying the cam table online

"Online modification of the cam curve" refers to the modification of the key point coordinates of the
cam curve based on the control characteristics during the execution of the program written by the user.

The modification generally involves the key point coordinates. Users can also modify the number of key
points, the distance range of the master axis, and so on.

Note: Modify the cam table before entering cam running instead of during running; otherwise,
unanticipated movement results may be caused.

Applications requiring modification of the cam table:
37) In general, OEM customers use cam tables that have been verified by commissioning.

38) If there are several processing objects or modes, multiple cam tables can be preset for automatic
switchover according to users' needs.

39) Some devices may require a wider range of adaptability. For example, if the packaging device
requires an applicable packaging length in the range of 10 cm to 25 cm, and the corresponding
running velocity must be automatically changed, it may be necessary to modify the cam table
online.

-75-

6. Common MC Instructions

6. Common MC Instructions

6. Common MC Instructions

6.1 Single-axis Instructions

MC_AccelerationProfile

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_AccelerationProfile(
MC AccelerationProfile Rxisi=,
- - | Timekcceleration:= ,
Exis Done
_edr i, :) - iR Exec.utg:= f
e Acceleration imeRcceleration usy ArraySize:=
- profile —Execute Commandhborted — Acceleration3cale:= ,
i P . O0ffzet:= ,
AccelerationProfile instruction | —|RrraySize Error — Done=> ,
—AccelerationScale ErrorlD— Buay=>» ,
—Off3et CommandAborted=> ,
Error=s ,
ErrorID=> };
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
’ Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - - ’ ’
XS XS e AXIS_REF_SM3
Axis
acceleration Axis acceleration time and acceleration data
TimeAcceleration time and MC_TA_REF - - description; acceleration data consists of
acceleration multiple sets of data
description
€ InputVariable
. Initial A
Input Variable Name Data Type | Value Range value Description
Execution . ..
Execute L BOOL TRUE, FALSE | FALSE | Start the motion at the rising edge
condition
. . The number of arrays used in the operation
ArraySize Dynamic array INT Value Range 0 y P

profile

Scale factor of the acceleration or deceleration

AccelerationScale | Integration factor | LREAL Positive" +"0" | 1 in MC_TA_REF
Overall offset of th lerati
Offset Offset LREAL) 0 vera o.se of the acceleration or
deceleration
€ Output Variable
. Initial A
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when th ti f axi
Done execution BOOL TRUE,FALSE | FALSE | o © "Wt Whentne execttion oaxis
instruction is completed
completed
| -
nStI’uC'tIOI"! Set to TRUE when the current instruction is
Busy execution in BOOL TRUE, FALSE FALSE .
being executed
progress

-77-

6. Common MC Instructions

| i TRUE when th i ioni
CommandAbort nstruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is
aborted aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
M
ErrorlD Error code SMC_ERROR E;eR(S)RC_ 0 Output an error code when an error occurs

3) Function Description

@ This function block is a profile motion model of time period and acceleration/deceleration. The
operation mode is Discrete Motion. It runs based on the data set by the user for the TimeAcceleration
variable.

@ This function block can run in Standstill, Continuous Motion, Synchronized Motion, or Discrete Motion
status. The status during instruction running is Discrete Motion. It cannot run in other statuses.

@ The function block is started at the rising edge of Execute. The velocity of this instruction is
superimposed based on the previous one when it is run repeatedly in Discrete Motion, which tends to
cause system failure.

@ TimeAcceleration is of the MC_TA_REF data type.
MC_TA_REF description:

Member Type Initial Value Description
Number_of_pairs INT 0 Number of profile path segments
lsAbsolute BOOL TRUE Abs.olute motion (TRUE) and relative motion

option
MC_TA_Array ARRAY[1..N] OF SMC_TA - Array of time and acceleration values
SMC_TA description:
Member Type Initial Value Description
delta_time TIME TIME#0ms Time of acceleration segment
Acceleration LREAL 0 Current acceleration value

Note: The set acceleration is reflected in the change of velocity. All the acceleration changes
are reflected in an S-curve. Therefore,

the acceleration data for the final result of (A+B)/2 (A: Start acceleration; B: End acceleration)
is reflected in the final velocity.

4) Timing Diagram
The condition MC_TA_Array has been set by other means.
The instruction can run only when the axis is in Standstill status.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

6. Common MC Instructions

Execute

Done

Busy

CommandAborted

Error

ErrorlD

5) Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter

Error code

error in the instruction system. An axis error must be cleared before the start of the operation.

Note: For details on the error code, see

MC_Halt

1) Instruction Format

“ o«

Appendix C Error Codes” .

Instruction Name Graphic Expression ST Expression
MC Halt|
MC_Halt Dyiz:= ,
MC Halt Execute:= ,
—Hpxis Done — Deceleraticn:= ,
MC_Halt {Axis stop —Execute Busy [~ Jerk:= ,
instruction —Deceleration CommandAborted — Done=>»
—Jerk Error |~ Busy=>r ,
Commandiborted=> ,
ErrorID—
Error=> ,
ErrorIl=>)
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - ’ ’
s Xs e AXIS_REF_SM3
€ InputVariable
. Initial .
Input Variable Name Data Type | Value Range value Description
E ti
Execute Xea.] Alon BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Deceleration Deceleration LREAL "Positive" +"0" | 0 Deceleration of the function block (u/s?)
Jerk Jerk LREAL "Positive" +"0" |0 Specify the jerk [reference unit/s?]
€ Output Variable
. Initial _—
Output Variable Name Data Type | Value Range Value Description

-79-

-80-

6. Common MC Instructions

Instruction
TRUE when th i f
Done execution BOOL TRUE, FALSE FALSE Se.t t'o v W ?n the execution o
axis instruction is completed
completed
Instruction
Set to TRUE when the current
Busy execution in BOOL TRUE, FALSE | FALSE _ roEwhe 8
instruction is being executed
progress
Instructi Set to TRUE when th t
CommandAborted nstruction BOOL TRUE,FALSE | FALSE | >° 'O U whenthecurren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
M h
ErroriD Error code SMC_ERROR See SMC_ 0 Output an error code when an error
ERROR occurs

3) Function Description

*

L 2

This function block stops the motion of one axis under normal operation. The execution of this
instruction can be terminated when another axis instruction is run again.

This function block can run only in the Motion status and cannot run in any other status.
The function block starts at the rising edge of Execute.

The function block is in the Discrete Motion status during instruction execution and in the Standstill
status after the completion of the instruction.

When the motion instruction is aborted by MC_Halt and MC_Stop, users can adjust the acceleration

by setting the axis variable bAvoidReversalOnHaltStop to TRUE. This avoids the negative direction of
velocity during the stopping process. When the instruction is halted or stopped, if the velocity value at
the breakpoint is small, the acceleration rate is large, and the jerk is small, the velocity may not be able
to reduce to 0 directly, but reduces to 0, reversely accelerates, and finally reversely decelerates to 0. As
the acceleration rate is large and the jerk is small, the velocity value at which the acceleration is reduced
to 0 by the current maximum jerk is greater than the velocity value at the breakpoint. Therefore, the
velocity direction must be reversed so that the velocity can be reduced to 0 at the same time as the
acceleration. This phenomenon occurs in quadratic_ramp and quadratic_smooth_ramp.

4) Timing Diagram

The instruction can be run only when the axis is in the Motion status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.
Busy of the function block indicates that the execution of the instruction is in progress.

CommandAborted of the function block indicates that the instruction is aborted by other motion control
instructions, in which case the flag bit is TRUE;

Programming example: Changes in the flag bits of the MC_MoveVelocity instruction and MC_Halt
instruction in different timing operations;

The processing of CommandAborted is described in the following timing diagram.

FB1 EB2
MC_MoveVelocity MC_Halt

Axis_1 - Axis InYelocty |- Invel_1 Axis_1 - Axis Done | Done_2
Exe_1 - Execute Busy |- Exe_2 - Execute Busy |-

a0 - Welacity Active | 5 - Deceleration Active|-

10 q Acceleration CommandAbortedp Abort_1 0 —Jerk CommandAborted |- Abort_2

10 - Deceleration Errarp- —| Bufferhdade Ertor |-

0 - Jerk EmorlDf- Errarll |-

1 — Direction

— Buffertade

6. Common MC Instructions

FB1 1
— Execute 0 1 t
seol
InVelocity 0 t
CommandAborted !
0 t
B2 precute ! |
0 t
1
Done 0 ["
CommandAborted!
0 t
50
Velocity
0 t

5) Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

MC_HaltSuperimposed

This function requires all superimposed motions of an axis to be halted, and the basic motion will not be
interrupted.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_HaltSuperlmposed_0 MC_HaltSuperImposed 0
MC_HaltSuperl d Raieim s,
-Haltsuperimpose Execute:= ,
MC Halt — EN ENO Deceleration:= ,
- 3)
Superi d Superimposed |~ | Axis Done Jerk:= ,
UPENMPOSEd | otion halted | — Execute Busy - Done=> ,
— Deceleration Command&borted Buay=> ,
— lerk Error (— Commandiborted=> |
ErrorlD [Error=> ,
ErrorID=> };
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
R . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF AXIS_REF
€ Input Variable
. Initial —
Input Variable Name Data Type | Value Range value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
Deceleration Deceleration LREAL i 0 I[Zz:a/zf]leratlon rate in the deceleration phase
Jerk Jerk LREAL i 0 Slope chaﬁge of t3he axis acceleration and
deceleration [u/s?]

-82-

6. Common MC Instructions

€ Output Variable
. Initial .
Output Variable Name Data Type | Value Range value Description
TRUE wh hei ioni
Done Completed BOOL TRUE, FALSE FALSE Setto TRUEwhen the instruction is
completed
Set to TRUE after the instruction i
Busy Executing BOOL TRUE, FALSE | FALSE etto atterthe mstructionts
received
| i TRUE wh h
CommandAborted nstruction BOOL TRUE, FALSE FALSE ,Set to X v ,W en the current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorlD Error code DWORD i 0 Output an error code when an error
occurs

3) Function Description

*
*
*

*

® This instruction suspends all superimposed motions of an axis without interrupting the basic motion.
® This instruction can be triggered repeatedly.

® This instruction supports multi-trigger, which must be after the basic motion. If the multi-trigger
occurs before the basic motion instruction, the basic motion instruction will report an error and cause
the axis to be disconnected.

This instruction must be triggered after the superimposed instruction. If it is triggered before the
superimposed instruction, this instruction will report an error. If there is no superimposed instruction
being executed in the system, triggering this instruction will result in an error. If the superimposed
instruction runs separately, that is, if it runs as a relative motion instruction, triggering this instruction
will directly set it to "done" without affecting the superimposed instruction.

This instruction cannot be triggered separately.

If the superimposed instruction is triggered during the operation of this instruction, the superimposed
instruction will be aborted directly.

® This instruction does not allow multiple instructions to share the instance name; otherwise, the
abrupt change of position will cause the axis to be disconnected.

4) Timing Diagram

After the MC_Move instruction is activated, the superimposed instruction is triggered. The timing

diagram when this instruction is activated in the superimposed state is shown below.

6. Common MC Instructions

MC_Move instruction

Execute

Done

Busy

Active]

CommandAborted

Error

MC_MoveSuperlmposed
instruction

Execute

Done

Busy

CommandAborted

MC_HaltSuperimposed
instruction

Execute

Done

Busvy

CommandAborted

Position

o Time
Velocity
Time
MC_Home
1) Instruction Format
Instruction Name Graphic Expression ST Expression
MC Home MC_Home (
MC_Home ;:115:: El-'ufls,
—axis Done rEEARE=
is homi Position:= ,
MC_Home AXIS orT1|ng = EEEE Busy Done=> ,
instruction —Position CommandAborted Busy=> ,
Error CommandAborted=> ,
ErrorID Error=r ,
ErrocrlD=> };

2) Related Variables

€ Input/Output Variable

-83-

-84-

6. Common MC Instructions

Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM ’ ’
X X S-REF_SM3 AXIS_REF_SM3
€ InputVariable
. Initial -
Input Variable Name Data Type | Value Range value Description
E ti
Execute xecution BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Axi h Indi he homi iti f th i
Position ><|svrveac ed LREAL Value Range 0 nle?tet e homing position ofthe axis
position position
€ Output Variable
. Initial .
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when th ti faxi
Done execution BOOL TRUE,FALSE | FALSE | ° 'O 'RUEwhentheexecution ofaxis
instruction is completed
completed
Instruction
Set to TRUE when th t
Busy execution in BOOL TRUE,FALSE |FALSE | >° 0 'RUEwhenthecurren
instruction is being executed
progress
I i TRUE when th
CommandAbort nstruction BOOL TRUE, FALSE | FALsE | ot to TRUE when the current
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
See SMC Output de wh
ErrorlD Error code SMC_ERROR | Jo& > 0 utput an error code when an error
ERROR occurs

3) Function Description

*

*

This function block performs a homing operation. The position data is the zero point position of the
axis.

The operation status of this function block is Standstill, and the status during instruction running is
Homing. It cannot run in other statuses.

The function block starts at the rising edge of Execute.

Instructions for setting Inovance servo: When performing the homing operation for each servo axis,
users must set the homing mode of servo parameters. The setting mode allows manual setting of the
servo function code. The corresponding function code can also be configured through the startup
parameter of the AM600 slave. The following indexes and sub-indexes must be set if the communication
mode is adopted.

Sub-

[tem Index | .
index

Description

Select the specific parameters to be set according to the servo

Homing mode 0x6098 .
guide.

Velocity during 0x6099 | 0x01 G.enerally, the defined velocity is high to reduce the homing
search for home time

Speed during

0x6099 | 0x02 Generally, the defined velocity is low
search for zero

Homing
accelerationand | 0x609A Acceleration/deceleration change during homing
deceleration

If the homing time exceeds the set time, the system reports

Homingtimeout | 0x2005 |0x24 Err601

6. Common MC Instructions

Example of AM600 setting:

7[5 pou Iffi] ubrary Manager '@ cam [{] Inosveson x
Berer] @nadd CEdt Joelete @ MoveUp # MoveDown DownloadAl{SDO) CancelAlDownlozd(SDC) [] CisplaySy ameter
Process Data(PO0 Setting) Line Index:Subindex Name Value Bitlength IsDownload Abort if error Jump to line if err.. Next line Coi
1 16#6060:16300 Modes of operation 8 8 a a 0 Mod
Startup parameters(SDO Setting) 7 16#6098:16200 Homing method 1 3] [0
3 16#6099: 16201 Speed during search for switch 8738 32 O O 0
Tz 4 1626509A:16500 Homing acceleration 373813 32 O O 0
CoE Online 5 16#6093:16502 Speed during search for zero 874 32 O O 1}
[16#2005:16224 Time of home searching 50000 16 O O 0
EoEsettings 7 16#60E0:16%00 Positive torque limit valug 3500 16 O O 0
8 16#60E1: 16200 Negative torque limit value 3500 16 O O 0
Eonm AT e 9 16=507F:16200 Max profile velocity 524288 32 O O 0
EtherCAT If0 Mapping
EtherCAT IEC Objects
Status
Information
e . .
4) Timing Diagram
Execute
Done —I
Busy
CommandAborted
Error
ErroriD 0 /< Error code

MC_MoveAbsolute

Specify the target position in absolute coordinates for positioning.

1) Instruction Format

Instruction Name Graphic Expression ST Expression

MC Movelbsolute_0(

MC_Movetbsolute_0 Axis:= Axis,
Execute:=
MC_MoveAbsolute - !
Pogiticn:= ,
— EN END |— o .
\ Velccity:= ,
== Axis Done — A
) E t Bus Eeceeleration:=
Instruction —| Execute 15y — Deceleration:= ,
MC_ for absolute T Eolmtl::m = -:IAbAdW; _ Jerk:= ,
MoveAbsolute axis position] ; olc'ty . emman D;e — Direction:= ,
control — Acce eratllon Fror (— BufferMode:= |
— Deceleration ErrorlD — Done=s> |
] Jelrk . Busy=> ,
—] Direction Letive=> |
— BufferMode Commandiborted=> ,

Error=»= ,
ErrcrIl=> }:

2) Related Variables

6. Common MC Instructions

€ Input/Output Variable

Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Ref he axis, that i i f
Axis Axis AXIS_REF_SM3) i eference to the axis, that is, an instance o
AXIS_REF_SM3
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range value Description
Execution . .
Execute xe u .IO BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Axi h Thi ition is th iti fth
Position ><|s' rgac ed LREAL Value Range 0 .IS position is the absolute position of the
position axis
Velocity Running LREAL Value Range 0 Max-ir-num velocity of the axis to the target
velocity position
Acceleration Acceleration LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration Deceleration LREAL Value Range 0 Deceleration rate for velocity decrease
h fth i
Jerk Jerk LREAL Value Range 0 Slope ¢ a'nge of the curve acceleration/
deceleration
Negative: Move in negative direction.
Shortest: Select direction based on
shortest path.
e Negative, shortest Positive: Move in positive direction.
Direction Polarity DIR_ECTION Positive, current, shortest | Current: Move in current direction.
fastest Fastest: Automatically select the fastest
direction.
(This function axis is effective in rotation
mode.)
Specify the action to be taken when
. multiple instances initiate a motion
0: Aborting instruction.
1: Buffered 0: Aborting
MC BUFFER | 2:BlendinglLow .
BufferMode Buffer Mode MODE -) &) 0 1: Buffered
3: BlendingPrevious 2: Blend at the low velocity
4: BlendingNext 3: Blend at the previous velocity
5: BlendingHigh 4: Blend at the next velocity
5: Blend at the high velocity
& Output Variable
. Initial .
Output Variable Name Data Type Value Range Value Description
Instruction
Set to TRUE when the execution of axis
Done execution BOOL | TRUE, FALSE FALSE | roEw xecutt X
instruction is completed
completed
Instruction Set to TRUE when the current instruction
Busy execution in BOOL TRUE, FALSE FALSE) .
is being executed
progress
TRUE when the f i k h
Active Control BOOL TRUE, FALSE False | Setto TRUEwhen the function block has
control on the axis
Instructi Set to TRUE when th tinstructi
CommandAbort nstruction BOOL | TRUE, FALSE FaLsE | DCtIO RURWhREnne currentinstruction
aborted is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC Output an error code when an error
ErrorlD Error code - See SMC_ERROR | 0 utpu W
ERROR occurs

3) Function Description

@ This function block is an instruction for absolute axis positioning. The position data is the absolute
position of the axis.

6. Common MC Instructions

@ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. A complete running process must control the different motion statuses of the axis.

€ The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered
repeatedly in Discrete Motion to refresh the latest position data each time.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

@ Trapezoid acceleration/deceleration action

There is data for Velocity, Acceleration and Deceleration. Jerk is 0.

A Velocity
Target velocity
Acceleration Deceleration
Time
|
Start absolute position Target absolute position
@ S-curve acceleration/deceleration action
There is data for Velocity, Acceleration, Deceleration and Jerk.
A Velocity
Target velocity
Acceleration Deceleration
Time
-
Start absolute position Target absolute position

@ Absolute positioning of axis in cyclic mode

1) The axis rotation period is set to 360 and the direction is set to Positive.

[virtual mode ~ Modulo settings

Modulo value: 360.0| pulse
® Modulo
Over limits reaction
O Einite Deceleration 1000; pulse/s?

Max Distance |0: pulse

When the modulus value of Position to 360 (taking the remainder of Position/360, for example, if Position
is 380, then the modulus value to 360 is 20; if Position is 350, then the modulus value to 360 is 350) is
greater than the start absolute position, then the axis moves in positive direction for such distance:
Modulus value of Position to 360 - Start absolute position.

-88-

6. Common MC Instructions

0/360

Start point

Modulus of target

position to 360 180

When the modulus value of Position to 360 (taking the remainder of Position/360, for example, if Position
is 380, then the modulus value to 360 is 20) is smaller than the start absolute position, then the axis

moves in positive direction for such a distance: 360 - Start absolute position + Modulus value of Position
to 360.

2) The axis rotation period is set to 360, and the direction is set to Shortest or Fastest. The modulus of
Position to 360 is XPosition.

If 0 =< Xposition - Start absolute position < 180, then the axis moves in positive direction for such a
distance: Xposition - Start absolute position.

0/360

Start point

Modulus of target
position to 360 180

If 180 < XPosition - Start absolute position, then the axis moves in negative direction for such a distance: 360 -
XPosition + Start absolute position.

0/360

Start point

Modulus of target /
positionto360 [T - TTTT7~ 7

180

If XPosition < Start absolute position, then the axis moves in negative direction for such a distance: Start
absolute position - XPosition.

6. Common MC Instructions

Modulus of target
0/360 position to 360

/,f,“ «—\Startpoint
| @
|
1o

1
L
| 1
| 1
‘/
‘l
‘I
(/
|
I
|
I
|
I
|
|
I
|
I
|

S~

180

3) The axis rotation period is set to 360, and the direction is set to Shortest or Negative. The modulus

of Position to 360 is XPosition.
The axis moves in negative direction for such a distance: Start absolute position + 360 - XPosition.

07360

Start point

Modulus of target
| position to 360

180

€@ Absolute positioning of axis in linear mode
If Target absolute position > Start position, then the axis moves in positive for such a distance: Target

absolute position - Start position. If Target position < Start position,

then the axis moves in negative direction for such a distance: Start position - Target position. The
running direction set in linear mode does not determine the running direction of the axis.

Target absolute Start absolute Target absolute
position position position
. I
| |
- !
I — '
I

L Sl :

4) Precautions
When Direction is set to "2: Current", motion is performed in the direction of the instruction of the

previous motion. Therefore, depending on the combination of instructions, the direction of the
instruction may be different from that of the input of the previous motion instruction.

*

If the relative displacement (difference between the input absolute displacement and the current
displacement) is not 0 but Velocity (target velocity) is 0, the instruction cannot run normally.

If both the relative displacement (difference between the input absolute displacement and the
current displacement) and Velocity (target velocity) are not 0, if the input variable Acceleration,
Deceleration, or Jerk is 0, the default initial value is assigned. For details, see “6.3.3 Defaults of

Motion Control Function Blocks” on page 238.

-89-

-90-

6. Common MC Instructions

When both the relative displacement (difference between the input absolute displacement and the
current displacement) and Velocity (target velocity) are 0, the instruction is set to Done.

5) Timing Diagram

*

*

*

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

The value of Done changes to TRUE when the positioning is completed at Position.

When this instruction is aborted by another instruction, the value of CommandAborted changes to
TRUE and those of Busy and Active change to FALSE.

Execute !—I {]—
1
Done :

Busy 4
Active

I
CommandAborted :
]
T

1T 17 =

Error

ErroriD | 1640000 > Error code \

!]
! ! ‘ Aborted by other
Velocity : : RN __ _instructions
! 1
1
w l
»
>

Motion re-execution instruction
The motion of this instruction can be changed by changing the input variables in the positioning motion
and setting Execute to TRUE again.

The input variables that can be changed for the motion re-execution instruction include Position,
Velocity, Acceleration, and Deceleration.

Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Aborting instruction.

Immediately aborts the currently executing instruction and switches to this

If the direction of axis motion is reversed due to instruction switching, reverse
running is performed after the velocity is decelerated to zero.

Buffered Done, InVelocity, InEndVelocity, InGear, InSync, EndOfProfile) are reached, the

The function block is started immediately after the last instruction motion is
terminated. No blending is performed here. When the end conditions (such as

new motion starts at the velocity of the previous motion. If the previous motion
was MC_MoveAbsolute or MC_MoveRelative, the new motion will start in static
state.

Blending motions. Change the motion of the currently executing instruction, ensuring that

Starts at the velocity (relay velocity) at which the currently executing instruction
reaches the target position, and continuously makes the cached instruction take

the target position is reached at the relay velocity. There are four ways to specify
the relay velocity:

6. Common MC Instructions

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the lower velocity of the two motion instructions.

Blend at the low velocity

(BlendingLow)

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the velocity of the first motion instruction.

Blend at the previous velocity

(BlendingPrevious)

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the velocity of the second motion instructions.

Blend at the next velocity

(BlendingNext)

The function block is started immediately after the last instruction motion is
terminated. The axis does stop between motions but passes through the end
position of the first motion at the higher velocity of the two motion instructions.

Blend at the high velocity
(BlendingHigh)

€ Motion re-execution instruction

When starting motion instructions for multiple instances by using this instruction, users can choose the
aborting, buffered, or blending mode.

MC_MoveAdditive

The axis is superimposed with the data specified by Distance based on the original instruction position,
which is used for online position superimposition for the motion axis control process. In Discrete Motion
status, this instruction can add the MC_MoveAddtive execution process at any time. In Continuous
Motion status, it can only be in a certain section of the instruction execution. In Standstill state, it is
equivalent to the MC_MoveRelative instruction.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_Moveldditive (
MC MoveAdditive Axisi=,
MC MoveAdditive Execute:= ,
—Hnxis - Done — Distance:= ,
Superimposed —Execute Busy [~ Velocity:=,
X Acceleration:=
MC_ absolute —Distance Commandiborted — o o
" A eceleration:= ,
MoveAdditive motion —Velocity Error — Jerk:= ,
instruction —Acceleration ErrorID— Done=¥» ,
—Deceleraticon Busy=> ,
—Jderk Commandiborted=> ,
Error=» ,
ErrorID=>):
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - - ’ ’
s X - AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type Value Range value Description
Execution) -
Execute . BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Axis reached This data is the superimposed position
Distance . LREAL Value Range 0 P P P
position data.
. Runnin Maximum velocity of the axis to the target
Velocity . & LREAL Value Range 0 . y &
velocity position
Acceleration Acceleration LREAL Value Range 0 Acceleration rate for velocity increase

91-

6. Common MC Instructions

Deceleration Deceleration | LREAL Value Range 0 Deceleration rate for velocity decrease
Sl h fth lerati
Jerk Jerk LREAL Value Range 0 opec aﬁge of the curve acceleration/
deceleration
& Output Variable
) Initial —
Output Variable Name Data Type | Value Range value Description
Instruction Set to TRUE when the execution of axis
Done execution BOOL TRUE, FALSE FALSE . L
instruction is completed
completed
Instruction
S Set to TRUE when the current instruction
Busy execution in BOOL TRUE, FALSE FALSE . .
is being executed
progress
TRUE wh h i i
CommandAbort Instruction aborted | BOOL TRUE, FALSE FALSE .Set to TRUE when the currentinstruction
is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
E 1D E N -
rror rror code ERROR ERROR 0 occurs

3) Function Description

*

This function block commands a controlled motion over a specified relative distance in addition to the
most recent commanded position.

€ When this function block is in Discrete Motion status, it causes CommandAbort of other instructions to
be set.

€ In Standstill state, it can run independently to achieve relative positioning.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of

the axis is Discrete Motion.

The function block starts at the rising edge of Execute.

Trapezoid acceleration/deceleration action
There is data for Velocity, Acceleration and Deceleration. Jerk is 0.

A Velocity

Target velocity

Acceleration Deceleration

Time
>
Target absolute position

Start absolute position

S-curve acceleration/deceleration action

There is data for Velocity, Acceleration, Deceleration and Jerk.

-92-

6. Common MC Instructions

A Velocity
Target velocity
Acceleration Deceleration
Time
Start absolute position Target absolute position

4) Timing Diagram
The instruction can run only when the axis is in Standstill status.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Example
FB2
MC MoveAdditive
Bxis —Sixis Done
FBl Busy [~ Buay2
MC MoveAbsolute OR CormandAborted [~ Commandiborteda
hxis —Hnxis - Done = —Execute Error[-Errorz
Execute —|Execute Busy —Busyl —1 ErrcrID[ErrorID2
6000 —(Position Commandhborted [~ CommandAbortedl
3000 —|Velecity Error—Errerl
100 —jAcceleration ErrorID[~ErrorIDl
100 —{Deceleration
0 —derk
0 —|Direction

Test —

4000 —|Distance

2000 —|Velocity
100 —Acceleration
100 —Deceleration
0 —derk
€ Timing operation description:
FBl Execute(l]
Done (])
CommandAborted!
0 t
FB2 Execute g)
Done (1)]
mmandAborted !
0 t
3000
Velocity 2000 / \
0 t
10000
Position 6000
0 t

MC_MoveRelative

This function block specifies the motion distance from the current position to perform positioning.

6. Common MC Instructions

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC MoveRelative 0(
Axis:= Auis,
MC_MoveRelative_0 Execute:= ,
MC_MoveRelative Distance:= ,
_en ENO Welccity:= ,
A Axis Done Aeeceleraticn:=
Axis relative Execute Busy - Deceleration:= ,
MC_MoveRelative | positioning —| Distance s [Jerk:= ,
instruction — Velocity Commandaborted — BufferMede:= |
— Acceleration Error - Done=x»
— Deceleration ErrorlD |— Busy=> ,
— Jerk Lotive=> |
— BufferMode Commandiborted=> ,
Error==> ,
ErrorID=>):
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - - ’ ?
s X - AXIS_REF_SM3
€ InputVariable
i Initial _
Input Variable Name Data Type Value Range Value Description
Execution) o
Execute . BOOL TRUE, FALSE FALSE | Start the motion at the rising edge
condition
Relative
. e This data is the relati ition of
Distance position of the | LREAL Value Range 0 eda .a IS the refative posttion o
. the motion.
motion
Velocity Running LREAL Value Range 0 Maximum'vTelocity of the axis to the
velocity target position
Acceleration Acceleration LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration rate for velocit
Deceleration Deceleration LREAL Value Range 0 I veloclty
decrease
N h fth
Jerk Jerk LREAL Value Range 0 opec ?nge orthe cu.rve
acceleration/deceleration
Specify the action to be taken when
) multiple instances initiate a motion
0: Aborting instruction.
1: Buffered 0: Aborting
MC BUFFER 2: BlendinglLow .
BufferMode Buffer Mode MODE -) &) 0 1: Buffered
3: BlendingPrevious 2: Blend at the low velocity
4: BlendingNext 3: Blend at the previous velocity
5: BlendingHigh 4: Blend at the next velocity
5: Blend at the high velocity

€ Output Variable

. Initial L
Output Variable Name Data Type | Value Range value Description
Instruction
TRUE when th ion of axi
Done execution BOOL TRUE, FALSE FALSE 'Setto ,U _W en the execution of axis
instruction is completed
completed

6. Common MC Instructions

. Initial L.
Output Variable Name Data Type | Value Range Value Description
Instruction
Set to TRUE when th tinstruction i
Busy execution in BOOL TRUE, FALSE FALSE e' ° when the current instruction 1s
being executed
progress
Active Control BOOL TRUE, FALSE FALSE | S€tto TRUE when the function block has
control on the axis
CommandAbort Instruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is
aborted aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_
ErrorlD Error code ERROR See SMC_ERROR |0 Output an error code when an error occurs

3) Function Description

@ This function block specifies the motion distance from the current position of the instruction to perform
positioning.

@ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion.

€ The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered
repeatedly to refresh the latest position data each time.

@ You can specify input variables Velocity, Acceleration, Deceleration and Jerk.
@ Trapezoid acceleration/deceleration action

There is data for Velocity, Acceleration and Deceleration. Jerk is 0.

A velocity
Target velocity
Acceleration Deceleration
Time
>
Start absolute position Target absolute position
@ S-curve acceleration/deceleration action
There is data for Velocity, Acceleration, Deceleration and Jerk.
A Velocity
Target velocity
Acceleration Deceleration
Time
-
Start absolute position Target absolute position

4) Precautions

* Ifthe input variable Distance (relative displacement) is not 0 but Velocity (target velocity) is 0, the
instruction cannot run normally.

* If both the input variable Distance (relative displacement) and Velocity (target velocity) are not 0,
and the input variable Acceleration, Deceleration, or Jerk is 0, the default initial value is assigned.

-O5-

6. Common MC Instructions

For details, see “6.3.3 Defaults of Motion Control Function Blocks” on page 238.
* Ifthe input variables Distance and Velocity are 0, the instruction is set to Done.
5) Timing Diagram

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

When the Distance is reached and positioning is completed, the value of Done changes to TRUE.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and those of Busy and Active change to FALSE.

Execute

I 1 |
Done ' ‘rl } }
I
sy —| —
Active] | | h !
| | | I’
CommandAborted } i : ‘
Error ! : 1‘ }
ErrorlD | 1640000 Error code
] 1 |
: ! ‘ Abor!ed by other
Velocity 1 } } L ,”lsﬁnicﬁ"lnf
1 | |
‘l | I
| 1
|
Tlme

€ Motion re-execution instruction

The motion of this instruction can be changed by changing the input variables in the positioning motion
and setting Execute to TRUE again.

The input variables that can be changed for the motion re-execution instruction include Distance,
Velocity, Acceleration, and Deceleration.

The start point of Distance for re-execution is the current position of the instruction.
€ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Immediately aborts the currently executing instruction and switches to this
Aborting instruction.

If the direction of axis motion is reversed due to instruction switching, reverse
running is performed after the velocity is decelerated to zero.

The function block is started immediately after the last instruction motion is
terminated. No blending is performed here. When the end conditions (such as
Buffered Done, InVelocity, InEndVelocity, InGear, InSync, EndOfProfile) are reached, the
new motion starts at the velocity of the previous motion. If the previous motion
was MC_MoveAbsolute or MC_MoveRelative, the new motion will start in static
state.

Starts at the velocity (relay velocity) at which the currently executing instruction

reaches the target position, and continuously makes the cached instruction take
Blending motions. Change the motion of the currently executing instruction, ensuring that
the target position is reached at the relay velocity. There are four ways to specify
the relay velocity:

6. Common MC Instructions

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the lower velocity of the two motion instructions.

Blend at the low velocity

(BlendingLow)

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the velocity of the first motion instruction.

Blend at the previous velocity

(BlendingPrevious)

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the velocity of the second motion instructions.

Blend at the next velocity

(BlendingNext)

The function block is started immediately after the last instruction motion is
terminated. The axis does stop between motions but passes through the end
position of the first motion at the higher velocity of the two motion instructions.

Blend at the high velocity
(BlendingHigh)

€ Start of other instructions during the execution of this instruction

When starting motion instructions for multiple instances by using this instruction, users can choose the
aborting, buffered, or blending mode.

MC_MoveSuperimposed

This function block commands a controlled motion of a specified velocity and position in addition to the
existing velocity and position. It has no impact on the original instruction execution time model.

1) Instruction Format

Instruction Name Graphic Expression ST Expression

MC MoveSuperimposed 0
Lxis:= Rxis,

MC_MoveSuperlmposed_0

MC_MoveSuperimposed Execute:= ,
—1EN ENG | — Lborti=
2 Awis Done — Distance:= ,
Superimposed — Execute Busy |- VelocityDiffi= ,

MC_

Zcceleration:=

relative motion — Abort CommandAborted [— Decelerationie
- =,
MoveSuperimposed instruction —| Distance Error — Jerkis
—| VelocityDiff ErrorlD (— Done=»> |
—| Acceleration Busy=> ,
—{ Deceleration Commandiborted=> |,
—| Jerk Error=» ,

ErrorID=> }:

2) Related Variables
€ Input/Output Variable

Input/Output Value Initial
. Name Data Type Description
Variable L Range Value .
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3
€ InputVariable
. Initial o
Input Variable Name Data Type Value Range value Description
£ -
Execute Xea_]t_lon BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Abort Abort the ongoing motion and reset all
Abort " BOOL TRUE, FALSE FALSE going Mot
condition outputs
: Axis reached . . . -
Distance . LREAL Value Range 0 This data is the superimposed position data.
position
S i d
VelocityDiff V;‘;:L? POSEC | ReaL Value Range 0 Superimposed velocity for axis running
Acceleration Acceleration LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration Deceleration | LREAL Value Range 0 Deceleration rate for velocity decrease

-08-

6. Common MC Instructions

Jerk Jerk LREAL Value Range Slope chgnge of the curve acceleration/
deceleration
@ Output Variable
. Initial _—
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when the execution of axis
Done execution BOOL TRUE,FALSE |FALSE | oo 0 "otW xecut X
instruction is completed
completed
Instruction
Set to TRUE when th tinstructioni
Busy execution in BOOL TRUE, FALSE | FALSE etto whenthe currentinstruction 1s
being executed
progress
| i TRUE wh h i ioni
CommandAbort nstruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is
aborted aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_
ErroriD Error code ERROR ERROR 0 Output an error code when an error occurs

3) Function Description

€ This function block superimposes the position (Distance) and velocity (VelocityDiff) on other

instructions.

* ¢ 6 0 0

position of the axis.

The function block starts at the rising edge of Execute.

@ The function block starts at the rising edge of Execute.

4) Precautions

In motion mode, MC_MoveSuperimposed can be superimposed on any other instruction.
MC_MoveSuperimposed can be aborted by another MC_MoveSuperimposed.

In the Standstill status, the MC_MoveSuperimposed function block acts like MC_MoveRelative.

This function block is an instruction for absolute axis positioning. The position data is the absolute

If an instance of MC_MoveSuperimposed is active and another instance of the MC_MoveSuperimposed
type is called, the second instance reports an error. If an instance of MC_MoveSuperlmposed is

active and is started again at a new rising edge of Execute (possibly with a different input), the active
superimposed motion will be aborted and replaced by a new superimposed motion, while the original
motion control function block remains active.

The Abort pin functions to abort the superimposed motion. Triggering Abort clears the superimposed
motion that has been executed. If the superimposed position is large, it will cause a sudden change in

the desired position, which leads to a servo error. Therefore, exercise with caution.

5) Timing Diagram

Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Example

6. Common MC Instructions

FB2
MC MoveSuperImposed
Axis Hauis B Dene
FBl Busy —Busy2
MC MowveRelative OR CommandAborted —CommandRborted2
Axis —Haxis - Dene = —Execute Error —Errord
Execute —Execute Buay —Busyl =1 ErrerID—ErrorlD2

5000 —|Distance Cormandhberted — Cemmandibortedl

300 —Velocity Error —Errorl

100 —(RAcceleration ErrorID [ErrcrIDl

100 —Deceleraticn

0 —Jerk
Teat —

1000 —Distance
100 —VelocityDiff
50 —Acceleration
50 —Deceleration

0 —Jerk
€ Timing operation description:
FBL Executeé]]
Done (1) |_|
CommandAborted !
0 t
FB2 Exccuto(l) | 1] |
1
Done 0 [
ommandAborted !
0 t
400 X AN
Velocity 300 \
0 t
6000
L. 5000 /
Position ’/
0 t

MC_MoveVelocity

This function block can achieve axis velocity control in the drive CSV mode and CSP mode. After the axis
is enabled, the running velocity can be set through the input pin Velocity, and this instruction will run
when triggered by the rising edge.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_MoveVelocity 0(
MC_MoveVelocity_0 Lyiz:= Axis,
MC_MoveVelocity Execute:=,
Velocity:= ,
—EN ENO — Acceleration:= ,
A Axis InVelocity — Deceleratinoni= ,
Velocity control — Execute Busy — Terki=
MC_MoveVelocity |. y' — Velocity Active |- Directioni= ,
instruction —| Acceleration CommandAborted [— Buf_fer‘{fde’z .
— Deceleration Error |- émei?l“b) ’
— Jelrk . ErrorlD [A‘::i;e:;)
— Direction CommandAborted=> ,
—{ BufferMode Error=s ,
ErrorID=>);
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - ’ ’
- AXIS_REF_SM3

6. Common MC Instructions

€ InputVariable

. Initial L
Input Variable Name Data Type Value Range value Description
Execute Execu.'Jt'lon BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Velocity Velocity LREAL Value Range 0 ThIS daFa is the velocity value for this
reference instruction.
Acceleration Acceleration LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration Deceleration LREAL Value Range 0 Deceleration rate for velocity decrease
Jerk Jerk LREAL Value Range 0 Slope chz?nge of the cu.rve
acceleration/deceleration
Direction R.unm-ng MC_Direction Positive, negative, current IrTstruFt|on operationin running
direction current direction
Specify the action to be taken when
) multiple instances initiate a motion
0: Aborting instruction.
1: Buffered 0: Aborting
2: BlendingLow .
BufferMode Buffer Mode mgBiUFFER‘) &) 0 1: Buffered
3: BlendingPrevious 2: Blend at the low velocity
4: BlendingNext 3: Blend at the previous velocity
5: BlendingHigh 4: Blend at the next velocity
5: Blend at the high velocity
€ Output Variable
. Initial "
Output Variable Name Data Type | Value Range Value Description
Flag of
. . Set to true when the set velocit
InVelocity reachingthe |BOOL TRUE, FALSE | FALSE |. y
i is reached
set velocity
Instruction Set to TRUE when the current
Busy executionin |BOOL TRUE, FALSE | FALSE | . S
instruction is being executed
progress
. Set to TRUE when the function
Active Control BOOL TRUE, FALSE | FALSE .
block has control on the axis
Instruction Set to TRUE when the current
CommandAbort BOOL TRUE, FALSE | FALSE |. L
aborted instruction is aborted
Error Error BOOL TRUE, FALSE | FALSE | Set to TRUE when an error occurs
See SMC_
ErrorlD Error code SMC_ERROR ERROR 0 Output an error code when an error occurs

3) Function Description

@ This function block performs analog velocity control based on position control.

@ Thevelocity control action starts at the rising edge of Execute.

@ The motion direction is specified by Direction. When Direction is set to "Positive", it moves in positive
direction. When Direction is set to "Negative", it moves in negative direction. When Direction is set to
"Current", the motion differs depending on whether the axis is stopped. When the axis is stopped, the
axis moves in the direction of the last motion. When the power is turned on or restarted, the axis moves
in positive direction. When this instruction is started during the process of axis motion by activating the

motion instruction in multiple instances, the axis moves in the direction of the current motion.

4) Precautions

When Direction is set to "MC_Direction", the axis moves in the direction of the previous instruction.
Therefore, depending on the combination of instructions, the direction of the instruction may be

-100-

6. Common MC Instructions

different from that of the input of the previous motion instruction.

When the input variable Velocity is 0, the default initial value will be assigned if Acceleration,
Deceleration or Jerk is 0. For details, see “6.3.3 Defaults of Motion Control Function Blocks” on page 238.

5) Timing Diagram

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

InVelocity changes to TRUE when Velocity is reached.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and those of Busy, Active, and InVelocity change to FALSE.

€ Example
Execute |
| I | |
InVelocity : | ,l : | !
‘ | 1
Busy : r—:—_! :.
Active m—u !
! T
CommandAborted : : !_! : :
Error I' : ' : :
ErrorlD | 1640000 > ! Errorcode |
| T 1 | |
Targetvelocity A~ —— | - ' R I
" Sen ithe error. DeC’elerates to stop.
: —
[\ I
| . |

€ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Immediately aborts the currently executing instruction and switches to this
Aborting instruction.

If the direction of axis motion is reversed due to instruction switching, reverse
running is performed after the velocity is decelerated to zero.

The function block is started immediately after the last instruction motion is
terminated. No blending is performed here. When the end conditions (such as
Buffered Done, InVelocity, InEndVelocity, InGear, InSync, EndOfProfile) are reached, the
new motion starts at the velocity of the previous motion. If the previous motion
was MC_MoveAbsolute or MC_MoveRelative, the new motion will start in static
state.

Starts at the velocity (relay velocity) at which the currently executing instruction

reaches the target position, and continuously makes the cached instruction take
Blending motions. Change the motion of the currently executing instruction, ensuring that
the target position is reached at the relay velocity. There are four ways to specify
the relay velocity:

-101-

6. Common MC Instructions

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the lower velocity of the two motion instructions.

Blend at the low velocity

(BlendingLow)

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the velocity of the first motion instruction.

Blend at the previous velocity

(BlendingPrevious)

The function block is started immediately after the last instruction motion is
terminated. The axis does not stop between motions but passes through the end
position of the first motion at the velocity of the second motion instructions.

Blend at the next velocity

(BlendingNext)

The function block is started immediately after the last instruction motion is
terminated. The axis does stop between motions but passes through the end
position of the first motion at the higher velocity of the two motion instructions.

Blend at the high velocity
(BlendingHigh)

€ Start of other instructions during the execution of this instruction

Only when Aborting or Buffered is selected for BufferMode of other instructions, the MC instruction can
be started by using multiple instances of other instructions during the execution of this instruction.

When Buffered is selected, if the output variable InVelocity of this instruction changes to TRUE, the
motion of starting the instruction for multiple instances is executed.

MC_MoveFeed

This function block executes the specified distance positioning from the position where the external
device triggers the interrupt input. The interrupt feed can be used for absolute positioning, relative
positioning and velocity control.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_MoveFeed_0 Me_ vovereed_0(
MC_MoveFeed Ixisi= Rxis,
IriggerInput:= Trigger,
] EN ENO — Execute:= ,
2 Axis Done |- WindowOnly:= ,
= Triggerlnput nFeed |- FirstPosition:= ,
1 T Busy | LastPosition:=
., K ReferenceType:= ,
— WindewOnly Active — Position:= ,
— FirstPosition ~ CommandAborted — Velocity:i= ,
-~ LastPosition Error |- ‘;‘meiera?cm: .
eceleraticoni= ,
Inte.rr.up’.t —{ ReferenceType ErrorlD Jerki= |
MC_MoveFeed positioning — Position Directicn:= ,
instruction — Velocity MoveMode:=
c FeedDistance:= ,
— ACCEIEFEUIDH FeedVelocity:= ,
— DE—'CE|EFEtIDn BufferMode:= ,
— Jerk ErrorDetect:= ,
. . Done=>
—{ Direction :
InFeed=> ,
— MoveMode Buay=>
— FeedDistance Retive=»
| Feed‘u"elocit)r Commandiborted=> |
Error=» ,
— BufferMode ErrorID=>):
— ErrorDetect
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value .
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF - - AXIS REF ’ ’
. . . Associated attributes such as trigger signal or
Triggerinput Trigger signal | TRIGGER_REF - - trigger attribute geersis

€ InputVariable

-102-

6. Common MC Instructions

. Initial .
Input Variable Name Data Type Value Range Value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
WindowOnly Window valid BOOL TRUE, FALSE FALSE Enable or disable the window
FirstPosition Start position LREAL Value Range 0 Specify the latch enable position [u]
LastPosition End position LREAL Value Range 0 Specify the latch disable position [u]
M- By default, the latch position is th
-, y default, the latch position is the
Refi T P 1:F Back 1
eferenceType osition type REFERENCE_ eedBac actual position.
TYPE
When MoveMode is [0: Absolute
value positioning], specify the target
position in absolute coordinates.
When MoveMode is [1: Relative value
. o Positive number, positioning], specify the movement
Position Target position | LREAL negative number, 0 0 distance.
When MoveMode is [2: Velocity
control], it is not required to specify
the position.
Unit: [u]
Velocity Target velocity | LREAL Positive number 0 Specify the target velocity [u/s]
Acceleration Acceleration LREAL Positive number 0 Specify the acceleration rate [u/s?]
Deceleration Deceleration LREAL Positive number 0 Specify the deceleration rate [u/s?]
Jerk Jerk LREAL Positive number 0 Specify the jerk [u/?]
-1: Negative
0: Shortest
. . . . MC— ey oy . .
Direction Direction 1: Positive Positive Select the direction
DIRECTION
2: Current
3: Fastest
0: Absolute
MC_MOVE
MoveMode Motion mode MgI_Z)EO - 1: Relative 0 Select the motion mode
2: Velocity
Movement distance after the input
interrupt feed Specify a positive
FeedDistance Feed distance LREAL Positiye number, 0 va.lue to feed in the same d.irection as
negative number, 0 axis movement before the interrupt
input, and a negative value to feed in
opposite direction [u].
Movement velocity after the input
FeedVelocity Feedrate LREAL Positive number 0 . v v "y inpu
interrupt feed [u/s]
MC_BUFFER 0: Abortin Specify the action to be taken when
BufferMode Buffer mode - - & 0 pectly .I S " ;
MODE 1: Buffered there are multiple motion instructions
Specify whether to detect an error
when there is no interrupt source
input.
TRUE: The Error signal is set to TRUE
if no interrupt signal is detected after
ErrorDecect Error detection | BOOL TRUE, FALSE FALSE the position specified by Position is

reached.

FALSE: The Done signal is set if no
interrupt signal is detected after
the position specified by Position is
reached.

€ Output Variable

-103-

-104-

6. Common MC Instructions

. Initial L.
Output Variable Name Data Type | Value Range Value Description
Done Completed BOOL TRUE,FALSE | FaLse | oot to TRUEwhen the instruction is
completed
TRUE i fer af h
InFeed Latch input BOOL TRUE, FALSE FALSE ,Set to_ u .|n standard transfer after latc
input is received
Busy Executing BOOL TRUE, FALSE FALSE Set to TRUE after the instruction is received
TRUE when the functi k h
Active Control BOOL TRUE,FALSE | FaLse | oot to TRUE when the function block has
control on the axis
CommanAborted Instruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is
aborted aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErroriD Error code DWORD - 0 Output an error code when an error occurs
€ TRIGGER_REF Description
Structure Element Data Type Default Description
Set to TRUE when the instruction i
iTriggerNumber INT 0 et to when the instruction is
completed
TRIGGER_REF bFastLaching BOOL TRUE -
binput BOOL FALSE -

[Note]: The specification of the servo touch probe must be distinguished from that of the instruction
touch probe. Take IS620N as an example.

As the external DI trigger signals, DI8 with function 38 and DI9 with function 39 must be respectively
used for touch probe 1 and touch probe 2. The following part takes DI8 as an example to describe how to
perform the setting.

[Requirement]: Touch probe 1 rising edge, continuous latching
4) Setthe DI8 function: set 0x2003-11 to 38.
5) Setthe DI8 logic in 0x2003-12.

DI8 Logic 2003-12h Setpoint Description
0: Active low The drive forcibly changes it to falling edge active.
1: Active high The drive forcibly changes it to rising edge-triggered.
2: Rising edge-triggered Rising edge-triggered
3: Falling edge-triggered Falling edge-triggered
4: Edge change-triggered Rising/Falling edge-triggered

Set 0x2003-12 to 1 or 2 in this example.

For details, see the IS620N Series Servo Design and Maintenance User Guide.

3) Function Description

*

*

® Movement is performed at the rising edge of Execute according to MoveMode (move by absolute
value, move by relative value, or velocity control).

® When move by absolute value is selected, set the target position through Position. When move by
relative value is selected, set the target distance through Position.

® Regardless of the movement mode, the movement is performed at Velocity (target velocity).

® During movement, relative positioning is performed at the rising edge of external input (interrupt
input). The movement distance is specified by FeedDistance, starting from the feedback position at
FeedVelocity.

6. Common MC Instructions

4

® Interrupt standard transfer is performed by using the instruction of move by absolute value or relative
value. The motion will be stopped at the target position if an interrupt signal is not input before the
target position is reached.

® When an interrupt mask is used, set WindowOnly (window valid) to TRUE and specify FirstPosition
(start position) and LastPosition (end position). Interrupt standard positioning is performed by feeding
back the initial interrupt signal that occurs from FirstPosition to LastPosition.

® A brief description of the three motion modes is given. The MoveFeed parameter is used to filter the
first segment of motion. There are three motion modes: absolute positioning, relative positioning,
and target velocity motion. Absolute positioning and relative positioning can be done by lowering the
Done setting of the instruction without triggering the instruction. In velocity mode, movement will be
performed at the target velocity.

® The values of the motion parameters of the instruction, that is, the shared acceleration rate,
deceleration rate, and jerk, must be clearly described. These parameters are shared by the first segment
of motion and the feed motion, and the target velocity cannot be 0.

® When the window function WindowsOnly of the probe is not set, and FirstPosition and LastPosition
are set arbitrarily, the instruction is not affected. Touch probe triggering will not be restricted by
position. Triggering the touch probe anywhere will enable the instruction to enter the feed motion.
When WindowOnly is set, the instruction will determine the value of FirstPosition and LastPosition. In
linear mode, FirstPosition should be less than or equal to LastPosition. The final judgment of the touch
probe position is FirstPosition < Touch probe position < LastPosition. If FirstPosition > LastPosition,
the instruction is processed in the same way as an error reported for an abnormal parameter. In rotary
axis mode, if FirstPosition < LastPosition, the judgment position of the window is the clockwise
interval from FirstPosition to LastPosition of the same period (including LastPosition and FirstPosition).
If FirstPosition > LastPosition, the judgment position of the window is the clockwise interval from
FirstPosition to LastPosition of the same period (excluding LastPosition and FirstPosition). In particular,

when LastPosition and FirstPosition exceed the position of one rotation period, an error is reported.

-105-

-106-

6. Common MC Instructions

L IR R R 4 L 2

*

A. FirstPosition < LastPosition

- + - -+
- i

0]
La=tP osition LaztPositio irstP o=ition

FirstPos=iton

B. FirstPosition = LastP osition

FirstPos=tion

FirstP osition La=tP asition

LastPostion

® For absolute positioning in rotation mode, check whether the direction belongs to 5 directions that
are set. For the velocity mode, check whether 3 directions are set: Positive, Negative, and Current. If not,
the Direction parameter reports an error.

® The error detection function determines whether to report an error if the touch probe interrupt has
not been triggered after the movement has reached the target position. If not triggered, the FB reports
an error without affecting the execution of subsequent buf instructions.

® This instruction cannot be triggered repeatedly. Otherwise, the instruction reports an error, and
the error of occupied touch probe caused by repeated triggering can only be canceled by the MC_
AbortTrigger instruction.

® The channel of the current instruction is occupied by TouchProbe, which triggers the instruction. The
MoveFeed instruction does not occupy the probe channel when it is in the buffer.

@ If it is detected during MoveFeed execution that the touch probe is occupied, the error of touch probe
occupied will be reported.

® For the ECAT axis, if 60b8/60b9/60ba/60bc PDO is not configured, then an error is reported.
® For drive mode, operation is not allowed in virtual axis mode.
® The axis cannot be executed in error status.

® Simultaneous triggering of different interrupt positioning instances in the same touch probe channel
will invalidate the touch probe (including different triggering schemes for the same touch probe
channel).

® Note: If the velocity at the moment of triggering the feed motion is large and the feed distance is
small, the desired feed distance may be smaller than the current set position, that is, reverse running
will occur when the desired feed position is reached.

4) Timing Diagram

6. Common MC Instructions

€ When WindowOnly is set to Enable

The trigger input is detected only within the window to obtain the axis position.

Trigger validity range
>

TriggerInput : | h

Execute

Windoulnly |

Done

H
i

H

H

H

i

H

i

T

+

Busy

RecordedPosition

0 H E>< Positionj

ComnandAbor ted

Axis position &

LastPosition

Position | _ _ _ o T L

FirstPosition

Time

€ When WindowOnly is set to Disable

The axis position at the time of the initial trigger after Execute changes to TRUE is used as the ref-
erence position for the standard distance.

-107-

6. Common MC Instructions

TriggerInput | | | | |
Execute H

Tindoulnly

Dorie i I H
Busy l E E

RecordedPosition

ComrandAbor ted

Axisposition A i

LastPosition

FirstPosition |-—————————d - m T e —

Position p=——m———————

v

Time

€ When MoveMode is set to Absolute or Relative

Execute
Done r‘
Tnfeed |

4 s
Busy l\ / |

Active | / :
ConszndAbor ted /
Interrupt input
Velocity A

Time

€ When MoveMode is set to Velocity

-108-

6. Common MC Instructions

Execute

Infeed] i

Busy

Comandibor ted /

Interrupt input !

Velocity 4

>

Time

@ When the standard position is reversed after an interruption

Execute

Dore . r‘

Infeed

Busy 1\

Active I

CommandAbor ted

Interruptinput

Velocity &

—_—— e e ——— e ———— —

v

Time

MC_PositionProfile

1) Instruction Format

-109-

-110-

6. Common MC Instructions

Instruction Name Graphic Expression ST Expression
MC PositionProfile(
Lxia:= ,
MC PositicnProfile . s
— TimePosition:= ,
MC PesitionProfile Execute:= ,
. |
0 dene LrraySize:= ,
MC_ Position profile | | Timefositicn) Busy — PozitionScale:=
PositionProfile linstruction Execute Commandiborted Offaet:= ,
—Array3ize Error— Done=» ,
— PpaiticnScale ErrorID— Buay=> ,
—|bffset Cormandiborted=s |,
Error=> ,
Errorll=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value =
Axis Axis AXIS_REF) Reference to the axis, that is, an instance of
AXIS_REF_SM3
QXI;’;;ZI:;;Q Axis position operation time and position data
TimePosition P . MC_TP_REF |- description; data consists of multiple sets of
and position
- data
description
@ InputVariable
. Initial —
Input Variable Name Data Type | Value Range value Description
Execution TRUE
Execute . BOOL i FALSE Start the motion at the rising edge
condition FALSE
ArraySize Dynamic array INT Value Range |0 The .number of arrays used in the operation
profile
PositionScale Integration factor | LREAL "(F)’E)smve * 1 Position scale factor in MC_TP_REF
Offset Offset LREAL - 0 Overall offset of the position
€ Output Variable
. Initial .
Output Variable Name Data Type |Value Range value Description
Instruction .
: TRUE, Set to TRUE when the execution of
Done execution BOOL FALSE . L.
FALSE axis instruction is completed
completed
Instruction
. TRUE, Set to TRUE when the current
Busy executionin |BOOL FALSE |. S
FALSE instruction is being executed
progress
Instruction TRUE, Set to TRUE when the current
CommandAbort BOOL FALSE |. .
aborted FALSE instruction is aborted
TRUE,
Error Error BOOL FALSE |Setto TRUE when an error occurs
FALSE
SMC_ See SMC_ Output an error code when an error
ErrorlD Error code 0
ERROR ERROR occurs

3) Function Description

@ This function block is a profile motion model of time period and position. The operation mode is

6. Common MC Instructions

Discrete Motion. It runs based on the data set by the user for the TimePosition variable.

@ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. It cannot run in other statuses.

@ Thefunction block is started at the rising edge of Execute. This instruction is repeated in Discrete
Motion.

@ TimePosition is of the MC_TP_REF data type.
MC_TP_REF description:

Member Type Initial Value Description
Number_of_pairs INT 0 Number of profile path segments
IsAbsolute BOOL TRUE Abs'olute motion (TRUE) and relative motion

option
MC_TP_Array ARRAY[1..N] OF SMC_TP - Array of time and position
SMC_TP description:

Member Type Initial Value Description
delta_time TIME TIME#0ms Time of position segment
position LREAL 0 Current position value

Note: When there is a change in the velocity, the corresponding adjustment is made based on
the set position data in an S-curve.

4) Timing Diagram

The position profile instruction can run only when the condition MC_TP_Array has been set by other
means.

The instruction can run only when the axis is in Standstill status.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

Execute

_I -

Done

Busy I—

CommandAborted

Error |

ErrorlD 0 >< Error code

5) Error Description

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

MC_Power

-111-

-112-

6. Common MC Instructio

ns

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_Power (
Axis:= ,
Enable:= ,
MC Power P
HAaxis B Status — bRegqulatorlin:= ,
. —Enable bRegulatcrRealState — bkDriveStart:= ,
Axis enable bmequl atoro bDriveStartReals =
MC Power egu atorOn riveStartRealState Statu8=} .
- instruction —{bDrivestart Buay —

Error —
ErrorID—

bRegulatorRealState=> ,
kDriveStartBealState=> ,
Buay=> ,

Errcr=> ,

ErrorID=> §;

2) Related Variables
€ InputVariable

) Initial o
Input Variable Name Data Type | Value Range Value Description
Enable Enable BOOL TRUE, FALSE FALSE The function block starts processing when set to
TRUE
bRegulatorOn Enable state | BOOL TRUE, FALSE FALSE The axis is enabled when set to TRUE
Enable th Set to TRUE to disabl t fth
bDriveStart nabiete I gooL TRUE, FALSE | FALSE etto o disable emergency stop ot the
drive function block
@ Output Variable
. Initial -
Output Variable Name Data Type | Value Range Value Description
Status Ready for motion | BOOL TRUE, FALSE FALSE Set to TRUE if the axis is ready for motion
Axi ble signal
bRegulatorRealState Stxa'tsee"a €S8N BooL TRUE, FALSE | FALSE | Set to TRUE when the axis enable is active
TRUE if th isi i
bDriveStartRealState | Drive enabled | BOOL TRUE,FALSE | FaLsE | ot (0 TRUEIfthe axis is not interrupted
by the quick stop mechanism
Set to TRUE if th i f th
Busy Executing BOOL TRUE, FALSE FALSE € 9 I . € processing of the
function block is not completed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
See SMC Output de wh
ErrorlD Error code SMC_ERROR | >¢& >M+— 0 utputan error codewhen an error
ERROR occurs
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value .
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3

3) Function Description

@ Otherinputs will be processed by the function block only when the input Enable is set to TRUE.

@ Ifthe MC_Power function block has been called and bRegulatorOn is set to FALSE, the function block
will set the relevant axis state (nAxisState) to the power_off, indicating that the drive is not ready for

motion.

@ Ifthe MC_Power function block has been called and bRegulatorOn is set to TRUE, the function block
will set the relevant axis state (nAxisState) to Standstill if no error has occurred in the axis. If an error has

6. Common MC Instructions

occurred, the corresponding error state will be output.

€ IfEnable, bRegulatorOn and bDriveStart are set to TRUE but the output Status remains FALSE after a
certain period of time, then the output Error will be set. This may happen if a hardware issue arises
when the axis is enabled.

If the enable signal is lost (usually in operating mode), nAxisState of the relevant axis will be set to
ErrorStop.

4) Timing Diagram

Setting Enable to TRUE, bRegulatorOn to TRUE and bDriveStart to TRUE makes Busy become TRUE, the
axis enters the ON state and Status becomes TRUE, respectively.

=
5) Error Description

Do not write a program to start other instances of MC_Power in the axis that is executing MC_Power. In
principle, only one MC_Power instruction can be set for each axis.

If MC_Power of another instance is started in the axis where MC_Power is being executed, MC_Power
that is executed later will be executed preferentially.

Note: For details on the error code, see “ “Appendix C Error Codes” .

MC_ReadActualPosition

This instruction reads the actual position at which the drive is running and saves it in a variable unit
defined by itself.

1) Instruction Format

\ Instruction \ Name \ Graphic Expression ST Expression

-113-

6. Common MC Instructions

MC_ReadfctualPositicon MC_EReadhctualPosition(

MC_ReadActualPosition Ruis:=,

—Hixis Valid [— Enable:= ,
MC_ Instruction for reading| —{gnanie Busy - Valid=» ,
ReadActualPosition actual position Error — Busy=x> ,
ErrorID— Error=> ,

Pogition — ErrorlD=> ,

Position=>»)

2) Related Variables
@ Input/Output Variable

Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P

R . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3

€ InputVariable

i Initial e

Input Variable Name Data Type Value Range Value Description

Enable Exea.Jt.lon BOOL TRUE, FALSE FALSE Read the current position of the servo if
condition set to TRUE
€ Output Variable
Output Initial
. Name Data Type | Value Range Description

Variable yp g Value P

valid P05|t'|on data BOOL TRUE, FALSE FALSE Set t? TRUE if the drive position can be
obtainable obtained correctly
Busy !nstruction execution BOOL TRUE, FALSE FALSE SeF to TRUE when the current instruction is
in progress being executed

Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorlD Error code SMC_ERROR | See SMC_ERROR | 0 Output an error code when an error occurs
Position Axis position obtained | LREAL Axis position 0 Axis position data obtained by instruction

3) Function Description
This instruction reads the actual position of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram

Enable of the function block must be set to TRUE.
Valid of the function block indicates that the value of Position obtained is valid.
Busy of the function block indicates that the execution of the instruction is in progress.

Timing operation description:

-114-

6. Common MC Instructions

Enable(l)
valid |

Busy!
yO

Position

MC_ReadAxisError

This instruction reads the axis error and saves it in a variable unit defined by itself.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC ReadRxisErrcr .
= MC ReadfxisError|(
MC ReadhxisError Bxiasi= ,
—Anxis Valid[— Enable:= ,
Instruction —|Enable Busy — Valid=s ,
MC_ReadAxisError |for readi Error Buev=> .
C_ReadAxisError orrea ing crrorinl Errores |
axis error . ErrorID=> ,
ByisError — K
- AxisError=> ,
et EEEE Rl — AxisErrorID=> ,
SWEndiwitchhctive — SWEndSwitchActive=»);
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
R . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3
€ InputVariable
i Initial L
Input Variable Name Data Type Value Range value Description
E i R h iti f th if
Enable xecgyon BOOL TRUE, FALSE FALSE ead the current position of the servo i
condition set to TRUE
€ Output Variable
. Initial -
Output Variable Name Data Type |Value Range value Description
) Flag of error data Set to TRUE if the error data of the axis
valid & BOOL [TRUE,FALSE | FALSE ! X
obtainable can be obtained
Instructi ti Set to TRUE when th t
Busy .nsrUC|onexeCU|on BOOL TRUE, FALSE FALSE .e (o} ' 'w gn ecurren
in progress instruction is being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_ Output an error code when an error
ErrorlD Error code ERROR ERROR 0 occurs
h ing f h i
AxisError Axis error flag BOOL ITRUE, FALSE FALSE sett .e corresponding flag when an axis
error is read
AxisErrorlD Axis error code DWORD - 0 An error code is obtained
ft limit switch heck th f the soft limit switch
SWEndSwitchActive SOthﬂtSWWC BOOL TRUE, FALSE FALSE C gc t es@tuso the soft limit switc
active during reading

-115-

6. Common MC Instructions

3) Function Description

This function block reads the error code of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram
Enable of the function block must be set to TRUE.

Valid of the function block indicates that the values of AxisError and AxisError|D obtained are valid.

Busy of the function block indicates that the execution of the instruction is in progress.

MC_ReadBoolParameter

This instruction reads the bit parameter of the drive axis and saves it in a variable unit defined by itself.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC ReadBoolParameter MC—R:?BCC]'PEEEE'EEEL‘{
ig:= ,
MC ReadBoolParameter Fnable:=
. - Tre1id — T
vic Instruction for sxis L Parameterlumkber:= ,
y reading axis bit Enable Busy Valid=s ,
ReadBoolParameter — ParameterNumber Error [~ Busv=>
parameters usy=> ,
ErrorID— Error=s ,
Value — ErrorID=> ,
Value=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable YR Range Value P
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - AXIS_REF_SM3
€ InputVariable
. Initial _
Input Variable Name Data Type Value Range Value Description
u
E i R h iti fth
Enable xecgt.lon BOOL TRUE, FALSE FALSE ' ead the current position of the servo
condition if set to TRUE
ParameterNumber Se.rialnumber of DINT i 0 Obtaintheinéex, sub-index and serial
axis parameter number of axis parameters

Note: ParameterNumber (DINT) =-DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDatalLength), 24)
(length of data in object dictionary)

+ SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits))
usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on
€ Output Variable

Output Initial
. Name Data Type Value Range Description
Variable yp g Value P
Valid Pos@on data BOOL TRUE, FALSE EALSE Set t9 TRUE if the drive position can be
obtainable obtained correctly
Instruction execution Set to TRUE when the current instruction is
Busy nstruction execution gaor TRUE, FALSE FALSE) W urrentinstructiont
in progress being executed

-116-

6. Common MC Instructions

Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs

ErroriD Error code SMC_ERROR | See SMC_ERROR |0 Output an error code when an error occurs
Axis position status

Value obtained BOOL TRUE, FALSE FALSE Axis position status obtained by instruction

3) Function Description

This instruction reads the bit data status of the drive. It is active at high level of Enable and can be

executed many times without affecting each other.

4) Timing Diagram

Enable of the function block must be set to TRUE.

Valid of the function block indicates that the bit status data obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Timing operation description:

MC_ReadStatus

Enable (1)

Valid(l)

Busy!
yO

1
Value0

This instruction reads the status data of the axis and saves it in a variable unit defined by itself.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_ReadStatus MC_ReadStatus (
MC ReadStatus Rrisi=
—Haxis - Valid|l— Enable:= ,
—Enable Busy — Valid=> ,
Error [— Busy=> ,
ErrorID— Error=> ,
Diszbled — ErrorID=> ,
Errorstop — Disabled=> ,
Instruction for Stopping - Errorstop=> ,
MC_ReadStatus |reading axis StandStill — Stopping=> ,
status DiscreteMotion|— 5téﬂ-‘.‘15t111=_> .
ContinuousMotion DiscreteMotion=> ,
SynchronizedMoticn ContinucusMotion=> ,
Homing — SynchronizedMotion=> ,
ConstantVelocity — Homing=> ,
Accelerating — ConstantVelocity=> ,
Decelerating [~ Acecelerating=> ,
FBErrorOccured — Decelerating=> ,
FBError{ccured=>)7
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial "
P . P Name Data Type Description
Variable Range Value
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - ’ ’
T AXIS_REF_SM3

-117-

6. Common MC Instructions

€ InputVariable
. Initial L
Input Variable Name Data Type Value Range value Description
Enable Exectijt-ion BOOL TRUE, FALSE FALSE Read the current position of the servo if
condition set to TRUE
€ Output Variable
i Initial i
Output Variable Name Data Type| Value Range value Description
F f TRUE if th fth
Valid lagp error data BOOL TRUE, FALSE FALSE Sth to TRUE if t 'eerror data of the
obtainable axis can be obtained
Busy Instruction execution in BOOL TRUE, FALSE FALSE .Set to TRUE-Whe‘n the current
progress instruction is being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC See SMC Output an error code when an error
E 1D E N -
rror rror code ERROR ERROR 0 occurs
TRUE wh h isi
Disabled Axis disabled BOOL TRUE, FALSE FALSE S?t to TRUE when the axis is
disabled
Set to TRUE if th isisi
Errorstop Axis error BOOL TRUE, FALSE | FALSE etto fHiheaxisis in error
state
Set to TRUE if th isisin st i
Stopping Axis in stopping process | BOOL TRUE, FALSE | FALSE etto iHihe axisisin stopping
process
Set to TRUE when th isisinth
Standstill Axis in standard state BOOL TRUE, FALSE | FALSE eLto TRUEwhen the axis isin the
standard (operational) state
DiscreteMotion Axis in discrete motion | BOOL TRUE,FALSE | FALsE | et to TRUE whenthe axisisin
discrete motion
ContinuousMotion Axis in continuous motion | BOOL TRUE, FALSE | FaLsE | ot fO TRUEIfthe axisis in
continuous motion
AXxis i h Set to TRUE if th isisi
SynchronizedMotion XIS In synchronous BOOL TRUE, FALSE | FALSE etto fHthe axisisin
motion synchronous motion
Set to TRUE if th isisin homi
Homing Axis in homing state BOOL TRUE, FALSE FALSE steateo 'Hiheaxisisinhoming
Axis running velocit Set to TRUE when the axis reaches
ConstantVelocity XIS running vetocity BOOL TRUE, FALSE | FALSE = when the axt
reached the running velocity
Accelerating Axis acceleration BOOL TRUE, FALSE FALSE Set to TRUE during axis acceleration
TRUE i i
Decelerating Axis deceleration BOOL TRUE, FALSE FALSE setto U during axis
deceleration
Set to TRUE wh isFB
FBErrorOccured Axis FB error occurrence | BOOL TRUE, FALSE | FALSE Oicufs when an axis B error

3) Function Description

*

without affecting each other.

L R 2

MC_ReadParameter

Enable of the function block must be set to TRUE.

This instruction reads the axis status. It is active at high level of Enable and can be executed many times

Valid of the function block indicates the data of the status flags can be read.

Busy of the function block indicates that the execution of the instruction is in progress.

This instruction reads parameters of the drive axis and saves it in the variable unit defined by itself.

1) Instruction Format

‘ Instruction ‘

Name ‘

Graphic Expression

ST Expression

6. Common MC Instructions

MC ReadParamster MC ReadParameter |
= Axis:= ,
MC ReadParameter i
s — — - Enable:= ,
Instruction for LS 2 Parameterlumber:= ,
MC_ . . —Enable Busy — Valid=s
ReadParameter reading axis —E terNumb E — r
parameters arameterMumber rror Busy=> ,
ErrorID — Error=> ,
Value — ErrorIl=> ,
Value=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value .
Axis Axis AXIS_REF_SM3 i) Reference to the axis, that is, an instance of
AXIS_REF_SM3
@ InputVariable
. Initial _
Input Variable Name Data Type Value Range Value Description
Enable Execgt.ion BOOL TRUE, FALSE FALSE Read the current position of the servo
condition if set to TRUE
Serial number
Obtain the ind b-ind d serial
ParameterNumber of axis DINT - 0 am eln'ex, sub-inaexand seria
number of axis parameters
parameter

Note: ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (length of
data in object dictionary)
+ SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits)
usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on

€ Output Variable

Output Initial
. Name Data Type Value Range Description
Variable yp & Value P
valid Positjon data BOOL TRUE, FALSE FALSE Set tf) TRUE if the drive position can be
obtainable obtained correctly
Instruction execution Set to TRUE when the current instruction is
Busy instruction execution | pq TRUE, FALSE FALSE _ W urrentnstructiont
in progress being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorID Error code SMC_ERROR | See SMC_ERROR |0 Output an error code when an error occurs
Axis parameters
Value p LREAL - 0 Axis parameter obtained by instruction
obtained

3) Function Description

This instruction reads the bit data status of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram
Enable of the function block must be set to TRUE.
Valid of the function block indicates that the bit status data obtained is valid.
Busy of the function block indicates that the execution of the instruction is in progress.

Timing operation description:

-119-

-120-

6. Common MC Instructions

MC_Reset

1) Instruction

Format

Enable (1)

Validé

Busy!
y0

Value

Instruction Name Graphic Expression ST Expression
MC_Eeset MC Reset(
MC Reset Bxis:= ,
Instruction for —Snxis Done [— Execute:= ,
MC_Reset resetting axis —Execute Buay Done=» ,
error state Error Busy=> ,
Error=> ,
ErrorID— ErrorID=>):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable e Range Value .
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type | Value Range value Description
u
E -
Execute Xea_]t_lon BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
€ Output Variable
. Initial ——
Output Variable Name Data Type | Value Range Value Description
Instruction . .
Done execution BOOL TRUE, FALSE | FALSE | “ctto TRUE when the execution of axis
instruction is completed
completed
Instruction
o Set to TRUE when th tinstruction i
Busy execution in BOOL TRUE, FALSE | FALSE etto TRUE when the currentinstruction s
being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_
ErrorID Error code ERROR See SMC_ERROR | 0 Output an error code when an error occurs

3) Function Description

*

This function block changes the axis status from Errorstop to Standstill when the axis is in normal

communication, that is, changes the abnormal status to the normal status.

*

between master and slave must be re-established.

When the axis Errorstop cannot be reset and Axis.bCommunication is FLASE, the communication

6. Common MC Instructions

Note that the Busy flag bit in the instruction is connected for a very short period of time.

4) Timing Diagram

Execute

Done

Busy

Error

ErrorlD

1

error occurs.

Axis communication

X

Error code

MC_Stop
1) Instruction Format
Instruction Name Graphic Expression ST Expression
MC Stop MC Stop(
= Axis:= ,
o HC_StDp Execute:= ,
ion f —hxis Done [— Deceleration:=
MC_Stop Instruction for —lexecute sy — Jerk:= ,
- stopping an axis ¥ Done=>
—Deceleration Error — !
Busy=> ,
—Jderk ErrorID— Error=» ,
ErrorID=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable YP Range Value P
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3
€ InputVariable
. Initial A
Input Variable Name Data Type | Value Range value Description
£ -
Execute Xea,]t,lon BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Deceleration Deceleration LREAL "Positive" +"0" |0 Deceleration of the function block (u/s?)
Jerk Jerk LREAL "Positive" +"0" | 0 Specify the jerk [reference unit/s®]
€ Output Variable
. Initial L
Output Variable Name Data Type | Value Range value Description
Instruction . .
Done execution BOOL TRUE, FALSE FALSE settoTBUE}Nhentheexecunonofaxw
instruction is completed
completed
Instruction Set to TRUE when the current instruction is
Busy execution in BOOL TRUE, FALSE FALSE)
being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC
ErroriD Error code ERRC_)R See SMC_ERROR |0 Output an error code when an error occurs

-121-

6. Common MC Instructions

3) Function Description

4

4

¢

4

This function block stops the motion of an axis under normal operation. When the axis is in the Stopping
status, any instruction for this axis is invalid.

When the axis is in Stopping status, Execute is FALSE, Done is True, and the axis status changes to
Standstill.

This function block can run only in the Motion status and cannot run in any other status.
The function block starts at the rising edge of Execute.

When Busy indicating valid execution of MC_Stop is valid, starting MC_Stop again will make the system
enter the Errorstop status.

In Halt or Stop status, the axis variable bAvoidReversalOnHaltStop can be used to adjust the
acceleration to avoid velocity reversal. For details, see the MC_Halt instruction.

4) Timing Diagram

The instruction can be run only when the axis is in the Motion status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.
Busy of the function block indicates that the execution of the instruction is in progress.

CommandAborted of the function block indicates that the instruction is aborted by other motion control
instructions, in which case the flag bit is TRUE.

Programming example: Changes in the flag bits of the MC_MoveVelocity instruction and MC_Stop
instruction in different timing operations.

The processing of CommandAborted is described in the following timing diagram.

EB1 EB2
MC_Movel elocity MC_Stop
Az 1 - Az Inveocity |- Invel 1 Axz 1 - Ads Dore | Done_2
Exe_1 — Exgcute Busy - Exe_2 — Exgoute Busy |-
a0 4 velodty Commandborted - Abort_1 A 4 Ceceleration Errar |-
10 Accelerstion Eror |- Error_1 0 - Jerk ErrorlD |-
10 - Decelerstion Erodl
0 Jek
1 — Diredtion
FB1 1
Execute0 t
InVelocity?
YO t
CommandAborted !
0 t
Error!
0
t
FB2 1
Execute
0 t
Done !
0 t
50
Velocity
0 t

5) Error Description

-122-

When MC_Stop is run repeatedly, the error flag Error is True, and ErrorID is SMC_MS_AXI.

6. Common MC Instructions

Note: For details on the error code, see

MC_VelocityProfile

1) Instruction Format

“ o«

Appendix C Error Codes” .

Instruction Name Graphic Expression ST Expression
MC VelocityProfile(
MC_WelocityProfile Axiz:i= ,
MC VelocityProfile Timevelocity:=,
—nxis - Done — Execute:= ,
-, Busy — Array3ize:= ,
MC_ Velocity profile Elme velocity - . us“; VelocityScale:= ,
VelocityProfile ~[instruction Hecube Frmandaborte Offset:=,
—ArraySize Error — Done=> ,
—VelocityScale ErrorID— Busy=> ,
—of et Commandiborted=> ,
Error=> ,
ErrocrID=>):
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
R . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 AXIS_REF_SM3
i)
XIS ve.loat.y Axis velocity operation time and velocity data
)) operation time . - -
TimeVelocity . MC_TV_REF description, consisting of multiple sets of
and velocity
- data.
description
€ InputVariable
. Initial -
Input Variable Name Data Type | Value Range value Description
Execute Execgtilon BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
ArraySize Dynamic array INT Value Range 0 The pumber of arrays used in the operation
profile
VelocityScale Velocity factor LREAL "Positive", "0" 1 Velocity scale factor
Offset Offset LREAL - 0 Overall offset of the velocity
€ Output Variable
) Initial .
Output Variable Name Data Type |Value Range value Description
Instruction .
. TRUE, Set to TRUE when the execution of
Done execution BOOL FALSE | .
FALSE instruction is completed
completed
Instruction
. TRUE, Set to TRUE when the current
Busy executionin |BOOL FALSE |. L .
FALSE instruction is being executed
progress
Instruction TRUE Set to TRUE when the current
CommandAbort BOOL ’ FALSE |. .
aborted FALSE instruction is aborted
TRUE,
Error Error BOOL FALSE |Setto TRUE when an error occurs
FALSE
ErrorlD Error code SMC_ See SMC_ 0 Output an error code when an error
ERROR ERROR occurs

-123-

6. Common MC Instructions

3) Function Description

*

*

This function block is a profile motion model of time period and velocity. The operation mode is
Continuous Motion. It runs based on the data set by the user for the TimeVelocity variable.

This function block can run in Standstill, Continuous Motion, Synchronized Motion, or Discrete Motion
status. The status during instruction running is Discrete Motion. It cannot run in other statuses.

The function block is started at the rising edge of Execute. This instruction is repeated in Discrete
Motion.

TimeVelocity is of the MC_TV_REF data type.

MC_TV_REF description:

Member Type Initial Value Description
Number_of_pairs INT 0 Number of profile path segments
IsAbsolute BOOL TRUE Abs.olute motion (TRUE) and relative motion
option
MC_TV_Array ARRAY[1..N] OF SMC_TV - Array of time and velocity
SMC_TV description:
Member Type Initial Value Description
delta_time TIME TIME#0ms Time of the velocity segment
Velocity LREAL 0 Currently recorded velocity

Note: The whole velocity process is S-curve acceleration and deceleration. The velocity
of each profile section is superimposed. When the instruction is repeatedly executed, the
velocity is also superimposed. Avoid overspeed during instruction execution. In the case of

repeated operation, the axis status must be reset to Standstill.

4) Timing Diagram

The position profile curve instruction can run only when the condition MC_TV_Array has been set by
other means.

The instruction can run only when the axis is in Standstill status.
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

Execute

[1]

Busy I

CommandAborted

Error |

ErrorlD 0 >< Error code

5) Error Description

-124-

The error occurs as the instruction is not started in the axis status of Standstill or there is a parameter
error in the instruction system. An axis error must be cleared before the start of the operation.

6. Common MC Instructions

“ o« 9

Note: For details on the error code, see Appendix C Error Codes’

MC_WriteBoolParameter

This instruction sets the bit parameter of the drive axis.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC WriteBoolParameter MC WriteBoolParameter (
= Lyiz:=
o MC WriteBooclParameter Execute:= ,
—Rxis Done [—| v=
MC_ Instruction for setting i) ,f_::s:iemmer' !
WriteBoolParameter bit parameters EEEEREE L2, 3me='> '
—ParameterNumber Error — !
Busy=r ,
—Value ErrorID — Error=> ,
ErrorID=> };
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value .
Reference to the axis, that is, an instance of
AXi Axi AXIS_REF_SM - - ’ ?
XS XS S_REF_SM3 AXIS_REF_SM3
@ InputVariable
) Initial -
Input Variable Name Data Type Value Range Value Description
Execute Exectijt-ion BOOL TRUE, FALSE FALSE Drive aisetup operation for a rising edge
condition operation
Serial number
inthei r -
ParameterNumber of axis DINT i 0 Obtaint emgiex, sub-index and serial
number of axis parameters
parameter
Value Value BOOL TRUE, FALSE FALSE Set the bit parameter value

Note: ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDatalLength), 24) (length of
data in object dictionary)
+SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits)
usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on
& Output Variable

Output Initial
. Name Data Type Value Range Description
Variable yp & Value P
i TRUE wh h ioni
Done Setup operation BOOL TRUE, FALSE FALSE Set to TRUE when the setup operation is
successful successful
Instruction
Set to TRUE when the current instruction is
Busy execution in BOOL TRUE, FALSE FALSE _ W urrentinstructiont
being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorlD Error code SMC_ERROR | See SMC_ERROR |0 Output an error code when an error occurs

3) Function Description

This instruction sets the bit parameter of the axis. It is started at the rising edge of Execute and can be

-125-

6. Common MC Instructions

executed many times without affecting each other.

4) Timing Diagram

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

€ Timing operation description:

MC_WriteParameter

Executel

Done

Busy

o~ O~

This instruction block modifies the parameters of the drive axis and saves them in the variable unit

defined by itself.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
. MC WriteParameter(
MC WriteParameter -)
— Lyiz:= ,
MC WriteParameter Execute:=
MC Instruction for —Anxis Done — Parameterlumber:= ,
- i i — - |- Value:= ,
WriteParameter setting axis EREEIEE HE ;zn:i)_
parameters — ParameterNumber Error — '
. Busy=> ,
—Value ErrorID— Error=s ,
ErrorID=>):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value .
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM - ’ ?
XS XS S-REF_SM3 AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type | Value Range Value Description
Execute Execgt.ion BOOL TRUE, FALSE FALSE Drive aisetup operation for a rising edge
condition operation
Serial number
Obtain the index, sub-ind d serial
ParameterNumber of axis DINT 0 amn the m, & sub-indexand seria
number of axis parameters
parameter
Value Value LREAL Set the bit parameter value

Note: ParameterNumber (DINT) =-DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDatalLength), 24)
(length of data in object dictionary)
+SHL(UINT_TO_DWORD(uilndex), 8) (index in object dictionary -16 bits)
+ usisublndex(sub-index in object dictionary - 8 bits)

usiDataLength: Fill in bytes; 16#01 for 1 byte, 16#02 for 2 bytes, 16#04 for 4 bytes, and so on

-126-

6. Common MC Instructions

€ Output Variable

Output Initial
. Name Data Type | Value Range Description
Variable yp g Value P
i TRUE wh h ioni
Done Setup operation BOOL TRUE, FALSE FALSE Set to TRUE when the setup operation is
successful successful
Busy !nstruction execution BOOL TRUE, FALSE FALSE SeF to TRUE when the current instruction is
in progress being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC See SMC
ErroriD Error code ERR6R ERROR - 0 Output an error code when an error occurs

3) Function Description

This instruction sets the bit parameter of the axis. It is started at the rising edge of Execute and can be

executed many times without affecting each other.

4) Timing Diagram

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation

is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

Executel

Done

Busy

o o~

MC_AbortTrigger

This function block aborts event association related to the input latch, which is used in conjunction with

MC_Touchprobe.

1) Instruction Format

Instruction Name Graphic Expression

ST Expression

MC AbortTrigger

MC AbortTrigger(

MC AbortTrigger ?x}s:: ’I -
Instruction for —Anxis Done — Eizgﬂiz' ?pu o
MC_AbortTri [AT N =
C_AbortTrigger abortl.ntg.event TriggerInput Busy Done=> ,
association —Execute Error — Busy=> ,
ErrorID— Error=> ,
ErrorID=>):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial o
. Name Data Type Description
Variable o Range Value =
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 = N AXIS_REF_SM3
Truggerinput T'rlgger TRIGGER_REF)) DesFrlptlon of trigger signals and trigger
signal attributes
@ TRIGGER_REF description:
Structure Element Data Type| Initial Value Description

-127-

6. Common MC Instructions

Specify which of the functions is latched in drive mode.
0: Touch probe 1 latching at rising edge
1: Touch probe 1 latching at falling edge
iTriggerNumber INT -1 2: Touch probe 2 latching at rising edge
3: Touch probe 2 latching at falling edge
For details, see the IS620N Series Servo Design and
TRIGGER_REF Maintenance User Guide.
Specify the mode of latch trigger:
bFastLatching BOOL TRUE TRUE: Drive mode
FALSE: Controller mode
blnput BOOL) When I?FastLatching =FLASE, it is triggered by controller
input signal.
bActive BOOL - Active signal triggered
€ InputVariable
) Initial _
Input Variable Name Data Type Value Range Value Description
Execute Execgt.lon BOOL TRUE, FALSE FALSE Drive a.setup operation for a rising edge
condition operation
€ Output Variable
Output Initial
. Name Data Type Value Range Description
Variable yp & Value P
Done Setup operation BOOL TRUE, FALSE FALSE §et to TRUE when the setup operation
successful is successful
Instruction
Busy execution in BOOL TRUE, FALSE FaLse | S°tto TRUE when the current
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output de wh
ErrorlD | Error code SMC_ERROR See SMC_ERROR 0 Oc”cfri anerrorcodewnen an error

3) Function Description

The MC_AbortTrigger function block aborts the association of a trigger signal or attribute with the
related trigger instruction.
Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation is successful.

-128-

Busy of the function block indicates that the execution of the instruction is in progress.

MC_ReadActualTorque

This instruction reads the actual torque value of the drive and saves it in the variable unit defined by

itself.

1) Instruction Format

Instruction

MC

ReadActualTorque

Name Graphic Expression ST Expression
MC_ReadActualTorgquel (
MC ReadAictualTorque M o
= T Exis:= .
—Axis= Validf o
Instruction for N Enzble:= ,

. susy - TraT 4 A
reading the _ Valid=> ,
current torque .
value —Enakble ErrorID[

Torgque [
r

Torque=>) ;

6. Common MC Instructions

2) Related Variables
@ Input/Output Variable

Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type Value Range Value Description
Enable EXGCL.Jt.ion BOOL TRUE, FALSE FALSE Read the current position of the servo if
condition set to TRUE
& Output Variable
Output Initial
. Name Data Type | Value Range Description
Variable yp g Value P
TRUE if th i i
valid Curr.enttorque value BOOL TRUE, FALSE FALSE Set to TRUE if the drive torque can be obtained
obtainable correctly
Busy Instruction execution in BOOL TRUE, FALSE EALSE SeFtoTRUE\Nhenthecunentinschﬁonis
progress being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_
ErroriD Error code ERROR See SMC_ERROR | 0 Output an error code when an error occurs
Torque g;;;::;orque value LREAL Torque value 0 Current torque data obtained by instruction

3) Function Description

This instruction reads the actual torque value of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram
Enable of the function block must be set to TRUE.

Valid of the function block indicates that the value of Torque obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

Enable (1)

Validé

Busy!
yO

Torque

MC_ReadActualVelocity

This instruction reads the actual velocity value of the drive and saves it in the variable unit defined by
itself.

1) Instruction Format

‘ Instruction Name Graphic Expression ST Expression ‘

-129-

6. Common MC Instructions

MC ReadActualVelocity }f:_FLi‘:c':d};n:tl.lc‘:l“u-"f‘:l:|:lt}"':' ({
Hnxis Valid| SHELII= '
Instruction for - Enable:=
e reading the Valid=> ,
ReadActualVelocity 5 . B Bus
currentvelocity | —rrzkie - r
Velocity [~ .
Veloci ;
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
. . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - AXIS_REF_SM3
@ InputVariable
) Initial -
Input Variable Name Data Type Value Range Value Description
Enable Exectijt-ion BOOL TRUE, FALSE FALSE Read the current axis velocity when set
condition to TRUE
€ Output Variable
Output Initial
. Name Data Type| Value Range Description
Variable yp g Value P
i TRUE if th i i
Valid Cuwgntvebcnyvawe BOOL TRUE, FALSE FALSE Settg UE if the drive velocity can be
obtainable obtained correctly
Busy Instruction execution in BOOL TRUE, FALSE EALSE SeF to TRUE when the current instruction is
progress being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErroriD Error code EZ;SR EE:;EC‘ 0 Output an error code when an error occurs
Current velocity value
Velocity obtained y LREAL Velocity 0 Current velocity data obtained by instruction

3) Function Description

This instruction reads the actual velocity value of the drive. It is active at high level of Enable and can be
executed many times without affecting each other.

4) Timing Diagram
Enable of the function block must be set to TRUE.

Valid of the function block indicates that the value of Velocity obtained is valid.

Busy of the function block indicates that the execution of the instruction is in progress.

Enableé

Validé

Busy !
y0

Velocity

MC_SetPosition

-130-

6. Common MC Instructions

This instruction sets the axis position parameter to shift the coordinate system of an axis without any

movement caused.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC SetPosition n
Hpyis Done -
Instruction for i
MC_ setting axis position —|Execute i
SetPosition & Pragitin
parameters g EEREEIE
—Mode
2) Related Variables
€@ Input/Output Variable
Input/Output Name Data Type Value Initial Description
Variable Range Value
R Axis - Reference to the axis, that is, an instance of
Axis AXIS_REF_SM3 AXIS_REF_SM3
@ InputVariable
Input Initial
. Name Data Type | Value Range Description
Variable yp & Value P
E ti
Execute czi(::tils: BOOL TRUE, FALSE FALSE Drive a setup operation for a rising edge operation
Position Axis position | peal - 0 Position data
data
Positi ; TRUE: Relati ition;
Mode Value BOOL TRUE, FALSE FALSE osition mode; U, . elative position;
FALSE: Absolute position
€ Output Variable
Output Initial
. Name Data Type Value Range Description
Variable yp g Value P
Done Setup operation BOOL TRUE, FALSE FALSE §etto TRUE when the setup operation
successful is successful
Instruction
Set to TRUE when th t
Busy execution in BOOL TRUE, FALSE FALSE . ctto . .W gn e curren
instruction is being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output de wh
ErroriD Error code SMC_ERROR See SMC_ERROR 0 O:CEr”S an errorcode when an error

3) Function Description

This instruction sets the axis position parameter to shift the coordinate system of an axis without any
movement caused. It is started at the rising edge of Execute. This instruction can be executed many
times without affecting each other.

4) Timing Diagram

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation is successful.

Busy of the function block indicates that the execution of the instruction is in progress.

-131-

-132-

6. Common MC Instructions

Execute1

Done

o= O~

Busy

MC_TouchProbe

The instruction saves the position data of the current axis when triggered by an external signal.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_TouchProbe (
MC_TouchProbe Exis:= ,
MC TouchProbe TriggerInput:= ,
PR I = Execute:= ,
. —Axis Dene — WindowOnly:= ,
Instruction for —STriggerIinput Busy [~ FirstPosition:= ,
MC_TouchProbe enabling external | —Execute Error — LastPosition:= ,
Ki P : N | Done=> ,
locking WindowOnly ErrorlD Busy> |
—FiratPosition RecordedPosition [— Error=» ,
—LastPosition Commandiborted — ErrorID=> ,
RecordedPosition=> ,
Commandiborted=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Ref he axis, that i i f
Axis Axis AXIS_REF_SM3 i eference to the axis, that is, an instance o
AXIS_REF_SM3
Truggerinput T.rigger TRIGGER_REF) Aésociatedbattributes such as trigger signal or
signal trigger attribute
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range value Description
Execution Drive a setup operation for a rising edge
Execute xecun BOOL TRUE, FALSE FALSE Ve a setup operat 1Sing ecg
condition operation
WindowOnly Trigger window | BOOL TRUE, FALSE FALSE
i v th ition f —
FirstPosition rlgggr start LREAL i 0 Spea y the start position for receiving
position trigger events
LastPosition Trig.gfar end LREAL . 0 SPecify the end position for receiving
position trigger events
€ Output Variable
. Initial —
Output Variable Name Data Type | Value Range value Description
Set ti Set to TRUE when th t tioni
Done etup operation BOOL TRUE, FALSE FALSE etto when the setup operation is
successful successful
Instruction
Set to TRUE when th tinstruction i
Busy execution in BOOL TRUE, FALSE FALSE e' © when the current Instruction s
being executed
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_
ErroriD Error code ERROR See SMC_ERROR | 0 Output an error code when an error occurs
-, Trigger recordin - .
RecordedPosition péfﬁmn & || ReAL - 0 Position where trigger event occurred

6. Common MC Instructions

Initial ..
Output Variable Name Data Type | Value Range Value Description
CommandAbort Instruction BOOL TRUE, FALSE EALSE Set to TRUE when the current instruction is
aborted aborted

3) Function Description

@ Thisinstruction records the current position of the running axis when triggered by signal Truggerinput.

@ Executeisrising edge-triggered.

@ When the drive is latched: The drive records the position in the controller after collecting the latching

signal.

FLC Sarrpling Poirts

A
TRUE
Execute
FALSE »
TRUE
Triggerinput.Signal | ’
FALSE o
TRUE PR
Done
FALSE -
TRUE
WindowOnly
FALSE > |
Axis.Position
LastPostion
RecordedPosition
FirstPosition

signal not signal
accepted accepted

A. FirstP osition < LastP osition

\
J

B. FirstPosition > LastP osition

LastP osition
~

FirstPosition ™————"

FirstP osition L astP osition

LastPosition
4) Timing Diagram

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the setup operation is successful.

-133-

-134-

6. Common MC Instructions

Execute

Trigger. Signal

Done

WindowOnly L

LastPosition

FirstPosition

1

t

The position is a cyclic counting unit. The position for triggering signals can be reused.

SMC_MoveContinuousAbsolute

This function block commands the axis to move continuously to an absolute position (specified by
Distance) ending with the specified velocity (EndVelocity).

1) Instruction Format

Instruction Name

Graphic Expression

ST Expression

Instruction for
continuous control

MC_MoveContinousAbsolute
of the absolute

TN Y i

SMC_MoveContinuousAbsolute_0

SMC_MoveContinuousAbsolute 0(
Axis:= Axis,

SMC_MoveContinuousAbsolute

EN

Axis

Execute

Position

Velocity

EndVelacity
EndVelocityDirection
Acceleration
Deceleration

ENO
InEndVelocity
PositionReached
Busy
CommandAborted

Error

ErrorlD

Execut
Positi

Velocity:= ,
EndVelocity:= ,
EndVelocityDirection:= ,
Acceleration:= ,
Deceleration:= ,

Jerk:=

Direction:= ,

axis position oy Adaptf{nd‘f&lIcAvcldeErahcct‘: '
T InEr.ldwelccu:y:> .
AdaptEndVelToAvoidOvershoot ;‘i::;cmamﬂ:} ’
CcmandékbnrtEd=> ,
Error=> ,
ErrorID=>) ;
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial o
. Name Data Type Description
Variable o Range Value .
Reference to the axis, that is, an instance of
AXi Axi AXIS_REF_SM - - ’ ’
XS XS S-REF_SM3 AXIS_REF_SM3
@ InputVariable
. Data Initial L
Input Variable Name Value Range Description
Type Value
Execution . .
Execute L BOOL TRUE, FALSE FALSE Start the motion at the rising edge
condition
Absolute position This data is the absolute position of
Position) p. . LREAL Value Range 0 I) \ ute postt
of the motion the motion.
Maximum velocity of the axis to the
Velocity Running velocity LREAL Value Range 0 . y
target position
. Motion endin Running velocity after the instruction
EndVelocity) & LREAL Value Range 0) & y
velocity is executed
EndVelocity Direction of the MC POS'“Ye’ Available: positive, negative, current;
- . . - negative, Current
Direction endlng VelOCIty Direction Not available: shortest, fastest
current ’
Acceleration Acceleration LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration Deceleration LREAL Value Range 0 Deceleration rate for velocity decrease

6. Common MC Instructions

. Data Initial -
Input Variable Name Value Range Description
Type Value
h fth

Jerk Jerk LREAL Value Range 0 Slope ¢ ?nge ofthe cu'rve
acceleration/deceleration
Options for linear/circular axes:
positive, negative;

Direction Running direction | Shortest Value Range Shortest Options for rotary/circular axes:
positive, negative, current, shortest,
fastest

AdaptEndVel i - Adi i i

p Enf:l velocity BOOL TRUE, FALSE FALSE TRQE. Adjust the ending velocity to.
ToAvoidOvershoot adjustment flag avoid overshoot; FALSE: No processing
€ Output Variable
. Initial _—
Output Variable Name Data Type Value Range value Description
u
| i TRUE wh hei i iti
InEndvelocity nst'rLfctlon BOOL TRUE, FALSE FALSE ;etto UE when the instruction position
position reached is reached
Instruction
Set to TRUE when th tinstructioni
Busy execution in BOOL TRUE, FALSE FALSE etto whenthe currentinstruction is
being executed
progress

CommandAbort Instruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is

aborted aborted

Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs

ErrorlD Error code SMC_ERROR | See SMC_ERROR 0 Output an error code when an error occurs

3) Function Description

*

*

This function block is an instruction for absolute axis positioning. The distance data is the absolute
position of the axis.

The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. A complete running process must control the different motion statuses of the axis.

The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered
repeatedly in Discrete Motion to refresh the latest position data each time.

If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

If AdaptEndVelToAvoidOvershoot is TRUE, the valid ending velocity will be adjusted to avoid overshoot.
In some cases, a given EndVelocity may cause position overshoot. For example, if the remaining
distance is too short to reach the ending velocity from the current velocity and acceleration, the axis
may rotate in negative direction, resulting in position overshoot. In another situation, the ending
velocity is in negative direction of the movement distance. To reach the target position at this velocity,
the axis will first exceed the distance, and then reversely accelerate to the ending velocity, which will
result in position overshoot. To avoid overshoot:

If the remaining distance is too short to reach the desired EndVelocity, focus more on reaching
EndVelocity, regardless of the target position constraints. In this way, the actual displacement will be
greater than the target position, that is, the target position will be reached first (DistanceTravelled =
TRUE), and then the target velocity will be reached (InTenVelocity = TRUE).

If the direction of the ending velocity is opposite to the motion direction, set the ending velocity
corresponding to the target position to zero and then run from zero to the desired ending velocity. Note
that the motion direction is not determined by the current velocity and acceleration but by the sign of

-135-

-136-

6. Common MC Instructions

the distance to the target position.

4) Timing Diagram

The instruction can run only when the axis is in Standstill status.

Execute of the function block must have a rising edge condition.

Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

A
Execute
Done
D)istance
Position
Velocity
4

SMC_MoveContinuousRelative

»
!

7
EndVelocity

This function block commands the axis to move continuously to a relative position (specified by
Distance) ending with the specified velocity (EndVelocity).

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_MoveCentinucusRelative 0(
Rxiz:= Rxis,
Execute
Distancs
SMC_MoveContinuousRelative_0 Velocity:=
SMC_MoveContinuousRelative End'f:elcclts. =
pis relative || 25, P | e
MC_MoveContinuousRelative | positioning T et pistancetraveled |- Deceleration:=
 Distance usy |- Terkim
instruction] \E’:‘ﬁ;‘lidw cmma"dAbagf:r C AdaptEndvelToRvoidOvershoot:=
— EndVelocityDirection ErrorlD |— InEndVelocity=> ,
— Acceleration DistanceTravelled=r ,
— Deceleration Busy=> ,
—Jerk Commandiborted=>
— AdaptEndVelToAveidOvershoot Error=s
ErrorID=>):
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value .
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 - - ’ ’
-7 AXIS_REF_SM3
@ InputVariable
. Initial L
Input Variable Name Data Type |Value Range value Description
Execution . .
Execute - BOOL TRUE, FALSE | FALSE Start the motion at the rising edge
condition
. Relative position This data is the relative position
Distance P) LREAL Value Range |0 . P
of the motion of the motion.
. . . Maximum velocity of the axis to
Velocity Running velocity | LREAL Value Range |0 . Y
the target position

6. Common MC Instructions

. Initial L.
Input Variable Name Data Type |Value Range value Description
. Motion endin Running velocity after the
EndVelocity ; g LREAL Value Range |0) g . y
velocity instruction is executed
N Positive, Available: positive, negative,
o . Direction of the
EndVelocityDirection R R MC_Direction | negative, Current |current;
ending velocity
current Not available: shortest, fastest
Accelerati te f locit
Acceleration Acceleration LREAL Value Range |0 . ceeteration rateforveloctty
increase
Deceleration rate for velocit
Deceleration Deceleration LREAL Value Range |0 I velodlty
decrease
Sl h f th
Jerk Jerk LREAL Value Range |0 opec a'mge orthe cu'rve
acceleration/deceleration
AdaptEndVelTo End velocity TRUE: Adjust the ending velocity
. adiustment fla BOOL TRUE, FALSE | FALSE to avoid overshoot; FALSE: No
AvoidOvershoot] g processing
€ Output Variable
. Initial .
Output Variable Name Data Type | Value Range value Description
Instruction
Set to TRUE when the instruction position is
InEndVelocity position BOOL TRUE, FALSE | FALSE W instruction posttiont
reached
reached
Instruction Set to TRUE when the current instruction is
Busy execution in BOOL TRUE, FALSE FALSE)
being executed
progress
| i TRUE wh h i ioni
CommandAbort nstruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is
aborted aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
See SMC
ErrorlD Error code SMC_ERROR E:eROR - 0 Output an error code when an error occurs

3) Function Description

€@ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. During the instruction execution, pay attention to the operation status of the axis,
to avoid interrupting the execution of other instructions of the axis or being interrupted by other
instructions of the axis.

€ The motion is started at the rising edge of Execute. This instruction can be rising edge-triggered
repeatedly in Discrete Motion to refresh the latest position data each time.

@ If Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

¢ If AdaptEndVelToAvoidOvershoot is TRUE, the valid ending velocity will be adjusted to avoid overshoot.

4) Timing Diagram
Execute of the function block must have a rising edge condition.
Done of the function block indicates that the execution of the instruction is completed.

Busy of the function block indicates that the execution of the instruction is in progress.

-137-

-138-

6. Common MC Inst

ructions

A
Execute
Done
D)istance
Position
Velocity
 E—
EndVelocity
MC_Jog
1) Instruction Format
Instruction Name Graphic Expression ST Expression
MC_Jog{
-) HC_JD'g Axis:= ,
—ixis Buay — JogForward:= ,
—JogForward Commandiborted — JogBackward:= ,
Velocity:= ,
. —{JogBackward Error — v i
Axis jog] Acceleration:= ,
MC_Jog instruction —Velocity ErrorId — Deceleraticn:= ,
—Ecceleration Jerki= .
. Busy=> ,
—|Peceleration CommandAborted=>
—Jerk Error=: ,
Errorld=>);
2) Related Variables
€ InputVariable
Input Variable Name Data Type | Value Range Initial Value Description
Valid in Set to TRUE to start moving in positive
JogForward positive BOOL TRUE, FALSE FALSE direction; set to FALSE to stop moving in
direction positive direction
Valid in Set to TRUE to start moving in negative
JogBackward negative BOOL TRUE, FALSE FALSE direction; set to FALSE to stop moving in
direction negative direction
Velocity Targejc LREAL Positive number 0 Sp-ecify the target velocity Unit: [instruction
velocity or0 unit/s]
Positi b Specify th lerati te Unit: [instructi
Acceleration Acceleration | LREAL ositive number | p'ea y the acceleration rate Unit: [instruction
or0 unit/s]
Deceleration Deceleration | LREAL Positive number 0 Spfecify the deceleration rate Unit: [instruction
or0 unit/s]
€ Output Variable
Output Variable Name Data Type | Value Range | Initial Value Description
Busy Executing BOOL TRUE, FALSE FALSE Set to TRUE after the instruction is received
Abortion of
CommandAborted execultion BOOL TRUE, FALSE FALSE Set to TRUE when the instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
See SMC
ErrorlD Error code SMC_ERROR E:eROR - 0 Output an error code when an error occurs
@ Input/Output Variable
Input/Output Name Data Type Value Range | Initial Value | Description
Variable
Axis - - Reference to the axis, that is, an instance of
Axi AXIS_REF_SM ’ ?
XS S-REF_SM3 AXIS_REF_SM3

6. Common MC Instructions

3) Function Description
@ Thisinstruction performs jogging at the specified Velocity (target velocity).

@ Tojogin positive direction, set JogForward to TRUE. To jog in negative direction, set JogBackward to
TRUE.

€ If both JogForward and JogBackward are set to TRUE, no motion will occur.

If the set velocity of the MC_Jog instruction exceeds the maximum jogging velocity in the axis parameter,
the maximum jogging velocity will be followed.

4) Timing Diagram
Busy will change to TRUE while JogForward or JogBackward is activated.

Busy will change to FALSE while deceleration starts at the falling edge of JogForward or JogBackward
and the axis stops.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and that of Busy changes to FALSE.

JogForward
|
JogBackward | L
Busy

CommandAborted

Error

ErrorlD 0

) Target velocity
VelOCIt)I Acc\e;/raﬁ; . Deceleration

\ " Time
‘ ’//t

\
Aborted by other

instructions,
decelerates to stop.

5) Error Description
If an error occurs during the execution of this instruction, Error changes to TRUE and the axis stops.
You can check the output value of ErrorID (error code) for the cause of error.

€ Timing diagram when an exception occurs

JogForward
I

JogBackward |
[

Busy

CommandAborted

Error

ErrorlD >< Error code

“ o«

For details on the error code, see Appendix C Error Codes” .

SMC_Inch

This instruction performs single-step motion control of axes through the program.

-139-

-140-

6. Common MC Instructions

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_Tnch SMC_Incho
HAnxis Busy — Rxis:= '
Commandib i InchForward:= ,
— InchBackward:= ,
— InchForward ErrorId Distance:= ,
Axis relative ¥
SMC_Inch positioning
instruction
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Ref he axis, that i i f
Axis Axis AXIS_REF_SM3 i) eference to the axis, that is, an instance o
AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type| Value Range value Description
If InchForward is TRUE, the axis will move at
the given velocity (Velocity, Acceleration, or
Deceleration) in positive direction until the
distance is reached. To start the motion again, the
Execution input must be specified as FALSE and then TRUE.
InchForward in positive BOOL TRUE, FALSE FALSE . .
" I . P .I " If InchForward is set to FALSE before it reaches
direction . S .
position, then the axis will immediately decelerate
to 0 and Busy will be set to FALSE.
If InchBackward is set to TRUE in the simulation,
no motion will occur.
If InchBackward is TRUE, the axis will move at
the given velocity (Velocity, Acceleration, or
Deceleration) in positive direction to the specified
InchBackward Backw'ard BOOL TRUE, FALSE FALSE position. To start another motion, the input must
execution be set to FALSE and then TRUE.
If InchForward is set to TRUE at the same time, no
axis motion will occur.
M t
Distance ‘ovemen LREAL Value Range 0 This data is the movement distance
distance
. Running . .) -,
Velocity velocity LREAL Value Range 0 Maximum velocity of the axis to the target position
Acceleration Acceleration | LREAL Value Range 0 Acceleration rate for velocity increase
Deceleration Deceleration | LREAL Value Range 0 Deceleration rate for velocity decrease
& Output Variable
. Initial —
Output Variable Name Data Type | Value Range Value Description
Instruction
Set to TRUE when th tinstruction i
Busy execution in BOOL TRUE, FALSE | FALSE etto when the currentinstruction s
being executed
progress
CommandAbort Instruction BOOL TRUE, FALSE FALSE Set to TRUE when the current instruction is
aborted aborted
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
SMC_ See SMC_
ErroriD Error code ERROR ERROR 0 Output an error code when an error occurs

6. Common MC Instructions

3) Function Description

@ The operation status of this function block is Standstill, and the status during instruction running is
Discrete Motion. During the instruction execution, pay attention to the operation status of the axis,
to avoid interrupting the execution of other instructions of the axis or being interrupted by other
instructions of the axis.

@ I Acceleration or Deceleration is zero, the instruction execution will be abnormal. However, the state of
the axis is Discrete Motion.

4) Timing Diagram
InchForward/InchBackward of the function block must have a TRUE/FALSE condition.

Busy of the function block indicates that the execution of the instruction is in progress.

A

InchForward

InchBackward

Busy

Velocity

Distance

\/

SMC3_PersistPosition

This instruction keeps recording the position of the absolute encoder of the real axis (after the controller
is powered off and restarted again, the position value recorded before power-off will be restored). If the
servo motor uses an absolute encoder, this function block can be used in conjunction with it.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC3 PerzsiztPositionD = SMC3_PersistPosition0(
= = — 0 Bxig:=
SMC3_PersiztPosition — _ '
- - PersistentData:= ,
) Alis bPositionRestored — bEnable:=
Instruction - . . nable:= ,
SMC3_ for keeping —APersistentData bPositionStored [bPositionRestored=> |
PersistPosition | the axis —bEnable bBusy - bPositicn3tored=> ,
position bError - bEBusy=> ,
eErrorlD - bError=> ,
eRestoringDiag - eErrorll=> ,
eRestoringDiag=>);

2) Related Variables
@ Input/Output Variable

Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
R . Reference to the axis, that is, an instance of

Axis Axis AXIS_REF_SM3 AXIS_REF_SM3

. Retentive | SMC3_PersistPosition_ Power-down retentive data structure for
PersistentData - - . o .

data Data storing position information

€ InputVariable

-141-

-142-

6. Common MC Instructions

Initial

Input Variable Name Data Type | Value Range
pu ! P . & Value

Description

The function block is executed if set to TRUE
and not executed if set to FALSE.

bEnable Executed BOOL TRUE, FALSE FALSE To restore the last stored position during

initialization, this value must be set to TRUE
from application startup.

@ Output Variable

Output Variable Name Data Type |Value Range Initial Value

Description

bPositionRestored | C>1°" 5oL TRUE, FALSE | FALSE
restoring

Set to TRUE when the position is
restored upon axis restart

Positi
bPositionStored osv|t|on BOOL TRUE, FALSE | FALSE
saving

Set to TRUE when the position is
stored after an FB call

FB
bBusy execution | BOOL TRUE, FALSE | FALSE
in progress

Set to TRUE when FB execution is not
completed.

bError Error BOOL TRUE, FALSE | FALSE

Set to TRUE when an error occurs

eErrorlD Error code | SMC_ERROR - SMC_NO_ERROR

Output an error code when an error
occurs

SMC3_

Restoration | SMC3_Persist- PersistPositionDiag.
diagnostics | PositionDiag SMC3_PPD_
RESTORING_OK

eRestoringDiag

Diagnostic information in position
restoration

SMC3_PPD_RESTORING_OK: Position
successfully restored;

SMC3_PPD_AXIS_PROP_CHANGED:
Axis parameters have been changed
and the position could not be
restored;

SMC3_PPD_DATA_STORED_DURING_
WRITING: The function block copies
data from the axis parameter

data structure instead of from
PersistentData. Possible cause: Non-
synchronized retentive variable,
controller crash

3) Function Description

@ IfbEnableis TRUE upon PLC restart, then bPositionRestroed outputs TRUE.

€ Virtual and logical axes are not supported.

@ Itis hereby declared that the actual position of the axis in AM600 is: Offset + Encoder feedback position
(instruction unit Plus) x Scale. The position recorded by the absolute encoder after power-off is the
instruction unit value. Therefore, to restore the "actual position" before power-off upon PLC restart, use

this function block and configure SMC3_PersistPosition_Data as a retentive variable.

Usage (when the real axis encoder is a multi-turn absolute encoder):

6) SMC3_PersistPosition_Data declared in PersistentVars

£ @ MairTask
+-gE Task

E{p tra

@ tra_1

T PersistentVars

'‘J Device @ PersistentVars X
VAR GLOBAL| PERSISTENT RETAIN

o

istentDatal: SMC3_PersistPosition Data;

6. Common MC Instructions

7) Called in the PLC main task (EthCat task)
€ Declaration section:

VAR
SMC3_PersistPosition_1:SMC3_PersistPosition;

END_VAR

Program section:

ll SMC3 PersistPosition_l({Axis:=K RAxis , PersistentData:=persistentDatal ,bEnable:=IEUE };

4) Timing Diagram

A

bEnable »

ot
bPosition

t

Restored D>
bPosition " w

stored v

One scan

bERROR

5) Error Description

If the input axis is a virtual or logical one, an error will be output. An axis error will result in an error

output.

Note: For details on the error code, see “ “Appendix C Error Codes” .

SMC3_PersistPositionSingleturn

This instruction keeps recording the position of the absolute encoder (single-turn) of the real axis (after
the controller is powered off and restarted again, the position value recorded before power-off will be
restored). If the servo motor uses a single-turn absolute encoder, use this function block in conjunction
with it.

1) Instruction Format

Instruction Name Graphic Expression ST Expression

PersistPositionSingleturn 0(

SMC3 PersistPositionSingleturn 0 SMC3

SMC3 PersistPositionSingleturn Bxl '
[T - L 3 PersistentData:= ,
. [FjAxis bPpgitionRestorad —
Instruction |, . .
. [F1PersistentData PositionStored -
SMC3_ for keeping : - '
. - . . Busy [~
PersistPositionSingleturn | the axis -
position -
[bEnable D
[usiNumberOfibsoluteBits eReatoringDiag—

2) Related Variables
€ Input/Output Variable

-143-

-144-

6. Common MC Instructions

Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an
AXi Axi AXIS_REF_SM - - ’ ’
XIS XIS S_REF_SM3 instance of AXIS_REF_SM3
X Retentive | SMC3_PersistPositionSingletrun_ Power-down retentive data structure
PersistentData - . S .
data Data for storing position information
@ InputVariable
. Initial L
Input Variable Name Data Type | Value Range value Description
The function block is executed if set to
TRUE and not executed if set to FALSE.
bEnable Executed BOOL TRUE, FALSE FALSE To restore the last stored position during
initialization, this value must be set to TRUE
from application startup.
siNumberofAbsol . .
Ut . ! . y . Specify the bits of absolute encoder (such
teBitesusiNumberof | Bit UINT - 16 . .
. as 20-bit and 24-bit)
AbsoluteBites
€ Output Variable
Output Variable Name Data Type | Value Range Initial Value Description
Positi Set to TRUE when th ition'i
bPositionRestored | oo | BOOL TRUE, FALSE | FALSE € o TRUE WREN The posttion s
restoring restored upon axis restart
Positi TRUE wh h itioni
bPositionStored osV|t|on BOOL TRUE, FALSE | FALSE Setto TRUE when the position is
saving stored after an FB call
F8 Set to TRUE when FB execution is
bBusy execution BOOL TRUE, FALSE | FALSE
. not completed.
in progress
bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output de wh
eErrorlD Error code | SMC_ERROR - SMC_NO_ERROR utputan error code when an
error occurs
Diagnostic information in position
restoration
SMC3_PPD_RESTORING_OK:
Position successfully restored;
SMC3_PPD_AXIS_PROP_
SMC3 CHANGED: Axis parameters have
SMC3 N iti
eRestorineDia Restoration Persis;Posi PersistPositionDiag. been changed and the position
ghiag diagnostics o SMC3_PPD_ could not be restored;
lonPiag RESTORING_OK SMC3_PPD_DATA_STORED_
DURING_WRITING: The function
block copies data from the axis
parameter data structure instead
of from PersistentData. Possible
cause: Non-synchronized retentive
variable, controller crash

3) Function Description

@ IfbEnableis TRUE upon PLC restart, then bPositionRestroed outputs TRUE.

& Virtual and logical axes are not supported.

@ To restore the "actual position" before power-off upon PLC restart, use this function block and configure

SMC3_PersistPositionSingleTurn_Data as a retentive variable.

Usage (when the real axis encoder is a multi-turn absolute encoder):

8) SMC3_PersistPositionSingleTurn_Data declared in PersistentVars

6. Common MC Instructions

+ @‘MainTask
+ @ Task

& ra

& ra_1

? PersistentVars

L VAR GLOBAL| PERSISTENT RETAIN
i persistentData?: SMC3_PersistPositionSingleTurn Data:

END V2H

9) Called in the PLC main task (EthCat task)
@ Declaration section:
VAR
SMC3_PersistPosition_2: SMC3_PersistPositionSingleTurn_Data;
END_VAR
€ Program section:

-

SMC3_PersistPosition_ 2 (Axis:=Y Axis , PersistentData:=persistentDatal ,bEnable:=TRUE };

4) Timing Diagram

A
bEnable »
LB
bPosition
Restored » *
»
bPosition " » t
stored g
One scan
bERROR

5) Error Description

If the input axis is a virtual or logical one, an error will be output. An axis error will result in an error
output.
Note: For details on the error code, see

“ o«

Appendix C Error Codes” .

SMC_CheckAxisCommunication

This instruction checks the current communication status of the drive.

1) Instruction Format

[Instruction | Name | Graphic Expression | ST Expression

-145-

-146-

6. Common MC Instructions

= = SMC CheckRExisCommunicationO (
SMC CheckAxisCommunication e
. = - Evalidl Axis:= '
sxls va bEnakle:= ,
me Axis limit bErrer - EValid=> ,
T check eErrorID - bError=> ,
CheckLimits instruction — bEnakle bOperational eErrorID=> ,
eComState [~ bOperaticnal=> ,
wComState eComState=> ,
wComState=>) ;
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Ref he axis, that i i f
Axis Axis AXIS_REF_SM3 i i eference to the axis, that is, an instance o
AXIS_REF_SM3
€ InputVariable
. Initial —
Input Variable Name Data Type | Value Range Value Description
bEnable Executed BOOL TRUE, FALSE | FALSE Set to TRUE when a check is in progress
€ Output Variable
Output Initial
. Name Data Type | Value Range Description
Variable yp & Value P
bvalid Executing BOOL TRUE, FALSE |FALSE |Setto TRUE when instruction execution is valid
bError Error BOOL TRUE, FALSE FALSE |Setto TRUE when an error occurs
eErrorlD Error code SMC_ERROR See SMC_Error
Set to TRUE when the communication is normal (code 100)
icati and operations can be performed on the axis
bOperational Communication BOOL TRUE, FALSE FALSE P P
normal Set to FALSE when the communication is abnormal and
operations cannot be performed on the axis
Including:
SMC_COMSTATE_NOT_STARTED: Communication not
started
SMC_COMSTATE_VARIABLE_INITIALIZATION:
Communication variable initialization
SMC_COMSTATE_BASE_COM_INITIALIZATION: Base port
initialization
SMC_COMSTATE_DRIVE_INITIALIZATION: Communication
drive initialization
Communication |SMC_COMMUNI- .
eComState state CATIONSTATE - - SMC_COI\(IST/.ATE_DRIVE_WAITING_FOR_SYNC. Warning for
synchronization
SMC_COMSTATE_INITIALIZATION_DONE: Initialization
done
SMC_COMSTATE_OPERATIONAL: Normal communication
SMC_COMSTATE_REINITIALIZATION: Communication re-
initialization
SMC_COMSTATE_ERROR: Communication error
SMC_COMSTATE_UNKNOWN: Unknown communication
state
Same value as Axis.wCommunicationState in the input/
C icati output axis structure variable.
wComstate |~ UMCAON yorp - - putaxss o
code Code indicating the current communication state. See
AXIS_REF_SM3 parameter 1013.

3) Function Description

6. Common MC Instructions

When bEnable is TRUE, no error occurs, and bValid outputs TRUE, this instruction checks the axis
communication state.

When bValid outputs TRUE, this instruction checks the axis communication state. When eComState
outputs SMC_COMSTATE_OPERATIONAL, bOperational outputs TRUE.

4) Sample Program

SMC CheckixisCommunicaticn 0

SMC CheckAxizsComminication

Lxis —RAxis bBValid
bError

TRUE eErrorID
|]l|] bEnakle bOperaticnal

5) Error Description

At the rising edge of bExecute:

eComState
wComState

il FLLSE
— [SMC HO EER

— [SMC COMSTR

=l

— L 100

An error is output if there is an axis error.

An error is output if the axis input is invalid.

Note: For details on the error code, see

SMC_FollowPosition

“ “Appendix C Error Codes” .

This instruction sets the axis position without performing any check. This instruction is different from
MC_MoveAbsolute in that after the bExecute rising edge signal arrives, it will give the axis position
instruction in each task period regardless of the axis status. (Users can use this instruction to write cam
functions instead of using instructions such as MC_Camin.)

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC FollowPosition O
SMC FollowPosition I -
- . — Axis:= R
—&xis bEBusy [bE .
Axis position BC dLb ak EecuTe: '
SMC_ ; T D REIEEE fSetPosition:=SET_POSITION ,
FollowPosition | ¢ ' cnc® bError - bBuay=> ,
instruction —kbExecute iErrorID[bCommandBborted=> |,
—£f5etPoaiticon bError=» ,
iErrorID=>)
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial "
. Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance of AXIS
Axi Axi AXIS_REF_SM3 - - ’ ’ -
Xs X e REF_SM3
€ InputVariable
. Initial -
Input Variable Name Data Type | Value Range value Description
bExecute Executed BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
fSetPosition Set position | LREAL - 0 Axis position setting

€ Output Variable

-147-

6. Common MC Instructions

) Initial _—
Output Variable Name Data Type | Value Range value Description
Set to TRUE when the instruction is being
executed
(At this time, the axis is in the synchronized
bBusy Executing | BOOL TRUE, FALSE | FALSE | status, which is the same as the axis status
during the execution of the cam MC_Camln
instruction). The bBusy status can be cleared
with the MC_Camout instruction.
| i TRUE wh h isisi
bCommandAborted nstruction BOOL TRUE, FALSE | FALSE Set to TRU w ent e.aX|s is interrupted by
aborted other control instructions
bError Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
iErrorlD Error code SMC_ERROR - - See SMC_Error

3) Function Description

@ After SMC_FollowPosition is started at the rising edge of bExecute, the axis will send position instruction
to the axis in each task period.

€ When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamiIn instruction takes effect. The status can be cleared with the MC_CamOut
instruction.

@ The axis velocity is calculated by the increment of the position difference between two task periods:

Velocity= AL/ At . AL is the difference between fSetVelocity of this task period and fSetVelocity of
the previous task period. At is the scanning time.

@ When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

4) Timing Diagram

A
bEecute Bt
»
bBusy ; t
bCommandA -
borted >t
Error »
»

5) Error Description

At the rising edge of bExecute:

An error is output when the Axis variable is connected to a non-AXIS_REF_SM3 type structure variable.
An error is output when the axis is disabled.

An error is output when there is an axis error during instruction execution.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .
6) Sample Description

Use SMC_FollowPosition to achieve the electronic cam function.

-148-

6. Common MC Instructions

1 CAM BUILD 1
CAM BUILD
360 —|Master peridec Mater position
End profile =

¥M_CREM_START bBusy M=
][——————tExcute
TRUE
I bPeriod
360 —5lave_peridec

SM Drive Virtual —Mater Axis
Lyis —SHs5lave Axis

FB variable definition section:

FUNCTION_BLOCK CAM_BUILD
VAR_INPUT//Input variable definition
Master_peridec:REAL; //Master axis period
bExcute:BOOL; //Instruction execution
bPeriod:BOOL; //Cyclic cam execution; false: single-period execution
Slave_peridec:REAL; //Slave period
END_VAR
VAR_OUTPUT; //Output variable definition
Mater_position:LREAL;//Master axis position (the position of the master axis calculated after the
start of instruction execution)
End_profile:BOOL; //Flag bit of curve output completed
bBusy:BOOL; //Execution in progress
END_VAR
VAR//FB intermediate variable definition
SMC_FollowPosition_0: SMC_FollowPosition;
SET_POSITION: LREAL;
SET_POSITIONOLD: LREAL;
Mater_positionOLD:LREAL;
bExcute_old:BOOL;
INC:LREAL;
Y:LREAL;
X5:LREAL;
X4:LREAL;
X3:LREAL;
X2:LREAL;
X1:LREAL;
MC_Stop0: MC_Stop;
STOP:BOOL;
COUNTNUM:DINT;
SET_INC:LREAL;
YOLD:LREAL;
SMC_FollowPositionVelocity_0: SMC_FollowPositionVelocity;
K:REAL;
K_OUT:REAL;
MC_CamOut_0: MC_CamOut;
END_VAR
VAR_IN_OUT// Input and output variable definition
Mater_Axis:AXIS_REF_SM3;
Slave_Axis:AXIS_REF_SM3;
END_VAR
Program section:

-149-

6. Common MC Instructions

IF bExcute AND NOT bExcute_old THEN //Rising edge initialization parameter
Mater_position:=0;
Mater_positionOLD:=Mater_Axis.fActPosition;
End_profile:=FALSE;
SET_POSITION:=Slave_Axis.fActPosition;
SET_POSITIONOLD:=Slave_Axis.fActPosition;
COUNTNUM:=0;
YOLD:=0;
K:=0;
ELSE
IF bExcute_old THEN
INC:=Mater_Axis.fActPosition-Mater_positionOLD;//Increment of master axis task period
IF INC<0 THEN //Master axis code position exceeds zero point (when axis mode is set to modulo)
INC:=Mater_Axis.fActPosition-Mater_positionOLD+Mater_Axis.fPositionPeriod;
END_IF
Mater_position:=INC+Mater_position;//Current position of master axis
Mater_positionOLD:=Mater_Axis.fActPosition;
[/FFF**Curve judgment completed™********//
IF Mater_position>=Master_peridec THEN
End_profile:=TRUE;
ELSE
End_profile:=FALSE;
END_IF
IF bPeriod THEN
IF Mater_position>=Master_peridec THEN
Mater_position:=Mater_position-Master_peridec;
END_IF
END_IF
END_IF
END_IF
IF bExcute_old THEN
X1:=(Mater_position/Master_peridec);
X2:=X1*X1,
X3:=X2*X1,;
X4:=X3*X1,
X5:=X4*X1,
Y:=(6*X5-15*X4+10*X3)*Slave_peridec;//Slave axis position, curve
K:=(30*X4-60*X3+30*X2)*Slave_peridec/Master_peridec;//Curve slope
SET_INC:=Y-YOLD;
IF SET_INC<0 THEN
SET_INC:=Slave_peridec-YOLD+Y;
END_IF
YOLD:=Y;
IF bPeriod THEN
SET_POSITION:=SET_POSITION+SET_INC;
ELSE
IF End_profile THEN
SET_POSITION:=SET_POSITIONOLD+Slave_peridec;
ELSE
SET_POSITION:=SET_POSITION+SET_INC;
END_IF

-150-

6. Common MC Instructions

END_IF
IF SET_POSITION>=Slave_Axis.fPositionPeriod THEN

SET_POSITION:=SET_POSITION-Slave_Axis.fPositionPeriod;
END_IF

END_IF
SMC_FollowPosition_0(

Axis:=Slave_Axis,
bExecute:=bExcute,
fSetPosition:=SET_POSITION,
bBusy=>bBusy,
bCommandAborted=>,
bError=>,

iErrorlD=>);

IF NOT bExcute AND bExcute_old THEN
STOP:=TRUE;
END_IF
MC_CamOut_0(

Slave:=Slave_Axis,

Execute:= STOP,

Done=>,

Busy=>,

Error=>,

ErrorlD=>);

MC_Stop0(

Axis:=Slave_Axis,

Execute:= MC_CamOut_0.Done OR MC_CamOut_0.Error,
Deceleration:=20000,
Jerk:=20000,

Done=>,

Busy=>,

Error=>,

ErrorlD=>);

IF MC_Stop0.Done OR MC_Stop0.Error THEN

STOP:=FALSE;
END_IF
IF NOTbExcute_old THEN
End_profile:=FALSE;
END_IF
bExcute_old:=bExcute;

SMC_FollowPositionVelocity

The usage and function of this instruction are the same as SMC_FollowPosition. This instruction
additionally provides velocity setting.

Note: The velocity setting must adapt to the position setting change. Velocity setting = First order
derivative of the difference in position settings between task periods with respect to time. For example,
if the position setting is the same between two periods, the velocity must be set to 0; otherwise, it will
cause the motor to vibrate violently.

1) Instruction Format

Instruction | Name | Graphic Expression ST Expression

-151-

-152-

6. Common MC Instructions

= — — SMC FollowFositionVelccity 0
SMC FollowPositionVelocity . -
Hneis LEusy M= Exisi= !
. . = bExecute:= ,
Axis p05|t|'on bCommandRborted fSetFosition:= ,
SMC_ N ' and velocity DError M fietVelocity:= ,
FollowPositionVelocity -referenc.e b bExecute iErrorID|{| bBusy—> bBusy,
instruction M f£3etPositicn Commandfborted=> ,
fSetVelocity bError=> ,
iErrorID=>) :
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o2 Range | Value .
Axis Axis AXIS_REF_SM3 . i Reference to the axis, that is, an instance of AXIS_
REF_SM3
@ InputVariable
. Initial o
Input Variable Name Data Type | Value Range value Description
u
bExecute Executed BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
fSetPosition Set position | LREAL - 0 Axis position setting
fSetVelocity Set velocity LREAL - 0 Axis velocity setting
€ Output Variable
. Initial —
Output Variable Name Data Type | Value Range value Description
Set to TRUE when the instruction is being
executed
(At this time, the axis is in the synchronized
bBusy Executing | BOOL TRUE, FALSE | FALSE | status, which is the same as the axis status during
the execution of the cam MC_Camln instruction).
The bBusy status can be cleared with the MC_
Camout instruction.
bCommandAborted Instruction BOOL TRUE, FALSE FALSE Set to TRUE whgn the axis is interrupted by other
aborted control instructions
bError Error BOOL TRUE, FALSE FALSE | Setto TRUE when an error occurs
iErrorlD Error code SMC_ERROR - - See SMC_Error

3) Function Description

@ After SMC_FollowPositionVelocity is started at the rising edge of bExecute, the axis will send the position

and velocity setting instruction to the axis in each task period.

€ When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamlIn instruction takes effect. The status can be cleared with the MC_CamOut

instruction.

€ The velocity setting must adapt to the position setting change. fSetVelocity = A7 / A7 - AL, iSthe

difference between fSetVelocity of this task period and fSetVelocity of the previous task period. Ay is

the scanning time.

@ When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

4) Timing Diagram

6. Common MC Instructions

A
bEecute »
>
bBusy Pt
bCommandA -
borted »t
Error »

5) Error Description
At the rising edge of bExecute:
An error is output when the Axis variable is connected to a non-AXIS_REF_SM3 type structure variable.
An error is output when the axis is disabled.

An error is output when there is an axis error during instruction execution.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

SMC_FollowVelocity

This instruction sets the axis velocity without performing any check. This instruction is different from
MC_MoveVelocity in that after the execution of the rising edge model, it will give the axis velocity
instruction in each task period. (The MC_MoveVelocity instruction must be refreshed to take effect after
the velocity is changed.)

1) Instruction Format

Instruction | Name Graphic Expression ST Expression
- SMC FollowVelocity 0
SMC FollowVelocity . -
. — BExiz:= ’
—Axis bBuay—
Axis bExecute:= ,
. bCommandiborted — R, .
SMC_ velocity . fSetVelocity:= ,
; Fror [~
FollowVelocity referenc-e s . ol bBusy=> ,
instruction Xecute 1Error Cormandiborted=> ,
p— 1T : .
f3etVelocity bError=» ,
iErrorID=>)r
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range | Value .
Axis Axis AXIS_REF_SM3) . Reference to the axis, that is, an instance of AXIS_
REF_SM3
@ InputVariable
. Initial —
Input Variable Name Data Type | Value Range value Description
bExecute Executed BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
fSetVelocity Set velocity LREAL - 0 Axis velocity setting

-153-

6. Common MC Instructions

€ Output Variable

) Initial L
Output Variable Name Data Type | Value Range value Description
u

Set to TRUE when the instruction is being
executed
(At this time, the axis is in the synchronized

bBusy Executing BOOL TRUE, FALSE FALSE status, which is the same as the axis status
during the execution of the cam MC_Camin
instruction). The bBusy status can be cleared
with the MC_Camout instruction.

Instruction Set to TRUE when the axis is interrupted by
bCommandAborted aborted BOOL TRUE, FALSE FALSE another control instruction (when bExecute is

True)

bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs

iErrorID Errorcode | SMC_ERROR - - See SMC_Error

3) Function Description

@ After SMC_FollowVelocity is started at the rising edge of bExecute, the axis will send the velocity
instruction to the axis in each task period.

€ When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamlIn instruction takes effect. The status can be cleared with the MC_CamOut
instruction.

€ When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

4) Timing Diagram

A
bEecute Bt
»
bBusy P
bCommandA
borted Pt
Error >t

5) Error Description
At the rising edge of bExecute:
An error is output when the Axis variable is connected to a non-AXIS_REF_SM3 type structure variable.
An error is output when the axis is disabled.
An error is output when there is an axis error during instruction execution.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

SMC_FollowSetValues

Like other SMC_Follow functions, it directly sends an instruction to the axis. However, this instruction
not only includes other SMC_Follow functions, but also includes acceleration, current, torque and

-154-

6. Common MC Instructions

other control signals. Therefore, it can be regarded as a comprehensive instruction. Users can select the
desired through the DwValueMask value.

1) Instruction Format

Instruction Name Graphic Expression ST EXpreSS|On
SMC_FollowSetValues_0 SMC_FollowSetValues 0
Lmizi= Axmis,
SMC FollowSetValues L i
= bExecute:= |
] Eh! ENO bRborti= ,
2 Axis bBusy dwValueMask:= ,
—| bExecute bCommandAborted fSetPosition:= ,
sc Axis-related| — bAbort bError fSetVelocity:= ,
N instruction — dwWalueMask iErrorlD f3ethceeleration:=

FollowSetValues fSetderk:= ,

fetTorque:= ,
fietlurrent:= ,

reference —| fSetPosition

—| fSetVelocity
— fSetAcceleration

kBusy=> |
— fSetlerk kCommandiborted=> |
— fSetTorque BError=> ,
— fSetCurrent iErrorID=») ;
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range | Value P
Axis Axis AXIS_ REF i) Reference to the axis, that is, an instance of AXIS_
REF
€ InputVariable
. Initial L
Input Variable Name Data Type| Value Range value Description
bExecute Start BOOL TRUE, FALSE FALSE | Execute the FB at the rising edge
bAbort Abort condition | BOOL TRUE, FALSE FALSE | Abort the ongoing motion and reset all outputs
Bit 0: TRUE: fSetPosition active; FALSE: Ignore
Bit 1: TRUE: fSetVelocity active; FALSE: Ignore
Bit 2: TRUE: fSetAcceleration active; FALSE: Ignore
dwValueMask Control DWORD |- 0 &
management Bit 3: TRUE: fSetJerk active; FALSE: Ignore
Bit 4: TRUE: fSetTorque active; FALSE: Ignore
Bit 5: TRUE: fSetCurrent active; FALSE: Ignore
fSetPosition Set position LREAL - 0 Axis position setting (calibrated unit)
fSetVelocity Set velocity LREAL - 0 Axis velocity setting (calibrated unit)
fSetAcceleration Set acceleration | LREAL - 0 Axis acceleration setting (calibrated unit/s2)
fSetJerk Set jerk LREAL - 0 Axis jerk setting (calibrated unit/s3)
T
fSetTorque orque LREAL - 0 Axis torque setting (NM/N)
reference
fSetCurrent Set current LREAL - 0 Axis current setting (A)

€ Output Variable

) Initial _—
Output Variable Name Data Type | Value Range value Description
bBusy Executing BOOL TRUE, FALSE | FALSE Set to TRUE after the instruction is received
bCommandAborted Instruction BOOL TRUE, FALSE | FALSE Set to TRUE when the current instruction is
aborted aborted
bError Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs

-155-

-156-

6. Common MC Instructions

Output Variable

Initial

Name
Value

Data Type | Value Range Description

iErrorlD

Errorcode | SMC_ERROR - 0 Output an error code when an error occurs

3) Function Description

*

*

After SMC_FollowSetValues is started at the rising edge of bExecute, it will send the selected parameter
instruction to the axis in each task period.

® When the bBusy signal is received, the axis is in Synchronized Motion status, which is the same as the
slave axis when the MC_CamlIn instruction takes effect. The status can be cleared with the MC_CamOut
instruction.

® When the bExecute signal is TRUE, bBusy changes from TRUE to FALSE when this instruction is
interrupted by another instruction.

® The control parameter can be selected through the value of DwValueMask. For example, if
DwValueMask is 1, it sends the position for each task period, with the same function as the SMC_
FollowPosition instruction. If DwValueMask is 2, it is an instruction output for the velocity. If
DwValueMask is 3, it is an instruction output for the position and velocity. If DwValueMask is 7, it is an
instruction output for the position, velocity, acceleration, and so on.

4) Timing Diagram

SMC FollowSetValues 0f
Bxis:= RAxis,
bExecute:= ,
bAbort:= ,
dwValueMask:= ,
fSetPosition:= ,
fSetVelocity:= ,
fSethcceleration:= ,
fSetderk:= ,
fSetTorque:= |,
fSetCurrent:= ,
EBusy=> ,

Commandiborted=> |
bError=> ,
iErrorID=>);

SMC_SetControllerMode

SMC_SetControllerMode sets the current operation mode of the servo. By default, synchronous
cyclic position control is adopted. For details on the control mode setting, see IS620N Series Servo
Design and Maintenance User Guide.

1) Instruction Format

[Instruction | Name |

Graphic Expression

ST Expression

6. Common MC Instructions

SMC SetControllerMode((
SMC_ SetControllerMode Lyis:= ,
Instruction Hrxis bDone - EExecute:= ,
SMC for- setting bEBusy - nControllerMode:= ,
_ axis L
SetControllerMode Xlntr | e bDone=> ,
contro —bExecute nErrorID bEBusy=> ,
mode —nCentrollerMode bError=s ,
nErrorID=>)
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - - ’ ’
s XS —E- AXIS_REF_SM3
€ InputVariable
. Initial -
Input Variable | Name Data Type Value Range Value Description
bExecute Executed | BOOL TRUE, FALSE | FALSE | Execute the FB at the rising edge
Axis control mode
1: SMC_torque: Torque control mode
M NTROLLER M
nControllerMode ;oondtgol ;OCD_ECO 0 - - Iiosft_ion 2: SMC_Velocity: Velocity control mode
3: SMC_Position: Position control mode
4: SMC_Current: Current control mode
€ Output Variable
Output
) Name Data Type Value Range Initial Value Description
Variable o & s
bDone Mode setting BOOL TRUE, FALSE FALSE Set T[O T.RUE when mode
completed setting is completed
Set to TRUE when th
bBusy Executing BOOL TRUE, FALSE FALSE >etto TRUE when the
instruction is being executed
TRUE wh
bError Error BOOL TRUE, FALSE FALSE Setto TRUE when an error
occurs
iErrorlD Error code SMC_ERROR - - See SMC_Error

3) Function Description

@ After being started at the rising edge of bExecute, SMC_SetControllerMode sets the servo drive control
mode, which can also be set through the value of Axis.out.byModesofOpreation (requiring the addition
of the Object Dictionary 6060h in the process data).

PDO Assignment (16£1C12): o Insert [Edit X Delete & MoveUp Mave Down
1621600 PDO Content (1621600):

Index Size Offs Name Type

@ Conditions for using the function block:

1. The axis must meet these control conditions, for example, a virtual axis is not allowed to use this
function block.

2. The synchronization period supported by each mode must be consistent (see 7.3.3 "Communication

-157-

6. Common MC Instructions

Period Supported by Each Mode" of the IS620N Series Servo Design and Maintenance User Guide).

3. The axis must be in a state other than Errorstop, Stopping, or Homing during instruction execution;
otherwise, an error will occur.

€ Ifthe axis has not changed to the set control mode after the instruction has been executed for 1000 task
periods, the instruction will report an error and bError will change from FALSE to TRUE.

€ When the control mode of the axis changes from low level to high level (torque -> velocity, torque
-> position, velocity -> position), the function block calculates the set value of the high level mode.
For example, when there is a change from torque mode to position mode, the function block will
compensate for the time lag between the actual and set values by superimposing an expected position
distance on the actual position of the current axis (calculated based on the current velocity and the
time offset during the task period).

@ After the instruction is executed, when the actual control mode of the axis changes to the set control
mode and the bDone signal is triggered, the axis will still run during the time between the trigger of the
instruction and the bDone signal. In addition, the function block will calculate the appropriate set value
according to the set control mode during this period. However, if the bDone signal is triggered and there
is no other control instruction to continue to set the value for the axis, the axis will stop immediately
and report an error. Therefore, it is necessary to use the rising edge of the bDone signal to trigger
instructions such as MC_Halt, MC_MoveVelocity or MC_MoveAbsolute to smooth the control axis.

Note that when the control mode changes to torque control, a torque control instruction (such as MC_
TorqueControl and SMC_SetTorque) is required to smooth the control axis.

4) Timing Diagram

A
bEecute Pt
bBusy Pt
bDone >t
Error »

5) Error Description
At the rising edge of bExecute:
The axis is invalid.
The axis status is invalid.
The axis does not meet the control mode.
An error is output if there is an axis error.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

SMC_CheckLimits

This instruction checks whether the current drive setpoint exceeds the maximum value configured by
the controller.

-158-

6. Common MC Instructions

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SHMC Chock Limits SMC _CheckLimits0(
Hnxis - bBusy Lyig:= \
bE. =
o bEnakle:= ,
iErrorID N
Axis limit —{bEnable bLimitaExceeded - bCheckVel:= ,
SMC_ . check bChecklicclec:= ,
CheckLimits instruction
instruct —bCheckvel bBuay=> ,

bBError=>» ,
iErrorIl=> ,
bLimitsExcesded=>);

—bChecklkcchec

2) Related Variables
€ Input/Output Variable

Input/Output Value Initial .
. Name Data Type Description
Variable o Range | Value .
Axis Axis AXIS_REF_SM3) i Reference to the axis, that is, an instance of
AXIS_REF_SM3
€ InputVariable
. Initial L
Input Variable Name Data Type| Value Range Value Description
bEnable Executed BOOL TRUE, FALSE FALSE Set to TRUE when a check is in progress
Avelocity check will be performed if set to TRUE.
bCheckVel Velocity check | BOOL TRUE, FALSE FALSE No velocity check will be performed if set to
FALSE.
. An acceleration/deceleration check will be
Acceleration/ erformed if set to TRUE. No acceleration/
bCheckAccDec deceleration BOOL TRUE, FALSE FALSE P . . .
check deceleration check will be performed if set to
FALSE.
& Output Variable
Output Variable | Name Data Type Value Range Initial Value Description
An axis check will be performed if set
to TRUE.
bBusy Executing | BOOL TRUE, FALSE FALSE)))
No axis check will be performed if set
to FALSE.
bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
E
iErroriD ror SMC_ERROR |- - See SMC_Error
code
Set to TRUE when the current set
Limit velocity or acceleration/deceleration
bLimitsExceeded output | BOOL TRUE, FALSE FALSE rate exceeds Axis.fSWMaxVelocity,
check Axis.fSWMaxAcceleration, or
Axis.fSWMaxDeceleration.

3) Function Description

€ When bEnable is TRUE and bBusy outputs TRUE, an axis velocity check or acceleration check will be
performed.

@ Ifthe set velocity or acceleration/deceleration rate of the current axis exceeds the set value of Axis.
fSWMaxVelocity, Axis.fSWMaxAcceleration, or Axis.fSWMaxDeceleration, the bLimitsExceeded signal
outputs TRUE.

Note: This instruction only checks that the current instruction velocity or acceleration/deceleration
exceeds the set limit, and it does not stop the axis.

-159-

6. Common MC Instructions

4) Timing Diagram

A
bEnable pt
»
bBusy Pt
bLimitsEx
ceded Pt
Limit value
Reference Pt
Error Pt
5) Error Description
At the rising edge of bExecute:
An error is output if there is an axis error.
An error is output if the axis input is invalid.
Note: For details on the error code, see “ “Appendix C Error Codes” .
SMC_GetMaxSetAccDec
This instruction reads the maximum acceleration/deceleration rate of the axis.
1) Instruction Format
Instruction Name Graphic Expression ST Expression
SMC_ GetMaxSetAccDec 0
o SMC_GetMaxSetAccDec o Lxis:= ,
Maximum I EELEE) bEnable:= ,
SMC_ acceleration/ bE“_lS e dwTimeStamp:= ,
GetMaxSetAccDec |deceleration rate max'“":ce%erftm“ B bvalid=> ,
of the axis —bEnéble dwTimeAtMax — bBuay=> ,
—|dwTimeStamp fMaxRcceleration=» ,
dwTimektMax=>);
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range | Value P
. R Reference to the axis, that is, an instance of AXIS_
Axis Axis AXIS_REF_SM3 REF_SM3
€ InputVariable
. Initial o
Input Variable | Name |Data Type | Value Range value Description
bEnable Executed | BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE

-160-

6. Common MC Instructions

) Optional timestamp input, which can be used to find out
dwTimeStamp Dword - - .
what happens at the maximum value.
€ Output Variable
. Initial L
Output Variable Name Data Type | Value Range value Description
bVvalid Enable BOOL TRUE, FALSE | FALSE | Setto TRUE when instruction execution is valid
bBusy Executing BOOL TRUE, FALSE | FALSE | Setto TRUE when an error occurs
Maximum Maximum acceleration/deceleration value (positive
fMaxAcceleration acceleratl.on/ LREAL) 0 means a'cceleratlon, negative me.ans decelerat!on, and
deceleration the maximum absolute acceleration/deceleration value
value is the final value)
dwTimeStamp value corresponding to the maximum
acceleration/deceleration rate (For example, when
Timestamp the acceleration continues to increase, the value
dwTimeAtMax corresponding Dword) 0 follows dwTimeStamp, and th? fMaxAcceleration value
to the is updated. Once the acceleration rate reaches the

maximum value

maximum value, the maximum value of fMaxAcceleration
is recorded, and dwTimeStamp corresponding to the
maximum value is also recorded.)

3) Function Description

€ When bEnableis TRUE, no error occurs, and bValid outputs TRUE, a maximum acceleration/deceleration

check will be performed for the axis.

€ When the absolute value of acceleration/deceleration is larger than the previously recorded value,

fMaxAcceleration and dwTimeAtMax will be updated.

@ Thevalue of dwTimeAtMax is the value of dwTimeStamp when the maximum acceleration/deceleration

rate occurs. Therefore, dwTimeStamp must be set to a variable value, such as a cumulative value
changing with the task period or a fixed time period. (See the sample program.)

4) Sample Program

GET_STERT

SMC_GetMaxSetRocDec_0

SMC_ GetMaxSetAccDec
B pvalid
bBusy
fMaxBcceleration

nxiz —Hnxis

L

bEnable dwIimeAtMax

COUNT dwTimeStamp

EXECUTE

o R

IF GET_STARTIRGUEN THEN

COUNT[225 J:=1+COUNT] 225

END_IF

IF NOT GET_STARTIRGNEN THEW
COUNT[228 |:=1:

END IF

IF COUNI[__ 228 =400 THEN
comt 2]

CET_STARTIENEL

m

100 % | =

SMC_GetMaxSetVelocity

This instruction reads the maximum velocity of the axis.

1) Instruction Format

[Instruction |

Name |

Graphic Expression

ST Expression

-161-

6. Common MC Instructions

SMC_GetMaxSetVelocity 0
SMC GetMaxSetVelocity Duiz:= \
. | TT, :
Bxis bEValidp .
Maximum bE L bEﬂéble o
SMC_GetMax |acceleration/ 1‘_15 ¥ dwlimeStamp:= ,
SetVelocity deceleration MaxVelocity [bValid=> ,
rate of the axis | mm bEnakble dwTimeLtMax [bRusy=> ,
—dwTimeStamp fMaxVelocity=> ,
dwTimektMax=>);
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
. . Reference to the axis, that is, an instance of AXIS_
Axis Axis AXIS_REF_SM3 - REF_SM3
€ InputVariable
. Initial .
Input Variable Name |Data Type| Value Range value Description
bEnable Executed BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE
dwTimeStamp bword) Optional timestamp mqu, which can be used to find out
what happens at the maximum value.

€ Output Variable

Output Initial
. Name Data Type| Value Range Description
Variable yp g Value P
bvalid Enable BOOL TRUE, FALSE | FALSE Set to TRUE when instruction execution is valid
bBusy Executing BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
Maximum Maximum velocity value (positive means forward,
fMaxVelocity acceleration LREAL - 0 negative means backward, and the maximum absolute
value value is the final value)
dwTimeStamp value corresponding to the maximum
Timestamp velocity (For example, when the velocity continues
corresponding to increase, the value follows dwTimeStamp, and
dwTimeAtMax | to the Dword - 0 the fMaxVelocity value is updated. Once the velocity
maximum reaches the maximum value, the maximum value
value of fMaxVelocity is recorded, and dwTimeStamp
corresponding to the maximum value is also recorded.)

3) Function Description

€ When bEnable is TRUE, no error occurs, and bValid outputs TRUE, a maximum acceleration/deceleration
check will be performed for the axis.

€ When the absolute value of velocity is larger than the previously recorded value, fMaxVelocity and
dwTimeAtMax will be updated.

@ Thevalue of dwTimeAtMax is the value of dwTimeStamp when the maximum velocity occurs. Therefore,
dwTimeStamp must be set to a variable value. For example, set to a count value changing with the task
period or a fixed time period. (See the sample program.)

4) Sample Program

-162-

6. Common MC Instructions

1y SMC_GetMaxSetVelocity 0

SMC GetMaxSetVelocity

Axis —HAxis bValid Fee—

bBusy = iy

GET_START fMaxVelocity -
{l} bEnable dwTimeAtMax |- 775

COUNT dwTimeStamp

EXECUTE

IF GET_START|EGNEN THEN
COUNT]| 35 |- =1+COUNT] 358 l:
END_IF
= 1 IF NOT GET_START|RGNEN THEN
E COUNT[@388 |:=1;
€ END IF
= 70 IF CoDNI[_=_ p=t00
2 couNT_ 38 |:
E] GET_STARTRGUEN: =

»

WM e

m

100 % |[€h) ~

MC_GetTrackingError

This instruction measures the current or maximum lag error (difference between the instruction
position and actual axis position) for dead-zone time compensation.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
— — SMC_GetTrackingError(
SMC_GetTrack:LngEerr _Bxis e ,
A nxis Evalidm bEnsble:=
Instruction bBusy ™ byDeadTimeCycles:= ,
SMC_ for reading flctTrackingError H dwlimeStampi= ,
GeTrackingError |the axis lag e FEnable fMaxTrackingError H Egziij .
1 1 = r
deviation —by¥DeadTimeCycles dwlimeltMax fActTrackingError=> ,
HdwTime Stamp fMaxTrackingError=> ,
dwTimeAtMax=>)

2) Related Variables
€ Input/Output Variable

Input/Output Value Initial .
. Name Data Type Description
Variable . Range Value .
. . Reference to the axis, that is, an instance of AXIS_
Axis Axis AXIS_REF_SM3 - - REF_SM3
€ InputVariable
. Initial o
Input Variable | Name |Data Type| Value Range value Description
bEnable Executed | BOOL TRUE, FALSE FALSE | Execute the read operation if set to TRUE
Number of dead-zone periods, for which a lag check
byDeadTimeCycles |- Byte - 2 is performed after bEnable trigger lags for certain
dwTimeStamp values
dwTimestamp . Dword)) Optional timestamp inqu, which can be used to find out
what happens at the maximum value.
€ Output Variable
. Initial —
Output Variable Name Data Type| Value Range value Description
bvalid Enable BOOL TRUE, FALSE FALSE | Setto TRUE when instruction execution is valid
bBusy Executing BOOL TRUE, FALSE FALSE | Setto TRUE when an error occurs
C t deviation detecti lated to th l f
fActTrackingError | Current lag LREAL - 0 urren . eviation aetection refated to the value o
byDeaTimeCycles

-163-

6. Common MC Instructions

Current deviation value (deviation of the instruction

fMaxTrackingError | Maximum la LREAL - 0
g & position from the feedback position)

Maximum deviation value (positive means lag,
negative means lead, and the maximum absolute
Dword - 0 value is the final value)

Timestamp
corresponding
to the maximum
value

dwTimeAtMax
Note: This value is affected by the value of
byDeaTimeCycles.

3) Function Description
@ When bEnable is TRUE and bValid outputs TRUE, axis lag deviation detection will be performed.

€@ When the absolute value of the deviation is larger than the previously recorded value, fMaxTrackingError
and dwTimeAtMax will be updated.

@ Thevalue of dwTimeAtMax is the value of dwTimeStamp when the maximum deviation occurs.
Therefore, dwTimeStamp must be set to a variable value. For example, set to a count value changing
with the task period or a fixed time period. (See the sample program.)

4) Sample Program

SMC GetTrackingError_0
SMC GetTrackingError
Luis —Fixis - BValid r—{fE——
bBusy =
GET_START fActTrackingError —
[ll[l bEnable fMaxTrackingError —
0 —byDeadTimeCycles dwTlimeAtMax —
COUNT dwTimeStamp
EXECUTE
== 1 1F GET_sTrRTHEOE THENW =
z COUNT] 544 J: =1+COUNT] 544 l
: END IF
- 4 IF NOT GET_STARTIEGNE THEN
5 COUNT[__s__ |:i=1; E
¢ END_IF
= 7 IF COUNT[58 b=:00 THENW
8 couni[sa |
GET_STARTRGIEN: =fals=;
END_IF
B 100 % |8 ~
SMC_GetTrackingError_0
SMC GetTrackingError
Axis —Haxis - BValid —E——
bBusy =
GET_START fActTrackingError —
Hlﬂ bEnable fMaxTrackingError —
4 —{byDeadTimeCycles dwTimeAtMax - [28 |
COUNT dwTimsStamp

= s

= 1 IF GET_STARTIEGNE THEN -
z comMI[__ 744 J:=1+COUNI[78
3 END_IF
= 4 IF NOT GET_START|EGNE THEN
5 COUNT[74 |:=1;
& END IF
= 7|« IF couNl 7@ Pp=e0c
: com_7a]
GET_STARTIGUEL: =
END_IF

m

100 % |8 -

S 1

SMC_InPosition

This instruction monitors the deviation of the set position value of the current axis from the actual
value and determines whether the axis is within the required deviation range based on the set devi-
ation window.

1) Instruction Format

| Instruction | Name | Graphic Expression ST Expression

-164-

6. Common MC Instructions

SMC_InPosition SMC InPositiond(

Hnxis bInFosition = hris:=hxls ,
bBusy bEnable:= ,

A)(ISV . ETimeOut fPoaWindow:= ,
deviation fPosTime:= ,

SMC_InPositi —
—inrosition monitoring bEnable

fTimelut:= ,

instruction —fPocaWindow
] bInPosition=> ,
—fPoaTime
bBusy=> ,
— fTimelut

blimelut=>);

2) Related Variables
€ Input/Output Variable

Input/Output Value Initial .
. Name Data Type Description
Variable o Range | Value .
Axis Axis AXIS_REF_SM3) Reference to the axis, that is, an instance of AXIS_REF_
SM3
@ InputVariable
. Initial .
Input Variable| Name |Data Type| Value Range value Description
bEnable Executed | BOOL TRUE, FALSE | FALSE | Execute the read operation if set to TRUE
Set the window for deviation monitoring. If fPosWindow >
) Deviation Distance (deviation between the instruction position and the
fPosWindo LREAL - 0
indow window feedback position), then output binPosition as TRUE according
to fPosTime.
i Deviation time within the window, used to trigger binPosition
fPosTime Trigeer | peaL |- 0 , &8
time Unit: s (seconds)
i Deviation timeout
fPosTiOut T|m'eout LREAL - 0
period Unit: s (seconds)
€ Output Variable
Output
) Name Data Type Value Range Initial Value Description
Variable yp & P
N l Set to TRUE if the deviation is within th t
binPosition | o < BOOL TRUE, FALSE FALSE et to TRUE The deviation 1s within the se
deviation window
TRUE wh hei ioni i
bBusy Executing BOOL TRUE, FALSE FALSE Setto TRUE when the instruction is being
executed
bTimeOut | Timeout LREAL TRUE, FALSE FALSE Current.dewatlon detection related to the value of
byDeaTimeCycles

3) Function Description

€ When bEnable is TRUE, once the detected deviation is smaller than the set window fPosWindow for
fPosTime, binPosition changes to TRUE. Once the detected deviation is larger than the set window,
bInPosition immediately changes to FALSE. Note: fPosTime must be set reasonably; otherwise it will
cause bTimeOut trigger (for example, for a cam with a period of 2 seconds, the time for determining
continuous deviation not exceeding the set window time is 1.5 seconds. If fPosTime is larger than 1.5
seconds, binPosition will not be triggered).

€ When bEnable is TRUE, the bBusy outputs TRUE.
€ Thedeviation value can monitor fCurrentDistance in the SMC_InPosition structure.

When bEnable is TRUE, if binPosition does not change to TRUE even after the set time of fPosTime, then
bTimeOut changes to TRUE.

€ Timing Diagram Sample Program

-165-

6. Common MC Instructions

L SMC_InPositicn_1
SMC InPosition
Exis —Haxis B bInPFosition m—
bEBusy M= ity
INFOSTION Enble bBTimeQut =
Il bEnable
20 —fPosWindow
0.01 —(fPo3Time
3 —iTimeQut

& Sample Program

\ . Configuration
Addvariable

L m FUN_TEST.SMC_InPosition_1.bInPosition

o 1

/ I FUN_TEST.SMC_InPosition_1.fCurrentDistance

gl 20.3292070417232%4

Bl

binPosition immediately changes from TRUE to FALSE after the set window is exceeded.

v

J _ Configuration
! Add variable

f\\\ m. FUN_TEST.SMC_InPosition_1.bInPosition i
0

mm FUN_TEST.SMC_InPosition_1.fCurrentDistance
19.982306485215304

\\ i
After 4 task periods (2.5 ms) within the set window, bInPosition becomes TRUE, which matches the
program setting of 0.01s.

4) Timing Diagram

-166-

6. Common MC Instructions

A
bEnable »t
>
bBusy Pt
binPosition
Pt
\ LA g
fPosWindow LN\ /
Deviation value AN |
fPosTime
bTimeOut i » t
>
fPosTime fPosTime fPosTime

SMC_ReadSetPosition

This instruction reads the instruction position of the axis (converted user unit).

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_ReadSetFositiond(
SMC ReadSetPosition Lyis:= .
]Icnstructi'on Hpxis Validp Enable:= ,
sMc_ tﬁr reading Buay p Valid=> |
ReadSetPosition | - . Eeese- Buay=> ,
mst.rgctlon ==Enable ErrorID[Error=>» ,
position Pogition - =
ErrorID=> ,
Pogition=> });
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
. R Reference to the axis, that is, an instance of AXIS_
Axis Axis AXIS_REF_SM3 - - REF_SM3
€ InputVariable
. Initial -
Input Variable Name Data Type Value Range Value Description
Enable Executed BOOL TRUE, FALSE FALSE Execute the read operation if set to TRUE
€ Output Variable
Output
. Name Data Type Value Range Initial Value Description
Variable yp & P
Set to TRUE when th dvaluei
Valid Enable BOOL TRUE, FALSE FALSE V:“do whenthe readvatuets
Busy Executing BOOL TRUE, FALSE FALSE SeF fo TRUE when the instruction is
being executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorlD Error code SMC_ERROR - - See SMC_Error

-167-

-168-

6. Common MC Instructions

Position

Instruction
position

LREAL

Instruction position of current task
period

3) Function Description

When Enable is TRUE, Valid is output if no error occurs, and Busy outputs TURE.

The output of Position is the value of Axis.fSetPosition.

When Enable becomes FALSE, Valid and Busy output FALSE. Position retains the value at the moment
before the value changes to FALSE.

4) Timing Diagram Sample Program

RELD_SETFpsition_EN

SMC_ReadSetPoaition_0

Lxis —Fnxis

Enable

5) Error Description

SMC_ReadSetPositiocn

valid m=l—
Busy [~
Error =
ErrorID—
Position[—

At the rising edge of bExecute: An error is output if there is an axis error. An error is output if the axis

inputisi

Note: For details on the error code, see

nvalid.

SMC_SetTorque

“ o«

Appendix C Error Codes” .

This instruction sets the axis torque (valid in torque control mode).

1) Instruction Format
Instruction Name Graphic Expression ST Expression
SMC_SetTorque 0(
SMC_SetTorque_0 Awiz:= Axis,
SMC_SetTorque bEnable:=
Torque _len ENOD fTorque:=
SMC_SetTorque setting = Axis bBusy bBusy=> |
instruction —{ bEnable CommandAborted Commandiborted=s
—{ fTorque bError '
bError=> ,
nErrorlD
nErrorID=>) :
2) Related Variables
Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range | Value P
. . Reference to the axis, that is, an instance of AXIS_
Axis Axis AXIS_REF_SM3 - REF_SM3
€ InputVariable
. Initial s
Input Variable Name Data Type | Value Range value Description
bEnable Executed BOOL TRUE, FALSE | FALSE Set axis torque at the rising edge
Ta
fTorque orgue LREAL - 0 Target torque value
setting

6. Common MC Instructions

€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Set to TRUE when the instructi
Busy Executing BOOL TRUE, FALSE FALSE . ¢ 9 when the nstruction
is being executed
Instructi Set to TRUE when th t
CommandAborted nstruction - g0 TRUE, FALSE FALSE Setto TRUE when e curren
aborted instruction is aborted.
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorlD Error code SMC_ERROR - - See SMC_Error

3) Function Description

L 4
*

If there is no error at the rising edge of bEnable, bBusy outputs TURE.

This instruction only sets the torque value for the axis and does not perform torque control. The axis
control mode is valid in the torque control mode.

The torque setting instruction can only run in synchronous torque mode. Before enabling this
instruction, switch the control mode to synchronous torque mode by using the SMC_SetControllermode
system.

The actual torque of the drive is limited by the maximum positive and negative torque set in the
configuration.

To stop the execution of this instruction, use the MC_Stop (forced stop) or MC_ImmediateStop
(emergency stop) instruction. After the instruction is stopped, the drive switches to the synchronous
position mode.

4) Error Description

At the rising edge of bExecute:
An error is output if there is an axis error. An error is output if the axis input is invalid.

An error is output when there is an axis control mode error, and the error code is SMC_ST_WRONG_
CONTROLLER_MODE.

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

SMC_BacklashCompensation

This instruction compensates for the gap between master and slave axes. For example, when the
virtual axis is the master axis and the slave axis is the synchronous mirror of the virtual axis in the belt
transmission, there is a backlash between the position of the slave axis and the master axis due to
external reasons. In this case, this instruction can be used to compensate for this backlash.

The function of this instruction is similar to that of the phase shift instruction (MC_Phasing), where the
phase depends on the running direction of the master axis.

1) Instruction Format

[Instruction | Name | Graphic Expression ST Expression

-169-

6. Common MC Instructions

3
=
SMC_ Backlash _
BacklashCom |compensation -
pensation instruction —

SMC BacklashCompensation((
SMC_BacklashCompensation Master:= '
Master bBusy - Slave:= .
Slave bCommandBborted bExecute:= ,
BError - fBacklash:= ,
iErrorID fCompensationVel:=
bExecute bCompensating %Ccmpensat?cnﬁcc:=
fBacklash fCompensationDec:=
fCompensationVel eBacklashMode:= ,
3 eBacklash3tartState:=
fCompensationkce
. bBusy=>
fCompensationDec
bCommandiborted=> ,
eBacklashMode
B = bError=>» ,
eBacklashStartState iErrorInes
bCompensating=>);

2) Related Variables

@ Input/Output Variable

Input/Output

N
Variable ame

Value

DataT
ata lype Range

Initial
Value

Description

Master Master axis

AXIS_REF_SM3 -

Reference to the axis, that is, an instance of AXIS_
REF_SM3

Slave Slave axis

AXIS_REF_SM3 -

Reference to the axis, that is, an instance of AXIS_
REF_SM3

€ Input Variable

Input Variable

Name Data Type

Value Range

Initial Value

Description

bExecute Executed

BOOL

TRUE, FALSE

FALSE

Set the offset at the rising edge

fBacklash

LREAL =

0

Compensate for the backlash

fCompensationVel

LREAL -

Velocity at compensation

fCompensationAcc

LREAL -

Acceleration rate at compensation

fCompensationDec

LREAL -

0
0
0

Deceleration rate at compensation

eBacklashMode
MO

SMC_
BACKLASH_

DE

SMC_BL_
AUTO

Compensation mode:

SMC_BL_AUTO: The running direction of the
master axis determines the compensation
direction.

SMC_BL_POSITIVE: Positive compensation,
independent of the running direction of the
master axis

SMC_BL_NEGATIVE: Negative compensation,
independent of the running direction of the
master axis

SMC_BL_OFF: No compensation

eBacklashStartState BAC

SMC_

STARTSTATE

KLASH_ -

SMC_BL_
START_
NEGATIVE

Describe the operating state of the axis during
instruction execution.
SMC_BL_START_NEGATIVE: The slave axis moves
under negative traction. No compensation

is required for motion in negative direction.
Once the motion direction changes to positive,
compensation must be established as twice the
value of fBacklash.

SMC_BL_START_POSITIVE: The slave axis moves
under positive traction. No compensation is
required for motion in positive motion. Once
the motion direction changes to negative,
compensation must be established as twice the
value of fBacklash.

SMC_BL_START_NONE: Motion in positive

or negative direction will generate distance
compensation equaling the value of fBacklash.

€ Output Variable

6. Common MC Instructions

Output Variable Name Data Type Value Range Initial Value Description
TRUE wh hei i
bBusy Executing BOOL TRUE, FALSE FALSE ;et t? UE when the instruction
is being executed
Instruction Set to TRUE when the instruction
bCommandAborted aborted BOOL TRUE, FALSE FALSE is interrupted by other control
instructions
bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error
occurs
iErrorlD Error code SMC_ERROR - - See SMC_Error
bCompsating Compensation | gy TRUE, FALSE | FALSE
in progress

3) Function Description

@ Ifthereis no error at the rising edge of bExecute, bBusy and bCompsating output TRUE. After
compensation is completed, bCompsating outputs FALSE.
€ Working mode: eBacklashMode - compensation direction is "Positive", eBacklashStartState is

"Positive", and fBacklash is a positive value. Before the bBusy signal arrives, the master and slave
axes should be in the same position if possible; otherwise, the slave axis will be synchronized with the
master axis phase after the bExecute rising edge signal arrives. If the bBusy signal is already available,
refreshing the bExecute rising edge should observe:

4) Timing Diagram Sample Program

T SMC_BacklashCocmpensation_0
EMC_BacklashCompensaticn
SM Driwve_Virtual —SMaster bBusy
SM Drive Virtual 1 —slave bCommandhborted
bError FR
COPENSATION iErrorID [
Il PExecute bCompensating f=
—|fBacklash
1000 —fCompensaticnVel
2000 —fCompensaticnicc
2000 —fCompensaticnDec
—eBacklashMode
—eBacklashStartState

€ Sample Program

4 v Configuration
1 A Aadd variable
mm SM_Drive_Virtual_1.fSetPosition
/ \ 157.6483918085869
mm FUN_TEST.SMC_BacklashCompensation_0.bCompensating
0
e 5M_Drive_Virtual fSetFosition
/ ,-‘ l/ 107.6483918085869
1
0.
y
] e] e
ma /
/ P e
~ V/
[~ .

5) Error Description
At the rising edge of bExecute:

An error is output if there is an axis error. An error is output if the axis input is invalid.

-171-

6. Common MC Instructions

“ o«

Note: For details on the error code, see Appendix C Error Codes” .

SMC_ChangeGearingRatio

This instruction changes the electronic gearing ratio (ratio of pulse to user unit) and drive type set by
the user. Note: After this function block is executed, the axis must be restarted by SMC3_ReinitDrive to
ensure that the setup variables can be initialized correctly.

1) Instruction Format

Instruction Name Graphic Expression ST Expression

aringRatiol(

3MC_ChangeGearingRatio

HAnxis bDone =
bBusy =
'
SMC Instruction bError =
-) _|for changing | —JPEx=cute nErrorID |-
ChangeGearingRatio —ldwRatioTechlni tsDenom

gear ratio
—iRaticTechUnitsNum

—fPositionPeriod

—iMovement Type
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable P Range | Value P
Reference to the axis, that is, an instance of AXIS_REF
Axi Axi AXIS_REF_SM - - ’ ’ - T
XS XS S_REF_SM3 SM3. The gear ratio of this axis will be changed
€ InputVariable
. Initial L
Input Variable Name Data Type | Value Range value Description
bExecute Executed | BOOL TRUE, FALSE | FALSE Execute the FB at the rising edge
P i icati i :
dwRatioTechUnitsDenom | - DWORD) 0 ulse unit converted to application units (eg
mm)
iRatioTechUnitsNum i DINT . 0 dWRati(?TechUni‘tsDt-enom Yalue corresponding to
the desired application unit
fPositionPeriod i LREAL)) Position cycle period (modulus value), valid only
for rotary motors
iMovementType - INT - - 0: Modulo axis; 1: Finite axis
€ Output Variable
Output
. Name Data Type Value Range Initial Value Description
Variable yp & P
Set to TRUE wh ti
bDone Completed BOOL TRUE, FALSE FALSE N o. when execution
setup is completed
Set to TRUE when th
bBusy Executing BOOL TRUE, FALSE FALSE . etto . .W e.n N
instruction is being executed
bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error
occurs
nErrorlD Error code SMC_ERROR - - See SMC_Error

3) Function Description

@ Attherising edge of bExecute, if there is no error, bBusy outputs TURE. At completion, bDone outputs
TRUE, and bBusy outputs FALSE.

For example, for a 20-bit encoder servo motor with a 10:1 reduction ratio, if the lead screw is driven

-172-

6. Common MC Instructions

(10 mm pitch), the motor needs to rotate 10 turns and the screw moves a distance of 10 mm. Set
dwRatioTechUnitsDenom to 1048576*10 and iRatioTechUnitsNum to 10.

@ Thefunction block is used to dynamically modify the highlighted part of the program shown below:

W Axis X

General Axis type and limits

[virtual mode
@ Modula Modulo value [u]: 360.0

Scaling/Mapping

Commissioning

SM_Drive_ETC_GenericDSP402: IO Software errar reaction

Mapping Decelerate Deceleration [ufs2]:]
Status Max. distance [u]: 0
Information Dynamic fimits
Welocity [u/s]: Acceleration [ufs2] Deceleration [ufs2] Jerk [ufs3]:
1000 1000 1000

A Axis M
Scaling
el [T tnvert direction
Sealing/Mapping 16100000 increments <=> motor turns 1
1 motor turns < => gear output turns 1
Commissioning
1 gear output turns <=2 units in application 360
SM_Drive_ETC_GenericD5SP402: /O
Mapping .
Mapping
Status [¥] Automatic mapping
Tnrides

4) Error Description
At the rising edge of bExecute:
An error is output if there is an axis error.
An error is output when the input value is invalid, with the error code SMC_CGR_ZERO_VALUES.
An error is output when the axis is in instruction control, with error code SMC_CGR_DRIVE_POWERED.

An error is output when the input modulus value is invalid (eg: <0), with error code SMC_CGR_INVALID_
POSPERIOD.

Note: For details on the error code, see “ “Appendix C Error Codes” .

SMC_ReadFBError

This instruction reads the function block error.

1) Instruction Format

| Instruction | Name | Graphic Expression ST Expression

-173-

6. Common MC Instructions

SMC_ReadFBError |

SMC ReadFBError Mxis:= .
< F—. =15 -
. —|&X13 bValid rEnakle:= .
Ifnstruc(jl.on bBusy = bBValid=> ,
or readin -
SMC_ e g S FEEBErr:; bBusy=> |,
— na e n Fror. —
ReadFBError block EFEError=> ,
pby¥ErrorInatance FBE D
errors strErrorInstance - nrSkrrorlb=s ,
tTimeStamp |- pbyvErrorInstance=> ,
strErrorInstance=> ,
tIimeStamp=>);
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range | Value P
. R Reference to the axis, that is, an instance of AXIS_
Axis Axis AXIS_REF_SM3 - - REF_SM3
€ InputVariable
. Initial s
Input Variable Name Data Type | Value Range value Description
bEnable Executed BOOL TRUE, FALSE | FALSE Execute the read operation if set to TRUE
€ Output Variable
) Initial _
Output Variable Name Data Type Value Range Value Description
bvalid Enable BOOL TRUE, FALSE FALSE Set to TRUE when the read value is valid
TRUE wh hei ioni i
bBusy Executing BOOL TRUE, FALSE FALSE Setto TRUE when the instruction is being
executed
bFBError Error BOOL TRUE, FALSE FALSE Set to TRUE when an FB error occurs
nFBErrorID Error code | SMC_ERROR - - See SMC_Error
pbyErrorinstance - - - - Function block error at output point
Point to the error function block (program,
strErrorinstance - - - - .
subprogram, function block)
tTimeStamp - TIME - - Timestamp when the error occurred

3) Function Description
€ When Enable is TRUE, Valid is output if no error occurs, and Busy outputs TURE.
@ Ifthereis afunction block alarm, bFBError outputs TRUE.
€ When Enable becomes FALSE, Valid and Busy output FALSE.

4) Timing Diagram Sample Program

3 SMC_ReadFBError_0
SMC ReadFBError

Lxis —Fixis EValid e —————
EBusy =
TRIUE bFBError [=
Il bEnable nFBErrorlD |~

pbyErrcrInstance [— | 16§835DD1ET
atrErrorInstance [—
tTimeStamp [~ [T#lh3TmSE=s6llms

-174-

6. Common MC Instructions

& Sample Program

€ ErroriD

5) Error Description

5
Prepare Value Iﬁ

Expression: SMC_ReadFBError_0.nFEErrorIlD

Type: SMC_ERROR

Current value: SMC_ERROR.SMC_ADL_BUFFER_OVERRUM
What do you want to do?

(@) Prepare a new value for the next write or force operation:

MC_ NG _ERROR] -

Remove preparation with a value.

Release the force, without modifying the value.

Release the force and restore the variable to the value it had
before forcing it.

e P—

Prepare Value @

Expression: SMC_ReadFBError_0.strErrorinstance

Type: STRING

Current value: Device.Application.FUN_TEST.SMC_AxisDiagnosticLog_0
What do you want to do?

f (@ Prepare a new value for the next write or force operation:

Remove preparation with a value.
Release the force, without modifying the value.

Release the force and restore the variable to the value it had
| before forcng it.

oK] [Cancel

B SMC_axisDiagnosticleg_0
SMC_AxisDiagnosticlog
nxiz —Hnxis - bDone
bBusy
LOG_EXE bError =
——{l———execuce ErrorIDf
bRecording =
CLOSEFILE
——{[[———c1oseFile

[Cee=e1z37 | —jaFilelane

—ﬂiﬂ—hs etFosition

TRUE

——l———actoosicion
TRUE
——{l———setvelocity

TRUE

——{l———actvelocity

TRUE
——l———setaccelezation

TRUE
——{l———actacceleration
[2]—bySeparatorchar
—{sReccrdSeparatorString
[Zoc &7 cio] —jetcae

Function block where the error occurred

At the rising edge of bExecute:

An error is output if there is an axis error.

An error is output if the axis input is invalid.

Note: For details on the error code, see

SMC_ClearFBError

2

“ “Appendix C Error Codes”

-175-

6. Common MC Instructions

This instruction clears the FB error.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
Instruction
. SMC_ClearFBError
SMC_ for clearing | —{pprive sMC_clearFBErorf— [TEST:=SMC_
ClearFBError the FB ClearFBError(pDrive:=ADR(AXxis));
error

2) Related Variables
€ InputVariable

Value Initial
Input Variable Name Data Type Description

. o Range Value .

. . Reference to the axis, that is, an instance of
pDrive Axis AXIS_REF_SM3 - - AXIS_ REF_SM3
@ Output Variable

Output Variable Name Data Type Value Range Initial Value Description
SMC_ClearFBError Error BOOL TRUE,FALSE | FALSE Clear the error fset to

clearing TRUE

SMC3_PersistPositionLogical

This instruction keeps recording the position of the logical axis (right-click at the real or virtual axis
and click "Add Device" to select the logical axis to be added). After the controller is powered off and
restarted, the recorded value of the position before power-off will be restored.

1) Instruction Format

-176-

Instruction Name Graphic Expression ST Expression
SMC3_PersistPositionLogical0(
SMC3 PersistPositionlogical Axis:= '
. Haxis bPositicnRestored PersistentData:= ,
SMC3 Instruction SreraistentData bPositionStored — bEnable:= ,
L . for keeping bBusy bPFositionRestored=> ,
PeI’S.IStPOSItIOH the axis bError — bPositionStored=> ,
Logical position —|bEnable eErrorID|— bBusy=> ,
X X bBError=» ,
eRegtoringDiag—
eErrorID=> ,
eRestoringDiag=>);
2) Related Variables
@ Input/Output Variable
Input/Output Value | Initial
. Name Data Type Description
Variable yp Range | Value P
Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_LOGICAL_SM3 |- ’ ’
- - - AXIS_REF_SM3
. SMC3_ .
) Retentive) . . Power-down retentive data structure for
PersistentData PersistPositionLogical_ - . e .
data storing position information
Data
€ InputVariable
. Initial L
Input Variable Name | Data Type | Value Range value Description

6. Common MC Instructions

bEnable

Executed

BOOL

TRUE, FALSE

FALSE

The function block is executed if set to TRUE and
not executed if set to FALSE.

To restore the last stored position during
initialization, this value must be set to TRUE from
application startup.

€ Output Variable

Output
Variable

Name

Data Type

Value Range

Initial Value

Description

bPosition
Restored

Position
restoring

BOOL

TRUE, FALSE

FALSE

Set to TRUE when the position is
restored upon axis restart

bPosition
Stored

Position
saving

BOOL

TRUE, FALSE

FALSE

Set to TRUE when the position is
stored after an FB call

bBusy

FB execution
in progress

BOOL

TRUE, FALSE

FALSE

Set to TRUE when FB execution is not
completed.

bError

Error

BOOL

TRUE, FALSE

FALSE

Set to TRUE when an error occurs

eErrorlD

Error code

SMC_ERROR

SMC_NO_ERROR

Output an error code when an error
occurs

eRestoring-
Diag

Restoration
diagnostics

SMC3_

PersistPositionDiag

SMC3_
PersistPositionDiag.
SMC3_PPD_
RESTORING_OK

Diagnostic information in position
restoration

SMC3_PPD_RESTORING_OK: Position
successfully restored,;

SMC3_PPD_AXIS_PROP_CHANGED:
Axis parameters have been changed
and the position could not be
restored;

SMC3_PPD_DATA_STORED_DURING_
WRITING: The function block copies
data from the axis parameter

data structure instead of from
PersistentData.

Possible cause: Non-synchronized
retentive variable, controller crash

3) Function Description

@ IfbEnableis TRUE upon PLC restart, then bPositionRestroed outputs TRUE.

Virtual and real axes are not supported.

@ To restore the "position" before power-off upon PLC restart, use this function block and configure
SMC3_PersistPositionLogical_Data as a retentive variable.

@ Usage (when the real axis encoder is a multi-turn absolute encoder):

SMC3_PersistPositionLogical_Data declared in PersistentVars

* ﬁ MairiTask

+-g¥ Task

Etﬁ tra

& tra_1

T PersistentVars

1 VAR GLOBAL PERSISTENT RETAIN
peraiastentDatad: SMC3 PersistPositionlogical Data;
3 END VAR

[;]

Called in the PLC main task (EthCat task)
@ Declaration section:

VAR

-177-

-178-

6. Common MC Instructions

SMC3_PersistPosition_3:SMC3_PersistPositionLogical;
END_VAR

@ Program section:

El SMC3_PersistPosition l({Axis:=K Axis , PersistentData:=persistentDatzl ,bEnable:=IEUE };

2 Timing Diagram

A

bEnable »

ot
bPosition

t

Restored D>
bPosition " [.y

stored »

One scan

bERROR |

4) Error Description
If the input axis is a virtual or real one, an error will be output. An axis error will result in an error output.

“ o«

Note: For details on the error code, see Appendix C Error Codes”

SMC_Homing

This axis homing instruction is different from MC_Home. For MC_Home, the homing method is set at the
axis configuration. For this instruction, the homing method is controlled by the controller.

1) Instruction Format

Instruction| Name Graphic Expression ST Expression
SMC_Homing ~ .
—Hayig bDeone — S}{..._Hc:mlngﬂ (
bBusy — Rxisi= '
bCommand&borted — bExecute:= ,
—{bExzecute YError — fHomePosition:= ,
—|fHomePositicn nErrorID— fVelocitySlow:= ,
—]fVelocitySlow bStartlatchingIndex — fVelocityFasti=
|EvelecityFast flcceleration:=
—{fAcceleraticn z !
—|fDeceleration fDeceleration:=,
—{fJerik frerk:= ,
) —(rDirection nDirection:= ,
Axis bReferenceSwitch:= ,
SMC_ . mas
H A hommg f£Signallelay:= ,
omin X i —bReferenceSwitch . .
g instruction —#Signalbelay niiomingtode:
_ bReturnTcZerc:= ,
nHomingMode
bIndexfccured:= ,
fIndexPosition:= ,
—|bReturnTeZerc bIgnoreHWLimit:= ,
bDone=> ,
bIndexo a bBusy=> ,
- ngexvccures ~ _.
—|fIndexPosition blommandkborted=> ,
bError=r ,
nErrorID=> ,
—bIgnoreHWLimit bitartlatchingIndex=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable Range Value

6. Common MC Instructions

Reference to the axis, that is, an instance of AXIS_

Axis Axis AXIS_REF_SM3 - - REF_SM3
@ InputVariable
. Initial A
Input Variable Name Data Type Value Range Value Description
The function block i ted if set to TRUE
bExecute Executed BOOL TRUE, FALSE | FALSE @ tunction block s execued lTsetto
and not executed if set to FALSE.
Home Home position setting after homing, the unit
fHomePosition position LREAL - 0 . P) & &
. is a user-calibrated one
setting
Low velocity reference after the reference
fVelocitySlow Low velocity | LREAL - 0 W velocty
switch
High i f fter the ref
fVelocityFast Fast LREAL) 0 |g velocity reference after the reference
switch
fAcceleration Acceleration | LREAL - 0 Acceleration setting
fDeceleration Deceleration | LREAL - 0 Deceleration setting
A -
flerk cgelergtwn LREAL - 0 Jerkin [u/s3]
derivative
) R Homing) X X i
nDirection direction MC_DIRECTION - Negative | Star direction of homing. See MC_DIRECTION
Reference switch connection
. Reference) .
bReferenceSwitch switch BOOL TRUE, FALSE | FALSE TRUE: Trigger reference switch
FALSE: Close reference switch
Transfer time of the reference switch, to
fsignalDelay Delay LREAL - 0 ' € SWIten,
compensate for dead-zone time Unit: second
Homi MC_HOMIN
nHomingMode oming SMC_HO G- - - See SMC_HOMING_MODE.
mode MODE
TRUE: The axis moves to the zero
position after homing is complete (Note:
If fHomePosition=10, the axis position
Return to zero Lo
bReturnTozero osition BOOL TRUE, FALSE | FALSE becomes 10 after homing is complete. If
P bReturnTozero is TRUE, the axis moves for
10 units in negative direction to the zero
position after homing is complete.)
TRUE: Flag pulse recording, which is valid
bindexOccured BOOL TRUE, FALSE | FALSE when homing mode is FAST_BSLOW_I_S_
STOP or FAST_SLOW_I_S_STOP
fIndexPosition LREAL - 0 Position recorded at the time of flag pulse
If its value is TRUE, set hardware limit switch
Ignore to FALSE. If a physical switch is used as both
blgnoreHWLimit hardware BOOL TRUE, FALSE | FALSE a hardware limit switch and a reference
limit switch, then the hardware control will be set
to FALSE.
€@ Output Variable
. Initial s
Output Variable Name | DataType | Value Range value Description
bDone BOOL TRUE, FALSE | FALSE Set to TRUE when homing is complete
bBusy BOOL TRUE, FALSE | FALSE Set to TRUE when function block is in effect
bCommandAborted BOOL TRUE, FALSE | FALSE Set to TRUE when the function block s
interrupted by another instruction
Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
Error code, enumerated variable
ErrorID SMC_ERROR - 0 ’
- See SMC_Error for specific error code.
|
bStartLatchingIndex BOOL TRUE, FALSE | FALSE Generateq t.>y bindexOccured and
fIndexPosition

€ Homing Mode (SMC_HOMING_MODE)

-179-

6. Common MC Instructions

Initial
Enumeration Name Type Description
yp Value 2
The axis moves toward the home switch rapidly in the set
SMC_HOMING. direction. After touching the home switch, the axis leaves the

FAST_BSLOW_S_STOP MODE 0 home switch slowly in negative direction. After that, execute
MC_setPosition to set the current position to the fHomePosition
setpoint, and then execute MC_stop.

The axis moves toward the home switch rapidly in the set
SMC_HOMING direction. After touching the home switch, the axis leaves the
FAST_BSLOW_STOP_S MOD_ - 1 home switch slowly in negative direction. After that, execute MC_

stop to stop the axis, and then execute MC_setPosition to set the
current position to the fHomePosition setpoint.

The axis moves toward the home switch rapidly in the set
FAST BSLOW_I|_S.STOP SMC_HOMING_ 5 dlrectlon: Aftertouchlng the.hom.e SV\I.ItCh,the axis leaves the
MOD home switch slowly in negative direction. When the bindexOccured

signal arrives, execute MC_setPosition first and then MC_stop.

The axis moves toward the home switch rapidly in the set
direction. After touching the home switch, the axis leaves the

SMC_HOMING . .
FAST_SLOW_S_STOP MOD_ - 4 home switch slowly. After that, execute MC_setPosition to set the
current position to the fHomePosition setpoint and then execute
MC_stop.
The axis moves toward the home switch rapidly in the set
SMC_HOMING direction. After touching the home switch, the axis leaves the
FAST_SLOW_STOP_S MOD7 - 5 home switch slowly. After that, execute MC_stop, and then execute
MC_setPosition to set the current position to the fHomePosition
setpoint.
The axis moves toward the home switch rapidly in the set
MC_HOMIN irection. Af hing the h itch, the axi h
FAST_SLOW._I_S_STOP SMC_HO G_ 6 dlrectlonv tertouc' ingt e' omg SV\{ItC , the axis leaves the
MOD home switch slowly in negative direction. When the bindexOccured

signal arrives, execute MC_setPosition first and then MC_stop.

3) Function Description

@ After SMC_HOMING is started at the rising edge of bExecute, the axis starts moving at fVelocityFast
and in the direction defined by nDirection until bReferenceSwitch changes to FALSE. The axis will then
slowly stop and leave the reference switch at fVelocitySlow in negative direction. Homing is complete
after bReferenceSwitch changes to TRUE.

@ The state of bReferenceSwitch is ON->OFF->ON after the homing instruction is enabled. Homing is
complete at the rising edge of OFF->ON. Set the reference position.

@ Reference position = fHomePostion + ((fSignalDelay x 1000 + 1 DC clock period)/1000) x fVelocitySlow.
It compensates for the set bReferenceSwitch sampling delay and one communication period
displacement delay.

@ If bReturnToZero = TRUE, bReferenceSwitch will, at the rising edge of state OFF->ON, set the reference
position to: fHomePostion + ((fSignalDelay x 1000+1 DC clock period)/1000) x fVelocitySlow. Then, the
axis moves to the zero position at fVelocityFast.

Note: After the Done signal, the axis position is set to fHomePosition. The timing of the setting is related
to nHomingMode. (For details, see SMC_HOMING_MODE.) The following figures show different homing
modes:

10) Homing mode "0"

Home detection ON |
bReferenceSwitch |
OFF 1 >

1l MC_SETPOSITION

Fast in the set direction 1 One task period between two points
/ I\ I MC_STOP
Homing velocity 11 »
T/

Il Slow in the direction
I 11 reverse to the set direction

-180-

6. Common MC Instructions

11) Homing mode "1"

Home detection OV |
bReferenceSwitch |
OFF 1 >
R MC_STOP
Fast in the set direction 11 MC_SETPOSITION
11
Homing velocity 1] >

|

|

I\M Slow in the direction

I 11 reverse to the set direction
111

12) Homing mode "4"

. ON
Home detection

bReferenceSwitch

»

Ll
Slow in the direction reverse to the set direction
MC_SETPOSITION

Fastin the set direction/ LH One task period between two points
Homing velocity I MC_STOP ~

»

|
|
OFF |
|
|

13) Homing mode "5"

. ON
Home detection

bReferenceSwitch

»
»

Slow in the direction reverse to the set direction

OFF
11

|
|
| | MC_SETPOSITION

Fast in the set direction |
/ \|

Homing velocity \ MC_STOP
|
|
|
|

[»
Il
Il
Il
4) Timing Diagram
14) When bReferenceSwitch is TRUE during instruction execution
A
bEecute »
bReferenc
eSwitch » '
bBusy >t
bDone >
fVelpeity
Fest
VELOCITY i »
-fVelocitySlow \

15) When bReferenceSwitch is FALSE during instruction execution

-181-

-182-

6. Common MC Instructions

bEecute

bReferenc
eSvitch

bBusy

bDone

VELOCITY

5) Error Description

fVeloci\ySlow

There is an error in the input axis type.

There is an axis error.
The axis is disabled.

The velocity or acceleration is invalid.

Note: For details on the error code, see

MC_TorqueControl

“ o«

Appendix C Error Codes” .

This instruction performs torque control by using the torque control mode of the servo drive.

1) Instruction Format

Instruction Name FB/FC LD Expression ST Expression
MC_TorqueControl_0(
MC_TorqueControl_0 Rxisi= Rxis,
Execute:= ,
MC _TorqueControl Torquei= ,
— EM ENO TorgqueRamp:=
MC_ Torque FB = Axis InTorque H Velocity:= ,
Control - L —
TorqueControl |,) S — InTorque=> ,
instruction — Torque CommandAborted Busy=>
— TorqueRamp Errar Rotive=»
— Velocity ErrorlD H Commandiborted=»> ,
Error=> ,
ErrorID=>) :
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - - ’ ’
s XS —Er- AXIS_REF_SM3
€ InputVariable
Input Variable Name | Data Type Value Range Initial Value Description
Execute Start BOOL TRUE, FALSE FALSE S_ta,rt the motion at the
rising edge

6. Common MC Instructions

The positive torque Specify the target torque
cannot be larger than to be output to the servo
fMaxPositiveTorque of the drive in units of [0.1%], at
Target axis structure. The absolute the ratio "100.0%" of rated
Torque LREAL . 0 torque
torque value of the negative torque que.
cannot be larger than Unit: [%/s]
fngNegativeTorque of the If 100 is entered, the target
axis structure. torque is the rated torque.
Specify the ratio for
converting the current
value to the target torque.
The larger the value, the
Torque . £ h :
TorqueRamp | LREAL Positive or 0 0 aster the target torque is
slope reached [%/s].
The value 0 means the
output is just the target
torque.
Velocity Velocity LREAL Positive or 0 0 Max. running velocity
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
TRUE: Target torque is
reached
Target))
InTorque torque BOOL TRUE, FALSE FALSE Note: This flag s
reached continuously refreshed
during instruction
execution.
Set to TRUE after th
Busy Executing BOOL TRUE, FALSE FALSE . etto . ,a er . €
instruction is received
Command Instruction Set to TRUE when the
aborted BOOL TRUE, FALSE FALSE current instruction is
Aborted aborted
Set to TRUE wh
Error Error BOOL TRUE,FALSE | FALSE et to TRUE whenan error
occurs
Output de wh
ErrorID Error code | DWORD - 0 utput ah error code when
an error occurs

3) Function Description

*
*

Specify the torque instruction value directly to control the output torque of the servo motor.

The target torque is specified in units of [0.1%]. For the specified value, the first decimal place is valid,
and other decimal places are discarded.

The actual torque of the drive is limited by the maximum positive and negative torque set in the
configuration.

To stop the execution of this instruction, use the MC_Stop (forced stop) or MC_ImmediateStop
(emergency stop) instruction. After the instruction is stopped, the drive switches to the synchronous
position mode.

This instruction achieves torque control by using the torque control mode of the servo drive. The axis is
in the Continuous Motion status during instruction execution.

Velocity is always a positive value. The direction depends on the torque and load.

The torque instruction requires the drive to map the desired torque (0x6071) and the maximum profile
velocity (0x607f); otherwise, an error will be reported.

TorqueRamp specifies the slope from the currently specified instruction torque to the output target
torque.

-183-

6. Common MC Instructions

Examples are shown below:

Torque 4

Torque

v

Time

TorqueRamp

|
|
|
|
|
|
| _—
C
N
e

As shown above, the larger the TorqueRamp, the faster the target torque Torque is reached.
4) Precautions

The torque control instruction can only run in synchronous torque mode. Before enabling this
instruction, switch the control mode to synchronous torque mode by using the SMC_SetControllermode
system.

5) Timing Diagram
Start this instruction and then stop it.

Execute

InTorgue

Busy

Active At stop

CommandAborted [l

Current velocity .
A Torque control Position control

Velocity 7 /j/
Time

Torque control Position control

»
>

Torque

4 Reference torque
Torque q - Torque control based
| — X
G ~ " on the servo drive
TR Vl

velocity limit

"/ Current torque LI
- \ >

Time

MC_ImmediateStop

This instruction stops the axis according to the stopping mode specified by StopMode, regardless of the
axis status.

1) Instruction Format

Instruction Name | FB/ LD Expression ST Expression
FC
MC ImmediateStop_0 MC_ ImmediateStop 0(

MC_ImmediateStop Axis:= Rxis,

L {EM ENG |— Execute:= ,

. Immediate = e Done — StopMode:= |
MC_lmmediateStop is:s)t;?’uction FB | Execute E!nI_ISj.-' n Done=> |
— StopMode Error [Busy=> ,
ErrorlD |— Error=» ,

Errorll=>) :

2) Related Variables

-184-

6. Common MC Instructions

Input/Output Variable

Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Refi h is, thati i f
Axis Axis AXIS_REF_SM3 eference to the axis, that is, an instance o
AXIS_REF_SM3
€ InputVariable
. Initial _
Input Variable Name Data Type Value Range value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
0: The instruction velocity is reduced
from the current velocity to 0.
StopMode Stop MC_STOP_MODE 0/1 0
1: Immediately stop and switch the
servo to OFF.
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Setto TRUE instructi
Done Completed | BOOL TRUE, FALSE FALSE etto TrUE upon Instruction
completion
TRUE after th
Busy Executing BOOL TRUE, FALSE FALSE 'Set to . v 'a tert' €
instruction is received
Set to TRUE wh
Error Error BOOL TRUE, FALSE FALSE etto TREE whenan error
occurs
Output de wh
ErrorlD Error code | DWORD - 0 utputan error code when
an error occurs

3) Function Description

*

*

*

This instruction can be executed when the axis is in any status. For example, this instruction can be used
to stop the axis immediately even if it decelerates to stop due to an exception.

When ErrorStop is TRUE, the MC_Stop instruction cannot be executed, but the MC_ImmediateStop
instruction can be executed.

After the instruction is executed, the motion is stopped immediately as specified by StopMode. The
instruction in the action changes to the CommandAborted status.

If the axis is in disabled state, execution completion is returned directly.
If the axis is a non-control one, an error will be reported.

If the servo is set to OFF, the axis can be enabled only after MC_Reset is executed if an emergency stop
occurs.

When MC_ImmediateStop is triggered in torque control mode, the control mode will change to position
mode first, and then an emergency stop will be performed.

4) Precautions

*

Axis in Stopping status

In the following conditions, the axis status is Stopping:

The axis is decelerated to stop by the MC_Stop instruction.

The MC_ResetFollowingError instruction is being executed.

When this instruction is started, Error of the above instruction in execution changes to TRUE.

5) Timing Diagram

The value of Busy changes to TRUE when Execute is started.

-185-

6. Common MC Instructions

When processing of the immediate stop instruction is complete, Done changes to TREU.

MC_Mave instruction

Execute

Dane

Busy

Active

CommandAborted

MC_ImediateStop instruction

Execute |——|
Dane —|
Busy |—

CommandAborted

Velocity

v

Time

MC_ResetFollowingError

This instruction resets the deviation between the current instruction position and the feedback position.

1) Instruction Format

Instruction Name FB/FC LD Expression ST Expression
MC_ResetFollowingError_0
5 MC ResetFollowingError 0
MC_ResetFollowingError Rxisi= Buis,
L {EMN EMO Execute:= ,
MC_Reset Deviation reset = Auis Done | Done=» ,
, . . FB
FollowintError [instruction — Execute Busy |- Busy=» |
CommandAborted |- Cormandiborted=»
Error Error=> ,
Errorll |- Erroril=»):
2) Related Variables
Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
R . Reference to the axis, that is, an instance of
Axis Axis AXIS_REF_SM3 AXIS_REF_SM3
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
€ Output Variable
Output Variable Name Data Type Value Range Initial Value Description
Done Completed | BOOL TRUE, FALSE FALSE Setto TRUE upon instruction
completion

-186-

6. Common MC Instructions

Set to TRUE after th
Busy Executing | BOOL TRUE,FALSE | FALSE >etto TRUE attertne
instruction is received
Instructi Set to TRUE when th t
CommandAborted nstruction | o TRUE, FALSE FALSE .e o . .w en the curren
aborted instruction is aborted
Error Error BOOL TRUE, FALSE FALSE Setto TRUE when an error
occurs
Output de wh
ErrorID Error code | DWORD - 0 utputan error code when
an error occurs

3) Function Description

€@ Thisinstruction sets the deviation between the current instruction position and the feedback position
of the MC function module to "0" in the cyclic synchronous position mode.

€ When the rising edge of Execute is detected, the feedback position at that time is given to the instruction
as the new target position.

@ Asshown in the figure below, when this instruction is started during a contact action in which a position
deviation occurs, the position instruction is issued in negative direction so that the position deviation is
"0". For an instruction with a position deviation, CommandAborted becomes TRUE and the instruction

is aborted.
Position
“_ X & Reference position
Contact stop position | | L
{Position reference
value)
Contactdirection {- oo o — — — — — e
target position /‘{ i
-
e Feedback position
- - .
>
velocity & Time
Contact direction J....5.cowmer———————— Reference velodity
.
Target velocity /4 "'\
[Velocity reference 7 X
value) /] Feedback velocit,
>
\ Time
- - Triggers
Position deviation & MC_ResetFollowingError.
>
. Fy =
Time

Start Contact Executes deviation

counter reset.

€ When the position deviation is set to "0", a position instruction is issued by using the maximum velocity
set in the axis parameter. The maximum acceleration and maximum deceleration are not applicable.

*

The velocity at which the deviation reset instruction is executed is the largest among the current
velocity, the velocity value set in the background axis dynamic parameter, and the velocity set in the
default axis parameter.

When the instruction is completed by reaching the new target position, Done changes to TRUE.
If the axis is in an error state, the instruction will not be executed and an error will be returned.

If the axis is a non-control one, an error will be reported.

* 6 0 o

Notes on the triggering condition of the instruction and the axis status upon instruction triggering: The
instruction cannot be called when the axis is in the Error, Homing, Down-enable or Stopping status.

In addition, if the instruction is in the following error reset, triggering the instruction will also report
an error. After the instruction is triggered, the axis is in Stopping status. After instruction execution is
complete, the axis status changes to Standstill.

€@ Notes on repeated triggering of an instruction and multi-triggering: Repeated triggering of the
instruction will report an error indicating that the axis is in error reset.

-187-

6. Common MC Instructions

@ Notes on the relationship between this instruction and the Stop instruction: The Stop instruction cannot
be executed during a reset, and the reset is not allowed during the execution of the Stop instruction;
otherwise, an error will be reported.

€@ Notes on starting the SetPosition instruction during the instruction execution: It is not allowed to start
the SetPosition instruction during the reset; otherwise, there may be a position jump that causes an
excessive position deviation.

€@ Notes on interrupting this instruction by another instruction: It is not allowed to interrupt this
instruction during a reset, except for an emergency stop.

@ Acceleration overrun is not checked during instruction execution.

4) Precautions

*

Please start this instruction at a low axis velocity. This instruction assigns the instruction value in
the opposite direction to the previous instruction (contact direction). Therefore, if this instruction is
started at a high axis velocity, it may cause a shock to the machine.

This instruction issues a position instruction in the direction opposite to the motion in which the
position deviation occurs. However, it is not applicable to "Motion during reversal” in the axis
parameter.

5) Timing Diagram

The following figure shows the timing of starting this instruction in the contact status after the MC_
MoveAbsolute instruction is started.

MC_MoveAbsolute
instruction

Execute

Done

Busy

Active

ConmandAborted

MC_ResetFollowingError
instruction

Execute

Done

Busy —

ConmandAborted

Position

—»
Reference velocity Contact state

/ﬂeedback velocity
4

Velocity

MC_SetTorqueLimit

This instruction limits the servo drive output through the torque limit function of the servo drive.

1) Instruction Format

[Instruction | Name [FB/FC | LD Expression | ST Expression |

-188-

6. Common MC Instructions

MC_SetTorguelLimit_0
- - MC SetTorquelimit_0f
MC_SetTorqueLimit Axisi= Dxis,
| EN END | Execute:= |
- ,E'..x D PositiveEnable:= |
MC_Set Torque limit B one — Fositivevaluei=
o .) FB — Execute E,us},- | NegativeEnable:= ,
TorqueLimit |instruction . NegativeValue:= ,
— PositiveEnable Error — Domews
— PositiveValue ErrorlD — Busy=> ,
— MegativeEnable Error=> ,
. ErrorID=>):
— MegativeValue
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yP Range Value P
Reference to the axis, that is, an instance of
Axi Axi AXIS_REF_SM3 - - ’ ’
s s - AXIS_REF_SM3
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range Value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
Valid in TRUE: Enable the positive torque limit.
PositiveEnable positive BOOL TRUE, FALSE FALSE FALSE: Disable the positive torque
direction limit.
Set the torque limit in positive
direction in increments of 1%. (The
actual servo increment is 0.1%. For
Value of details, see the servo guide.)
PositiveValue positive LREAL Positive number 300 If the value <‘e'><ceeds Maximum positive
torque torque limit" in the axis parameter, the
limit positive torque will be the "Maximum
positive torque limit". If "0" or
"Negative" is specified, the motion will
be taken based on the value "0".
valid in TRUE: Enable the negative torque
NegativeEnable negative | BOOL TRUE, FALSE FALSE limit.
direction FALSE: Disable negative torque limit.
Set the torque limit in negative
direction in increments of 1%. (The
actual servo increment is 0.1%. For
details, see the servo guide.)
Value of .
" If the value exceeds "Maximum
. negative .
NegativeValue torque LREAL Positive number 300 negative torque limit" in the axis
limit parameter, the negative torque will
be the "Maximum negative torque
limit". If "0" or "Negative" is specified,
the motion will be taken based on the
value "0".
€ Output Variable
Output Variable | Name Data Type Value Range Initial Value Description
Set to TRUE when the
Done Completed | BOOL TRUE, FALSE FALSE execution of axis instruction
is complete
TRUE aff h
Busy Executing | BOOL TRUE,FALSE | FALSE Set to TRUE after the
instruction is received

-189-

6. Common MC Instructions

Output Variable | Name Data Type Value Range Initial Value Description
Set to TRUE wh

Error Error BOOL TRUE,FALSE | FALSE etto TREE when anerror
occurs

ErrorID Error code | DWORD 0 Output an error code when
an error occurs

3) Function Description

If PositiveEnable is set to TRUE when Execute (TRUE) is triggered, the limit will be performed based on
PositiveValue. If NegativeEnable is set to TRUE, the limit will be performed based on NegativeValue.

If PositiveEnable is set to FALSE, set "Upper limit of positive torque" of the axis parameter in the servo
drive. Similarly, if NegativeEnable is set to FALSE, set "Upper limit of negative torque" of the axis

When Execute is set to FALSE in this instruction, set "Upper limit of positive torque" and "Upper limit of
negative torque” in the servo drive and set Busy to FALSE.

When the values of PositiveValue and NegativeValue are set to a number less than or equal to 0, the

L 4
L 4
parameter in the servo drive.
L 4
L 4
motion will be taken based on the value "0".
L 4

The torque limit can be set in units of 1% relative to the motor torque. For the specified value, the first
decimal place is valid.

-190-

4) Precautions

Currently, this instruction can only take effect when 0x60e0 and 0x60e1l are not configured. If PDO object
dictionary 0x60e0 and 0x60e1 are configured, the written value will be refreshed by the default value (0).

5) Timing Diagram
Omitted.

MC_ReadDigitalinput

This instruction reads digital inputs.

1) Instruction Format

Instruction Name |FB/FC LD Expression ST Expression
MC_ReadDigitallnput_0 MC ReadDigitallnput 0(
MC_ReadDigitallnput Ixis:= Bxis,
— EMN ENO [— Enable:= ,
MC_ Digital FB HE A Valid |— Valid=> ,
ReadDigitallnput [input read —| Enahle Busy [— Busy=> ,
Error |— Error=> ,
ErrorlD |— Errorll=> ,
UDIStatus |— UDIStatua=>) :
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
N Data T D t
Variable ame Al Range Value e
Axis Axis AXIS_REF_SM3 Reference to the axis, that is, an instance of
AXIS_REF_SM3

€ InputVariable

6. Common MC Instructions

. Initial .
Input Variable Name Data Type Value Range Value Description
TRUE: Execute the function block.
Enable Start BOOL TRUE, FALSE FALSE FALSE: Do not execute the function
block.
€ Output Variable
Output Variable | Name Data Type Value Range Initial Value Description
valid Active state | BOOL TRUE, FALSE FALSE TRUE: The function block has
avalid output.
Set to TRUE after th
Busy Executing | BOOL TRUE, FALSE FALSE >etto TRUE atterthe
instruction is received
Set to TRUE wh
Error Error BOOL TRUE, FALSE FALSE ctto TRUE whenan error
occurs
Output de wh
ErrorID Error code | DWORD - 0 utputan error code when
an error occurs
DI terminal state. The
standard format compliant
Input with CiA402 is defined as
UDIStatus terminal UDINT - 0 follows:
status Bit 0: Negative limit signal; Bit
1: Positive limit signal; Bit 2:
Home signal; Bit 3-31: Custom

3) Function Description

*

block period occurs.

*

does not support the virtual axis mode.

EtherCAT bus axis).

The axis number does not exist.

L 4
¢

4) Precautions

This instruction can read digital input values regardless of whether the PDO with digital input (16#60fd)

is configured.
5) Timing Diagram
Enable

Busy

Valid

Axis initialization fails.

The axis type is incorrect.

An error is returned in the following conditions:

The instruction is active high: The short pulse on the digital input may end before the next function

This instruction reads the status of the axis digital input terminals. It applies to EtherCAT bus axes and

When Enable = ON, the Valid signal is valid (if the value 0x60fd is read successfully in the requested

Error

HMC_Reset

This instruction resets drive communication faults and axis faults.

6. Common MC Instructions

1) Instruction Format

Instruction Name |FB/FC LD Expression ST Expression
HMC Reset_0(
EIC Slave:= InocSVEe0N,
Execute:= ,
e HMC_Reset o TimeCut:= ,
HMC_Reset Faultreset| FB |ecae - Busyl_ Mode:=
— TimeQut Errorp—
—Mode ErrorIDj— Done=> ,
Busy=> ,
Error=» ,
ErrorID=> };
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable P Range Value P
ETC_Slave Axis ETCSlave -
€ InputVariable
. Initial _
Input Variable Name Data Type Value Range value Description
Execute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
TimeOut Timeout WORD 23000 10000 Time.out time.: Ta.sk period x TimeOut.
time The timeout time is at least 3s.
0: Fast reset
Mode Mode WORD Oorl 0 1: Slow reset with DC synchronization,
reset time > 20s
& Output Variable
Output Variable | Name Data Type Value Range Initial Value Description
E -
Done xecution BOOL TRUE, FALSE FALSE TRUE: Reset completed
completed
Busy Executing BOOL TRUE, FALSE FALSE TRUE: Reset in progress
Set to TRUE wh
Error Error BOOL TRUE, FALSE FALSE etto TREE whenan error
occurs
Output de wh
ErrorID Error code | DWORD - 0 utputan errorcode when
an error occurs

3) Function Description

*

*

e This instruction resets EtherCAT slaves and CIA402 axes, such as servo drive, AC drive, and EtherCAT
remote I/O modules.

It automatically recognizes the number and status of CIA402 axes under EtherCAT slave devices, and
resets the axis in Errorstop state for the state machine. It facilitates axis reset for multidrive devices,
such as 1S810, SV820, GR10_4MPE of Inovance.

4) Precautions

-192-

Generally, fast reset is adopted, that is, Mode is set to 0. If Mode is set to 1, slow reset is adopted, and
online reset provides the DC function. For an EtherCAT slave device that is powered on again, for
example, partial servo failure on the bus, restart after a power failure, and online access to the master,

this mode must be adopted; otherwise, an unpredictable error may occur.

6. Common MC Instructions

SMC_SetSoftwareLimits

This instruction sets software limits for the host controller.

1) Instruction Format

Instruction Name FB/FC LD Expression ST Expression
MC SetTorgquelimit O
Rxis:= Rxis,
SHC_SetSoftwareLimits Execute:= ,
1 —Axis bDonef—
SMC Instruction oerecre oo bErrorl— PositiveEnable:= ,
— f tti —SWL_Activater ErrarIDf— e eTr L
SetSoftwareLimits orse '“5) FB e PositiveValue:= ,
software limits —|SWiError_Decelerate legativeEnable:= ,
—SWL_Error_Deceleration
—SWL_Error_MaxDistance NegativeValue:= ,
Done=> |
Busy=> ,
L
2) Related Variables
Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Axis Axis AXIS_REF_SM3 - -
€ InputVariable
. Initial .
Input Variable Name Data Type Value Range value Description
bExecute Start BOOL TRUE, FALSE FALSE Start the motion at the rising edge
Soft
SWL_Activated .O . warg BOOL TRUE, FALSE TRUE: Activate software limit
limit active
SWL_Positive Positive limit | LREAL - 0 Positive limit
. Negative S
SWL_Negative “mgit a LREAL - 0 Negative limit
| i ing. B f i
SWL_Error_ Decelerate .nvalld.settlng y de faul.t,.deceleratlon
)) BOOL TRUE, FALSE is required when the limit is
Decelerate configuration
encountered.
Deceleration
SWL_E f limit
o rro'r7 oroveriim LREAL - 0 Deceleration for positive limit
Deceleration error
response
Maximum
SWL_Error_ ximu . Maximum deceleration distance, only
) deceleration | LREAL - 0 . S
MaxDistance . used in positive limit
distance
@ Output Variable
Output Variable | Name Data Type Value Range Initial Value Description
E ti
Done Xecution 1 gaoL TRUE, FALSE FALSE TRUE: Reset completed
completed
Set to TRUE when an error
Error Error BOOL TRUE, FALSE FALSE W
occurs
h
ErrorlD Error code | DWORD - 0 Output an error code when
an error occurs

3) Function Description

This instruction sets the positive and negative position limits for the host controller and the response to

a software limit error.

-193-

-194-

6. Common MC Instructions

4) Precautions

The deceleration rate of the overlimit response is the largest one among the three parameters:

"fSwLimitDeceleration" (function block parameter "SWL_Error_Deceleration"), background dynamic
limit parameter "fSWMaxDeceleration", and the deceleration calculated by stopping at the maximum

deceleration distance "fSWErrorDistance".

6.2 Axis Group Instructions (Master/Slave Axis Instructions)

SMC_CamRegister

This instruction performs cam tappet control (cam switch). Tappet control can be achieved with this
function block by configuring the tappet table without editing the master/slave axis curve during cam

editing.
1) Instruction Format
Instruction Name Graphic Expression ST Expression
SMC_CamRegister((
SMC_CamRegister Master:= .
—Master Busy [CamTable:= f
—HcanTable Error bTappet:= ,
—pTappet ErrorID - Enable:= .
SMC Cam tappet EndOfProfile - MasterOffset:=0 ,
- control MasterScaling:= 1,
CamRegister instruction —Enable TappetHysteresia:=
—|MasterOffset DeadTimeCompensation:= ,
—MasterScaling Busy=>
—TappetHysteresis F_'rrc:r=>'
—DeadTimeCompensation Errc:rIZ)::; ,
End0fProfile=> |;
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable B Range Value 2
. Reference to the axis, that is, an instance of
Master Master axis AXIS_REF_SM3 - AXIS_REF_SM3
Ref i hati
CamTable Cam table MC_CAM_REF i .e erence to an elec'tromc cam, that is, an
instance of electronic cam
ARRAY [1..MAX_
Tappet .
bTappet outout NUM_TAPPETS] OF | - Output of the tappet point
P BOOL
@ InputVariable
. Initial A
Input Variable Name Data Type Value Range value Description
The function block i ted if set to TRUE
Enable Executed BOOL TRUE, FALSE FALSE e lunction block Is execured Tsetto
and not executed if set to FALSE.
Master axis .
Masteroffset X LREAL - 0 Master axis offset
offset
. Master axis . . .
MasterScaling scale LREAL - 1 Linear scaling factor of master axis
TappetHysteresis Tappet LREAL 0 Tappet control damping factor
ppetHy. damping PP ping
The tappet output is linearly compensated
) Dead- according to the current velocity of the
DeadTime . ; e
. zone time LREAL - 0 master axis. The value can be positive or
Compensation i i
compensation negative.
Unit: s

6. Common MC Instructions

€ Output Variable

Output Variable | Name Data Type Value Range Initial Value Description
TRUE: E ing functi
Busy Executing | BOOL TRUE, FALSE FALSE UE: Executing function
block
Error Error BOOL TRUE, FALSE FALSE Setto TRUE when an error
occurs
h
ErroriD Errorcode | SMC_ERROR |- SMC_NO_ERROR Outputan error code when
an error occurs
Profile TRUE: The master axis
EndofProfile period BOOL TRUE, FALSE FALSE position is greater than or
completed equal to the set period.

3) Function Description

@ When the Enable signal is TRUE, and there is no error output, Busy outputs TRUE, indicating that tappet
control is executed.

@ This function block is irrelevant to the slave axis in the electronic cam. Only the master axis period and
tappet table need to be configured.

@ DbTappetis a one-dimensional Boolean structure (MAX_NUM_TAPPETS=512), and bTappet[i] corresponds
to the output of the ith tappet point.

@ Theunit of DeadTimeCompensation is second. When it is set to a positive value, the tappet signal will
be output in advance; when it is set to a negative value, the tappet signal will be output with lag.

For example, if it is set to 0.02 seconds, and Ethcat task period is set to 4 ms, then the tappet outputs the
tappet value at the master axis set position calculated by this formula: P - V*0.02 (V: linear velocity of the
master axis; P: tappet output position). If it is set to -0.02 seconds, the tappet signal will be output with a
lag of five periods after the master axis set position is greater than or equal to P.

@ Example of using this function block:
Variable declaration:

VAR
TPP:ARRAY[1..MAX_NUM_TAPPETS] OF BOOL;
SMC_CamRegister0: SMC_CamRegister;
END_VAR
Program section:
SMC_CamRegister0(
Master:=Virtual_X,
CamTable:=Cam,
bTappet:=TPP,
Enable:=TRUE,
MasterOffset:=0,
MasterScaling:= 1,
TappetHysteresis:= 0,
DeadTimeCompensation:=0,
Busy=>,
Error=>,
ErrorlD=>,
EndOfProfile=>);
Cam editing:

-195-

6. Common MC Instructions

Track I X positive pass negative pass
o 1
m 10 switch QOFF none
m 30 switch ON none
o 2
m 40 switch QOFF none
m a0 switch ON none
] 3
m 80 switch OFF none
m 100 switch ON none
L 4
& 160 awitch OFF none
Start axis Virtual_X:
Monitoring curve:
10
= TPPI11
o]
3
0] TPP2]

TPPI3]

0.5+

TPP[4]

When the dead-zone time compensation is set to -0.02 seconds
SMC_CamRegister0(

Master:=Virtual_X,

CamTable:=Cam,

bTappet:=TPP,

Enable:=TRUE ,

MasterOffset:=0,

MasterScaling:= 1,

TappetHysteresis:= 0,

DeadTimeCompensation:=-0.02 ,

Busy=>,

Error=>,

ErrorlD=>,

EndOfProfile=>);
The tappet output lags five task periods (each task period is 4 ms):

-196-

6. Common MC Instructions

Configure
Add variable

e TEST3_TOUCHPROB.TPP[L ™

0] 1]a1
mm TEST3_TOUCHPROB.TPP[2]

01040

= TEST3_TOUCHPROB.TFP[3]
01040
=1 TEST3_TOUCHPROB.TFP[4]

0040
= Virtual_XfSetPosition

10. 3 | 10.105

e virtual_xfactPosition
9.985000000000003 | 10.0850

4) Error Description

There is an axis error, the axis is disabled, or the offset value or the scale value exceeds the master axis

range.

Note: For details on the error code, see

This instruction reads the slave axis position, velocity and acceleration information of the cam table.

1) Instruction Format

“ o«

SMC_GetCamSlaveSetPosition

Appendix C Error Codes” .

Instruction | Name

Graphic Expression

ST Expression

SMC GetCamSlaveSetPositionO(

SMC GetCamSlaveSetPosition Master:= '
SMaster f5tartPosition Slave:= '
Hizlave fStartVelocity Enable:= '
Instruction fStarthAcceleraticon MasterOifset:=,
for Buay SlaveOffzet:= ,
SMC_GetCam - 5 MasterScaling:=
obtaining —Enzble Error i
SlaveSet SlaveScaling:= ,
Position the cam —MasterOffset ErrorID CamTableID:e
slave axis —|§lavelifaset fStartPosition=> ,
position —|Masterscaling fStartVelocity=> ,
—SlaveScaling fStarticceleration=r ,
—CamTablelD Busy=x> ,
Error=> ,
ErrorID=>)
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value P
Master Master axis | AXIS_REF - Reference to the axis
Slave Slave axis | AXIS_REF - Reference to the axis
@ InputVariable
. Initial .
Input Variable Name Data Type Value Range Value Description
The function block is executed if set to TRUE and
Enable Executed BOOL TRUE, FALSE FALSE .
not executed if set to FALSE.
Master axis .
Masteroffset LREAL - 0 Master axis offset of the cam table
offset
Slave axis
Slaveoffset LREAL - 0 Slave axis offset of the cam table
offset
. Master axis . .
MasterScaling scaling LREAL - 1 Master axis scaling factor of the cam table
Slave axis
SlaveScaling . LREAL - 1 Slave axis scaling factor of the cam table
scaling
CamTablelD Cam ID MC_CAM_ID - - Cam table ID

-197-

6. Common MC Instructions

& Output Variable

Output Variable Name Data Type Value Range | Initial Value Description
Slave axis Slave axis position obtained
fStartPosition osition LREAL - 0 based on the cam table and the
P current master axis information
) Slave axis velocity obtained based
. Slave axis
fStartVelocity . LREAL - 0 on the cam table and the current
velocity .)
master axis information
Slave axis acceleration rate
Slave axis obtained based on the cam table
fStartAcceleration v XI. LREAL - 0 I .
acceleration and the current master axis
information
TRUE: Executing the function
busy Executing BOOL TRUE, FALSE | FALSE &
block
Error Error BOOL TRUE, FALSE | FALSE Set to TRUE when an error occurs
h
ErrorlD Error code SMC_ERROR - SMC_NO_ERROR Outputan error code when an
error occurs

3) Function Description

Output value calculated by this instruction: Y = (Cam ((Cam start master axis position of the cam +
Masteroffset) x MasterScaling) + Slaveoffset) x SlaveScaling. Cam is the cam table function. For example,
if the cam start master axis position is 0, the master/slave scaling ratio is 1, Masteroffset is 100, and
Slaveoffset is 0, then the output of the function block is the slave axis position corresponding to the cam
table at 100.

This function block can read the slave position as long as the cam table is built successfully. It has no
requirement on whether the master and slave axes are running.

Example:
Declaration:
SMC_GetCamSlaveSetPosition0: SMC_GetCamSlaveSetPosition;
ENABLE: BOOL;

MC_CamTableSelect0: MC_CamTableSelect;
Program:
MC_CamTableSelect0(

Master:=Virtual_X,

Slave:=Virtual_Y,

CamTable:=Cam,

Execute:=,

Periodic:=TRUE ,

MasterAbsolute:=0,

SlaveAbsolute:=0,

Done=>,

Busy=>,

Error=>,

ErrorlD=>,

CamTablelD=>);
SMC_GetCamSlaveSetPosition0(

Master:= Virtual_X,

Slave:=Virtual Y,

Enable:=ENABLE ,

MasterOffset:= 100,

SlaveOffset:=0,

MasterScaling:=1,

SlaveScaling:=1,

CamTablelD:=MC_CamTableSelect0.CamTablelD,

-198-

6. Common MC Instructions

fStartPosition=>,
fStartVelocity=>,
fStartAcceleration=>,

Busy=>,
Error=>,

ErrorlD=>);

% Enable

My MasterOffset
4 slaveOffset
& Masterscaling
% SlaveScaling
+ 4% CamTablelD
"@ fstartPosition

4) Error Description

BOOL
LREAL
LREAL
LREAL
LREAL
MC_CAM_ID
LREAL

The instruction error is output when Error is TRUE.

See ErrorID and SMC_ERROR to determine the cause of the error.

100

33.580246913580254

Note: For details on the error code, see “ “Appendix C Error Codes” .

SMC_GetTappetValue

This instruction obtains the current tappet output value when used in conjunction with the MC_Camin

instruction.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_ GetTappetValue
4 L
?:gpem blappet SMC_GetTappetValuel (
-1
Instruction I.['appets "
SMC_ for obtaining iln:=,
GetTappetValue [the tappet —{pInitvalue bInitValue:= ,
output value bSetInitValuselAtBeset:= ,
bTappet=>);
—|bSetInitValuelAtReset
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Tappets Tappet SMC_TappetData - Reference to the tappet
@ InputVariable
. Initial _—
Input Variable Name Data Type Value Range value Description
iID Tappet INT 0 Group ID of the tappet
group ID P PP
Initialization value of the tappet
binitvalue Initial Value | BOOL when the function block is called for
the first time

-199-

6. Common MC Instructions

Initial

Input Variable Name Data Type Value Range
pu I yP Y & Value

Description

TRUE: The tappet output value will
be initialized to bInitValue when
the MC_Camln function block is
bSetInitValueAtReset BOOL - - restarted.

FALSE: The current tappet output
value will be kept when the MC_
Camln function block is restarted.

€ Output Variable

Output Variable Name Data Type Value Range Initial Value Description
bTappet Tappet output | BOOL - FALSE Tappet value

3) Function Description
@ This function block must be used in conjunction with the MC_CamlIn instruction.

@ This function block reads the tappet output value as does the SMC_CamRegister function. Due to a
conflict between the two, only one of these instructions can be used in a cam tappet table.

Example of use:

MC_CamInO(
Master:=Virtual_X,
Slave:=Virtual Y,
Execute:=,
MasterOffset:= 0,
SlaveOffset:=0,
MasterScaling:=1,
SlaveScaling:=1,

StartMode:=1,
CamTablelD:= MC_CamTableSelect0.CamTablelD,

VelocityDiff:=,

Acceleration:=,

Deceleration:=,

Jerk:=,

TappetHysteresis:=,

InSync=>,

Busy=>,

CommandAborted=>,

Error=>,

ErrorlD=>,

EndOfProfile=>,

Tappets=>);
SMC_GetTappetValue0(

Tappets:= MC_CamlIn0.Tappets,

iID:=2,

binitvalue:=false,

bSetInitValueAtReset:=true,

bTappet=>);

-200-

6. Common MC Instructions

4) Error Description

There is an axis error.

The axis is disabled.

30

30

0.5

CamTable ID has no mapping object.

Note: For details on the error code, see

“ o«

MC_CamTableSelect

This instruction specifies the cam table. It must be used in conjunction with the MC_CamlIn instruction.

1) Instruction Format

Appendix C Error Codes” .

Instruction Name Graphic Expression ST Expression
MC CamTableSelect
3 o
~ e L MC CamTableSelectl(
Zlave Busy = -
o Master:= '
—CanTable Errorm™
Slave:= .
ErzorID - L
. CamTableID | CamTable:= I,
Instruction —Execute Execute:= ,
MC for Periodic:= ,
- specifying Masteribaclute:= ,
CamTableSelect the cam m—larindic Slavelbsolute:= |
table Done=> ,
Busy=> ,
mmMasteribsolute Error=> ,
ErrorlID=> ,
CamTakleID=>)
m—lSlavelbzolute
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range | Value 2
Master Reference to the master axis, that is, an instance of AXIS
Master Rk AXIS_REF_SM3 - - -
axis REF_SM3
Slave Slave axis | AXIS_REF - - Reference to the slave axis, an instance of AXIS_REF_SM3

-201-

6. Common MC Instructions

Table Reference to the cam table description, that is, an
CamTable selection MC_CAM_REF)) instance of MC_CAM_REF

Note:

The master and slave axes cannot be specified as the same axis; otherwise, an error will be output. The cam table corresponding to
CamTable must be correctly edited; otherwise, an instruction error will be reported. The master and slave axes can be real or virtual
axes.

€ InputVariable

. Initial .
Input Variable Name |Data Type | Value Range value Description
u
Execute Executed BOOL TRUE, FALSE FALSE | Execute the instruction at the rising edge
Specify whether to execute the cam table periodically
iodi oronly once
Periodic Periodic | pooL TRUE, FALSE FALSE Y
Mode TRUE: Periodically
False: Once
Specify whether the following distance coordinate
Absolute system of the master axis is based on absolute or
MasterAbsolute mode of BOOL TRUE, FALSE FALSE relative position.
master axis . . .
1: Absolute position, 0: Relative position
Specify whether the current instruction position of
the slave axis is the absolute or relative value of the
cam table output with StartMode in the MC_Camin
Absolute instruction.
SlaveAbsolute mode BOOL TRUE, FALSE FALSE | Absolute: Cam table output value corresponding to the
of slave current master axis position
absolute Relative: Cam table output value superimposed by the
slave axis position at the start of the instruction
1: Absolute position, 0: Relative position

Note:

Improper selection of MasterAbsolute and SlaveAbsolute may cause the electronic cam output to jump. Therefore, determine the
cam curve operating mode before setting the variables.

@ Output Variable

. Initial _—
Output Variable Name Data Type Value Range value Description
Set to TRUE when th lection i
Done Completed | BOOL TRUE, FALSE | FALSE ctto TRULwhen the setection s
completed
TRUE wh h ionisi
Busy Executing | BOOL TRUE, FALSE FALSE Setto TRUE when the selection is in
progress
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
h
ErrorID Errorcode | SMC_ERROR See SMC_ERROR |0 Output an error code when an error
occurs
Select the valid Cam_ID, which is used
CamTablelD Valid cam ID | MC_CAM_ID - - together with CamTablelD in MC_Camin
instruction.
Note:

When an error occurs, see SMC_ERROR in Help based on ErrorID.

3) Function Description

€@ Thisinstruction specifies the cam table required for the electronic cam to run. Therefore, edit the cam
table online or through the cam editor before using this instruction.

@ Attherising edge of Execute, the specified cam table is executed, and the specified cam table can be
refreshed after a cam table update.

-202-

6. Common MC Instructions

4

When the Done signal outputs TRUE, the output variable CamTablelD is generated and becomes valid.

¢

During instruction execution, the Busy signal outputs TRUE. When the Done signal outputs TRUE, the
Busy signal outputs FALSE.

@ For the specific functions of MasterAbsolute, SlaveAbsolute, and Periodic, see the MC_Camin
instruction.

4) Error Description

€ The master and slave axes cannot be specified as the same axis; otherwise, an error will be output.

@ The cam table corresponding to CamTable must be edited correctly; otherwise, an error will be output.

Note: For details on the error code, see “Appendix C Error Codes” .

MC_Camin

This instruction uses the specified cam table to start executing the electronic cam action. The offset
value, scaling ratio and working mode of the master and slave axes can be specified according to the
application requirements.

1) Instruction Format

Instruction| Name Graphic Expression ST Expression

MC_CamInO (
MC CamIn Master:= ,
S Master B InSync Slave:= ,
Hslave Busy Execute:= ,
Master eti= ,
Commandfborted __
_ SlaveODffset:= ,
EeleEte MasterScaling:= ,
=—Execute ErrorID SlaveScaling:= ,
—Maszterbffzet EndOfProfile StartMode:= ,
—|SlaveOffset Tappets CamTableID:= ,
Start cam —MasterScaling VelocityDiff:=,
MC_Camln . L Rcceleration:= ,
operation -|slavescaling Deceleration:=
— StartMode Jerk:= ’
—CamTableID TappetHysteresis:= ,
—|¥elocityDiff InSync=> ,
—Acceleration Busy=r ,
—{Deceleration Commandibeorted=> ,
—Jerk Error=> ,
ErrorID=> ,
—EeEESENEEeE SIS FndofProfile=s ,
Tappeta=>) ;
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
. . P Name Data Type Description
Variable Range Value
Reference to the axis, that is, an instance of
Master Master axis | AXIS_REF_SM3 | - - ’ ’
-7 AXIS_REF_SM3
Reference to the axis, that is, an instance of
Slave Slave axis | AXIS_REF - - ’ ’
- AXIS_REF_SM3
Note:

|The master and slave axes cannot be specified as the same axis; otherwise, an error will be output.

@ InputVariable

) Initial s
Input Variable Name Data Type | Value Range value Description
Cam functi
Execute am u'nc on BOOL TRUE, FALSE FALSE Execute the electronic cam at the rising edge
execution
MasterOffset Master offset LREAL Neg.a.tive value, Move. ’.che phase of the master axis based on the
positive value, 0 specified offset value
SlaveOffset Slave axis offset | LREAL Neg'a'tive value, Movg Fhe phase of the slave axis based on the
positive value, 0 specified offset value

-203-

6. Common MC Instructions

. Initial -
Input Variable Name Data Type | Value Range Value Description
Pre-compiling .)
Z the ph fth t
MasterScaling ratio of master LREAL >0.0 1 oom m/ou'tv ep ,ase of the master axis based
) on the specified ratio

axis

Pre- ili Z i tthe ph fthe sl is based
SlaveScaling re. compiling | LreAL ~0.0 1 oom m/ou. . ep fase of the slave axis base

ratio of slave axis on the specified ratio

Sl i tput

ave axis c?u pu MC_ 0: Absolute position:1: Relative position 2:

StartMode mode relative to Oto4 absolute . . .

cam StartMode ramp_in; 3: ramp_in_pos; 4: ramp_in_neg

MC_CAM Define the use of the cam table. Itis used in
CamTablelD Table ID D - - >0 - conjunction with the output point CamTablelD
of MC_CamTableSelect
o Couplin . - .

VelocityDiff up.| g LREAL >0.0 0 Maximum velocity different from ramp_in

velocity
Acceleration Acceleration LREAL >0.0 Acceleration at ramp_in
Deceleration Deceleration LREAL >0.0 Deceleration at ramp_in
Jerk Jerk LREAL >0.0 Acceleration at ramp_in

. Tappet factor)

TappetHysteresis LREAL >0.0 0 Tappet damping factor

Range
Note:

The master and slave axes cannot be specified as the same axis; otherwise, an error will be output.

€ Output Variable

. Initial .
Output Variable Name Data Type | Value Range Value Description
InSync is set after the cam relationship is established
bet th t dsl ,and i t
InSync Cam valid BOOL TRUE, FALSE | FALSE | o\ con (e masterands ave axes, and 1S reset
when the execution condition of the instruction is
OFF.
Set to TRUE at the rising edge of Execute, which
Synchronous indicates that the cam relationship is in coupling and
Busy operationin | BOOL TRUE, FALSE | FALSE needs to be reset with the Cam_out instruction. The
progress instruction execution condition reset cannot reset
this status.
| i TRUE wh h isisi
CommandAborted nstruction BOOL TRUE, FALSE | FALSE Output TRU w ent .e slave axis is interrupted by
aborted other control instructions
When an error is detected, the Error bit is set.
Error Error BOOL TRUE, FALSE | FALSE | The Error bit is reset when the execution condition of
the instruction is OFF.
See SMC
ErrorlD Error code SMC_ERROR E:T?OR - 0 Output an error code when an error occurs
If Periodic is 0 (non-periodic) during the execution of
Endoferofile Curve BOOL i EALSE MC_CamTableselect, the EndOfProfiAle bitis set when
completed the cam curve is executed once and is reset when the
execution condition of the instruction is OFF.
Tappets ISMC_ Associate a cam tappet that can be read by the MC_
PP TappetData GetTappetValue instruction.

3) Function Description

@ Thisinstruction is started at the rising edge of Execute if there is no axis error and the cam table is
selected correctly.

@ Inacam system, to call a cam curve, first call the MC_CamTableSelect instruction to select the cam
table, and then execute MC_Camin. To replace the cam curve, call the MC_CamTableSelect instruction
to re-select the cam table.

@ Itisnecessary to use the Camout instruction to cancel the cam coupling relationship between the

-204-

6. Common MC Instructions

master axis and the slave axis.

During the execution of this instruction, if the slave axis of this instruction executes other motion
instructions, the cam relationship between the slave axis and the master axis will be canceled, and
CommandAborted will output TRUE.

4) Instruction Details

4

The following describes the instruction in details:
Instruction Execution Condition

This instruction can be started in the status of master axis stopping, position control, velocity control, or
synchronous control.

Note: The cam slave position setpoint should be within the software limit; otherwise, the instruction will
be incorrectly output.

The contact point in the cam curve is calculated as follows:

M?fster Slave
oftset scaling
+ Cam curve l
Master%f\
" (1) Slave
>
position T \-I_/ \’%_—’ position
Master
scaling

According to the above diagram, the calculation formula is as follows:
Position_Slave = SlaveScaling x CAM (MasterScaling x MasterPosition + MasterOffset) + SlaveOffset

The master and slave positions in this formula are related to the cam function curve and do not
represent the actual physical axis positions.

The relationship between the master/slave axis positions and the master/slave real axis positions is
described in detail.

Note: The master and slave positions are required for the cam function curve and are not the master and
slave real axis positions.

Relationship of Periodical Mode to EndOfProfile:

The periodical mode determines whether or not the electronic cam will be performed again after the
master axis reaches the termination position.

Non-periodical mode: Periodic is set to FALSE for the MC_CamTableSelect instruction.

In non-periodical mode, EndofProfile outputs TRUE when the cam is completed and outputs FALSE
when the execution input is FALSE. In this case, the cam is executed for only one master axis period.

Note: The master axis period refers to the range between the start point of the master axis of the
electronic cam to the end point.

16) Periodical mode: Periodic is set to TRUE for the MC_CamTableSelect instruction.

-205-

-206-

6. Common MC Instructions

<—Started atrising edge

o <—Physical axis posW

B
e
=== 4 Cam master axis position

EndofProfile .=

Cam slave axis position

In this case, the cam will be continuously executed for the next period after the completion of one
master axis period, and the TRUE output of the EndofProfile signal only lasts for one task period.

Notes:

When the cam master axis position is larger than or equal to the cam end position, the EndofProfile
signal outputs TRUE, and the cam master axis position is updated to the sum of the cam start position
and the portion exceeding the end position. For example, the start position of the electronic cam master
axis is 0, the end position is 360, the master/slave scaling ratio is set to 1, the master/slave offset is set

to 0, the task period is 2 ms, and the master axis velocity is 100. When the cam master axis position of a
task period is 359.99, then EndofProfile of the next period outputs True and the master axis position is:
359.99 + 100 x 0.002 - 360 =0.19.

It is recommended to keep a smooth transition between the start and end positions of the cam curve in
periodical mode; otherwise, a position jump will be generated.

For example, if the start velocity is 0 and the end velocity is not 0, it will cause the master axis to jump at
the end of the period and the beginning of a new period.

<= Started-atrising edge

Physical-axis-position o,

3001
200
100 <— Cam master axis pos

il

EndafProfile

1 Cam-slave-axis position

|

2

The relationship between StartMode and the absolute/relative mode of the master and slave axes in MC_
CamTableSlect:

Absolute mode: At the start of a new electronic cam period, the calculation of the electronic cam is
independent of the current slave axis position. If the start position of the slave axis relative to the master
axis is different from the end position of the slave axis relative to the master axis, a jump will be caused.

Relative mode: The new electronic cam will change according to the current slave position. That is, the
position of the slave axis at the end of the last electronic cam period will be added up by the current
electronic cam motion as a "slave axis offset”. However, if the slave axis position corresponding to the

6. Common MC Instructions

master axis start position is not 0 in the electronic cam definition, a jump will be caused.

Ramp input: Add a compensating motion (obtained based on the limit value VelocityDiff, acceleration
and deceleration) to prevent potential jumps at the start of the electronic cam. Thus, as long as the slave
axis rotates, the positive ramp input provides only positive compensation, while the reverse ramp input
only provides reverse compensation. For a linearly moving slave axis, the compensation direction can be
achieved automatically, that is, the positive ramp input and the negative ramp input can be interpreted
in terms of ramp inputs).

The relationship is shown in the following table:

MC_CamTableSelect.MasterAbsolute Master axis
mode
absolute Absolute mode
relative Relative mode
MC_Camin.StartMode MC_CamTableSelect.SlaveAbsolute Slave axis mode

absolute TRUE Absolute mode
absolute FALSE Relative mode
relative TRUE Relative mode
relative FALSE Relative mode
ramp_in TRUE Absolute ramp-in
ramp_in FALSE Relative ramp-in

Absolute ramp-in in positive
ramp_in_pos TRUE 3 p-inin posttiv

direction

Relative ramp-in in positive
ramp_in_pos FALSE . . P P

direction

Absolute ramp-in in negative
ramp_in_neg TRUE - P &

direction

Relative ramp-in in negative
ramp_in_neg FALSE v p-n gatlv

direction

The relationship is described below:

Cam master axis range (0-360), cam slave axis range (0-180), periodical mode, master/slave offset (0),
master/slave scaling ratio (1) The designed cam table is shown below:

[njuomsod aaes

[sition [ul
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

17) StartMode =0 (absolute mode)

When MasterAbsolute of the MC_CamTableSlect instruction is set to FALSE and SlaveAbsolute is set to
TRUE, then the master axis works in relative mode and the slave axis works in absolute mode. When the
cam is started at the rising edge of Execute, the cam master axis starts from the "Start position" (0) of
the cam table, and the cam slave axis calculates the output according to the cam table meshing formula
mentioned above. The instruction position of the slave real axis is equal to the meshing calculation

-207-

6. Common MC Instructions

output value. For example, if the start position of the cam slave axis is 0, and the position of the slave
real axis is 20 when the cam is started, then a jump will be caused when the position of the slave real axis
from the start is commanded to be 0.

Note: In this case, if the start position of the slave axis (real axis) is not at the cam slave axis start
position, then a jump will be caused.

T T
20s 30s

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to FALSE,
then the master and slave axes work in relative mode. When the cam is started at the rising edge of
Execute, the cam master axis starts from the "Start position" (0) of the cam table, and the cam slave axis
calculates the output according to the cam table meshing formula mentioned above. The instruction
position of the slave real axis is equal to the sum of the meshing calculation output value (cam slave axis
position) and the slave real axis position at startup.

For example, if the slave real axis position at cam startup is 20, and the slave axis start position of the
cam table is 0, then the slave real axis position at cam startup is commanded to 20. The subsequent
value is the sum of 20 and the cam table calculation value, and the peak value is 200, which is the sum of
20 and the maximum cam table calculation value (180 in this case).

| ——

e NG

(BRI L

5) Error Description
@ The setting information of this instruction does not match that of the Camslect instruction.

€ Theaxisisdisabled.

When MasterAbsolute of the MC_CamTableSlect instruction is set to TRUE and SlaveAbsolute is set to
FALSE, then the master axis works in absolute mode and the slave axis works in relative mode. At the
rising edge of Execute, the cam master axis starts from the current "master real axis position" upon
cam startup. Slave real axis position instruction = Cam table meshing calculation value (cam slave axis

-208-

6. Common MC Instructions

position) + Slave axis position at startup

Note: 1. In this case, if the start position of the master axis (real axis) is not at the cam master axis start
position, then a jump will be caused.

2. The master axis position must be within the position range of the cam master axis.

I
1
|
: |

<— Starfted at H*»m‘}:n’\}y
|
I

//’h‘,h‘r%ﬁ-:v reat-aki »‘//,,«-"M l
AT e -

BE= s

W’/ —— !
-

Caitn slave axts, pogition —

Stavegyis
real axis) phg|tion

T T
10s 205

T T
30s 405

|

I

‘

\

[

\

|

|

! :
- i

I

[

i

}

\

[

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to TRUE,
then the master and slave axes work in absolute mode. At the rising edge of Execute, the cam master axis
starts from the current "master real axis position" upon cam startup. Slave real axis position instruction
= Cam table meshing calculation value (cam slave axis position)

Notes:

1. In this case, if the start position of the master axis (real axis) is not at the cam master axis start position
and the slave axis position is not at the cam slave axis start position, then a jump will be caused.

2. The master axis position must be within the position range of the cam master axis.

I
I
I
L

< Started at rishg edge

|
|
|
|
|
|
I
1
1
t

I
|
|
|
T

|
|
|
|
|
|
1
1
!
¢
|
1
1
|
|
|
1
1
)
I
t

=

|
{e—Cam master-axis:position

\

|
|
I
Cam slave axis,positios
|
"

\Hx

b
|
1
=
I
}
I
|
|
I
)
4

|
I

1

|

I

|
L
1

]

1

1
3
1
%

2) StartMode =1 (relative mode)

When MasterAbsolute of the MC_CamTableSlect instruction is set to FALSE and SlaveAbsolute is set to
TRUE or FALSE, then the master and slave axes work in relative mode. At the rising edge of Execute, the
cam master axis starts from the "cam table start position" upon cam startup. Slave real axis position
instruction = Cam table meshing calculation value + Cam table meshing calculation value (cam slave axis

-209-

6. Common MC Instructions

position)

When MasterAbsolute of the MC_CamTableSlect instruction is set to TRUE and SlaveAbsolute is set to
TRUE or FALSE, then the master axis works in absolute mode and the slave axis works in relative mode.
At the rising edge of Execute, the cam master axis starts from the "current master axis position" upon
cam startup. Slave real axis position instruction = Slave axis position upon startup + Cam table meshing
calculation value (cam slave axis position)

Notes:

1. In this case, if the start position of the master axis (real axis) is not at the cam master axis start
position, then a jump will be caused.

2. The master axis position must be within the position range of the cam master axis.

3) StartMode =2 (ramp-in mode)

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to TRUE,
then the master and slave axes work in absolute mode. At the rising edge of Execute, the cam master axis
starts from the "current master axis position" upon cam startup. The slave axis adds a compensation
motion through the set VelocityDiff, Acceleration, and Deceleration to avoid the potential jump during
switching. Slave real axis position instruction = Cam table meshing calculation value (cam slave axis
position) + f(VelocityDiff, Acceleration, Deceleration)

-210-

6. Common MC Instructions

1
|
|
|
|

==

|
1
1
]
|
T
|
|
1
1
+
1
1
5

T f

2

|

When MasterAbsolute of the MC_CamTableSlect instruction is set to FALSE and SlaveAbsolute is set to
TRUE, then the master axis works in relative mode and the slave axis works in absolute mode. At the
rising edge of Execute, the cam master axis starts from the "cam master axis start position" upon cam
startup. The slave axis adds a compensation motion through the set VelocityDiff, Acceleration, and
Deceleration to avoid the potential jump during insertion. Slave real axis position instruction = Cam
table meshing calculation value (cam slave axis position) + f(VelocityDiff, Acceleration, Deceleration)

When MasterAbsolute of the MC_CamTableSlect instruction is set to TRUE and SlaveAbsolute is set to
FALSE, then the master axis works in absolute mode and the slave axis works in relative mode. At the
rising edge of Execute, the cam master axis starts from the "current master axis position" upon cam
startup. The slave axis adds a compensation motion through the set VelocityDiff, Acceleration, and
Deceleration to avoid the potential jump during switching. Slave real axis position instruction = Slave
axis current position + Cam table meshing calculation value (cam slave axis position) + f(VelocityDiff,
Acceleration, Deceleration)

Note: In this mode, the cam curve during the first master axis period may vary considerably from the
designed curve.

-211-

6. Common MC Instructions

When both MasterAbsolute and SlaveAbsolute of the MC_CamTableSlect instruction are set to FALSE,
then the master and slave axes work in relative mode. At the rising edge of Execute, the cam master axis
starts from the "cam master axis start position" upon cam startup. The slave axis adds a compensation
motion through the set VelocityDiff, Acceleration, and Deceleration to avoid the potential jump during
insertion. Slave real axis position instruction = Slave axis current position + Cam table meshing
calculation value (cam slave axis position) + f(VelocityDiff, Acceleration, Deceleration)

Note: In this mode, the cam curve during the first master axis period may vary considerably from the
designed curve.

4) StartMode = 3, 4 (ramp_in_pos, ramp_in_neg)

When the slave axis works in "rotary mode", compensation is performed only in positive direction of the
axis for ramp_in_pos and in negative direction for ramp_in_neg. When the axis works in linear mode, the
compensation direction is automatically adjusted for ramp_in_pos, ramp_in_neg, and ramp_in, that is,
if the axis is set to linear mode, it works in the same way for ramp_in_pos, ramp_in_neg, and ramp_in.

Scaling ratio, master/slave axis offset:

According to the cam meshing formula: Input variables MasterOffset and MasterScaling change the
master axis position according to the following formula, and the electronic cams will calculate based on
the changed position X:

X = MasterScaling x MasterPosition + MasterOffset

-212-

6. Common MC Instructions

Therefore, the electronic cam will run at the high velocity if the value of MasterScaling is larger
than 1 and run at the low velocity if the value is smaller than 1.

The SlaveOffset parameter makes the electronic cam move longitudinally (in the direction of the
slave axis),

and the SlaveScaling parameter stretches the electronic cam in the direction of the slave axis.
According to the following formula, the electronic cam is stretched in the first step

and then moves:
Y = SlaveScaling x CAM (X) + SlaveOffset

If SlaveScaling > 1, the electronic cam will be stretched and the motion range of the slave axis will
be increased. If SlaveScaling < 1,

the motion range of the slave axis will be decreased.

When MasterScaling = 1.0, SlaveScaling = 1.0, MasterOffset = 0, and SlaveOffset = 0, the cam curve
is the planned one, as shown below:

A .
Cam slave axis

180 —==~~~""7>~

»

Cam master axis 360

When MasterScaling = 1.0, SlaveScaling = 2.0, MasterOffset = 0, and SlaveOffset = 0, the cam curve is
shown below:
Cam slave axis

A
360

»
o

Cam master axis 360

When MasterScaling = 2.0, SlaveScaling = 1.0, MasterOffset = 0, and SlaveOffset = 0, the cam curve is
shown below:

Cam slave axis

180 7\

Cam master axis 1gq

360

When MasterScaling = 1.0, SlaveScaling = 0.5, MasterOffset = 0, and SlaveOffset = 0, the cam curve is
shown below:

-213-

214-

6. Common MC Instructions

Cam slave axis
A

N

1

Cam master axis 360

When MasterScaling = 0.5, SlaveScaling = 1, MasterOffset = 0, and SlaveOffset = 0, the cam curve is shown
below:

Cam slave axis

Cam master axis 720

When MasterScaling = 1, SlaveScaling = 1, MasterOffset = 20, and SlaveOffset = 30, the cam curve is
shown below:

Cam slave axis

First master Second master
axis period axis period

- Cam master axis 340 700

6) Timing Diagram:
The timing in periodical mode (MC_CamTableSelect.Periodic set to TRUE) is shown below:

Note: The MC_Camout instruction only cancels the cam coupling relationship between master and slave
axes. If the slave axis velocity is not 0 at the time of cancellation, the slave axis will not automatically
decelerate to 0. In this case, it must be used in conjunction with the MC_STOP instruction.

A ;
Master axis 4
in relative mode | H

Execute -|

Busy
Insync J-|

v

EndofProfile

CommandAb
orted

MC Camout
.Done

The timing in non-periodical mode (MC_CamTableSelect.Periodic set to FALSE) is shown below:

6. Common MC Instructions

1NN

\ 4

_

-

CommandAb
orted

Camout

@ Electronic cam restart:

The two electronic cams can be switched at any time, but some conditions must be considered: In the
electronic cam editor, the slave axis position is defined as the calculated output of the electronic cam
function, which is calculated based on a master axis positions within the master axis range. Therefore,
this can be expressed by the following formula: SlavePosition = CAM(MasterPosition). Since the actual
period of the master axis drive is generally different from the master axis range defined by the electronic
cam, the master axis position must be scaled to the domain defined by the function to enable the
correct input of the electronic cam function: SlavePosition = CAM(MasterScale x MasterPosition +
MasterOffset). Similarly, if an electronic cam starts in absolute mode and produces an upward jump, the
function output (virtual slave position) will also be corrected proportionally: SlavePosition = SlaveScale
x CAM(MasterPosition) + SlaveOffset. In the worst case, both proportional corrections must be applied.
Therefore, the slave position (SlavePosition) is calculated based on a more complex formula:

Slaveposition = SlaveScale x CAM(MasterScale x Masterposition + MasterOffset) + SlaveOffset

At the end of each electronic cam period, the scale and offset can be changed to obtain more
appropriate parameters. However, restarting the MC_CamIn module of the electronic cam will delete its
memory, including the scale and offset values. As a result, the defined electronic cam function will be
adapted to different slave axis values. For this reason, it is recommended to restart MC_CamIn-FB only
when another different electronic cam needs to be processed.

Note: See the motion control function part for electronic cam switching.
See the motion control function part for electronic cam samples.
See the motion control function part for the tappet function.

7) Error Description

When an abnormality is detected when this instruction is activated, Error becomes TRUE.

“ o«

You can check the output value of ErrorID. For details on the error code, see Appendix C Error

Codes” .

MC_CamOut

This instruction cancels cam coupling of the slave axis. Note: After this instruction is executed, the slave
axis will continue to run at the same velocity as before decoupling. Therefore, this instruction must be
used in conjunction with an instruction such as MC_Stop.

-215-

-216-

6. Common MC Instructions

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC CamOut (
Cam_ogutl z - lave:=
MC_CamOut e '
Instruction for HAolgve Done gcute:= ,
MC_CamOut canceling cam —|Eecue Busy cne=x ,
coupling B usy=> ,
ErrorlD Lror==x
ErrorID=>);
2) Related Variables
€ Inputand output
Input/Output Initial
. Name Data Type Value Range Description
Variable yp & Value P
Slave Sléve AXIS_REF_SM3 Reference to the axis, that is, an instance of
axis AXIS_REF_SM3
€ Input
. Initial s
Input Variable Name Data Type | Value Range value Description
Instructi
Execute ns ruF on BOOL - - Execute the instruction at the rising edge
execution
€ Output
Output Initial
. Name Data Type Value Range Description
Variable yp & Value P
Completion of cam decoupling of
Done Completed BOOL TRUE, FALSE FALSE .
the master axis
Busy Executing BOOL TRUE, FALSE FALSE Executing instruction
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output de wh
ErrorlD Error code SMC_ERROR See SMC_ERROR 0 utputan error code when an
error occurs

3) Function Description

*

This instruction cancels cam coupling of the slave axis.
At the rising edge of Execute, the cam coupling of the slave axis will be canceled.

L 4
@ The slave axis may not stop after the cam coupling relationship is canceled.

@ Ifthe slave axis velocity is not 0 before this instruction is executed, the cam coupling relationship will
be canceled after the completion of the DONE signal. However, the slave axis will still run at the original

velocity.

*

If this instruction is executed when the slave axis has no cam coupling relationship, an error will be
output.

4) Timing Diagram

6. Common MC Instructions

Master axis position >
+ |
Synchronadus |
pperatiol |
<« ~ N\ Decelé rate:
/' xam X tostop |
coupling]
iscannected I
o | .
Slave axis position , >
|
|
Execute :
1 >
|
|
Busy !
|
|
Done : >
|
I
Error ! N
I
|
! I
MC_StopExcute : >
|
MC_Stopdone >

5) Usage Example

This example applies the cam-related instruction. It describes the axis motion status when a cam
relationship is created, run, and canceled.

Create the following cam table in the cam editor:

X Y v A J Segm.. min(P.. max(P.. max(|V.. max(A.
0 0 0 0
< Polys 0 180 1.8745... 0.0320...
L) 180 180 0 0 0
L) Poly5 0 180 1.8745... 0.0320...
380 0 0 0 0
200
i

master position [u]
T

Program:

-217-

6. Common MC Instructions

MPO 2
MC_Power ;-(

Vinual X —*Axds Statws— Asis
TRUE orfeaiStme— TRUE
TRUE ___—bRegulatorOn bDrvaStanRealState— TRUE
TRUE - (bDrvaStan Bumy- TRUE

Vit X

[

The master and slave axes are automatically enabled after power-on. If MasterRun is set to TRUE, the
master axis runs at the velocity of 100.

Set CamSelect to TRUE, select the cam table and set Camin to TRUE to start the electronic cam.
To disconnect the electronic cam, set MC_CamOut0.Execute to TRUE.
Notes:
See the motion control function part for online modification of the cam table.
6) Error Description

If an error occurs during instruction execution, Error outputs TRUE.

ERRORID can be checked. For details on the SMC_ERROR error code, see “ “Appendix C Error Codes”

MC_Gearln

This instruction sets the gear ratio between the slave axis and the master axis to perform electronic
gearing.

1) Instruction Format

Instruction [Name Graphic Expression ST Expression
MC_GearInO(
Master:= '
MC_Gearln_0 = Slave:= '
MC_Gearln = Execute:=
. HAMaster InGear— RatioNumerator:= ,
Electronic #{lave Busy|- iati;)encpinatcr: ,
gear —{Execute CommandAborted |- cceleration:= ,
MC_Gearln function X Deceleration:= ,
unctio —RaticNumerater Errar— Jerki—
block —{RaticDenominator ErrorlD— InGenres
—Acceleration Busy=> r
—|Deceleration Commandiborted=> ,
—Jerk Error=> ,
ErrorID=> };

2) Related Variables
@ Input/Output Variable

| t/Output Val Initial
nput/Outpu e Data Type alue nitia

D ipti
Variable Range Value escription

-218-

6. Common MC Instructions

M Ref h is, thati i f AXI
Master z?ster AXIS. REF_SM3)) eference to the axis, that is, an instance o S_
axis REF_SM3
Slave Reference to the axis, that is, an instance of AXIS
Slave AXIS_REF - -) > _
v axis - REF_SM3

€ InputVariable

) Initial -
Input Variable Name Data Type Value Range value Description
Execute Executed BOOL TRUE, FALSE FALSE Execute the instruction at the rising edge
RatioNumerator Gear ratio DINT Positive, negative- 1- Gear ratio numerator
numerator
Gear ratio
RatioDenominator .I UDINT Positive number 1 Gear ratio denominator
denominator
Acceleration Acceleration | LREAL Positive number - Specify an acceleration rate
Deceleration Deceleration | LREAL Positive number - Specify a deceleration rate
Jerk Jerk LREAL Positive or 0 - Jerk
& Output Variable
) Initial .
Output Variable Name Data Type Value Range Value Description
InGear Gear ratio BOOL TRUE, FALSE EALSE Set to TRUE whgn the slave axis reaches
reached the target velocity
Set to TRUE when the instruction is bein
Busy Executing BOOL TRUE, FALSE FALSE &
executed
. Set to TRUE when the instruction is
CommandAborted | Aborting BOOL TRUE, FALSE FALSE) ; .
interrupted by other control instructions
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorID Error code SMC_ERROR See SMC_ERROR |0 Output an error code when an error occurs

3) Function Description

@ Specify the object axis through Slave and specify RatioNumerator, RatioDenominator, ReferenceType,
Acceleration, and Deceleration to perform gearing.

@ Theinstruction position, feedback position, and latest instruction position can be specified for the
master axis (Master).

@ Attherising edge of Execute, the electronic gearing action starts.

*

After the start of the action, the slave performs acceleration and deceleration with the target velocity
obtained by multiplying the master axis velocity by the gear ratio.

@ To cancel coupling after running the electronic gear, execute the GearOut instruction.

€ Thisinstruction is a velocity electronic gear, and the loss of synchronization distance caused by the
acceleration will not be automatically compensated.

€@ When the Busy signal is TRUE during instruction execution, if the target velocity of the slave axis is not
reached, the new rising edge of Execute will not affect it.

€@ When the Busy signal is TRUE during instruction execution, if the target velocity of the slave axis is
reached, the new rising edge of Execute will not affect it.

€ When the target velocity is reached, InGear is TRUE. Slave axis movement amount = Master axis
movement amount x RatioNumerator/RatioDenominator.

@ If the master axis velocity changes in real time, use this instruction with caution.
4) Precautions

*

Do not use the MC_SetPosition instruction during the execution of this instruction; otherwise, an

-219-

6. Common MC Instructions

accident may be caused by rapid motor operation.

*

Before using the MC_SetPosition (current position change) instruction for the master axis, cancel
the relationship between the master axis and the slave axis.

5) Timing Diagram:

The value of Busy changes to TRUE when Execute is started. The value of Active changes to TRUE in the
next period.

When the target velocity is reached, InGear changes to TRUE.

If this instruction is aborted by another instruction, CommandAborted becomes TRUE, and Busy, Active,
and InGear become FALSE.

To end the electronic gearing action midway, use the MC_GearQOut or the MC_Stop instruction.

|
InGear #

|
ﬁ
l:

| Il

Busy 7| ;
Active ;
I

I

[

I
CommandAborted ;
[
1

Execute —l !
|
1
|
|
[

Error

ErroriD | 16#0000 Error code |

[E—

Velocity

‘ :
|
[
|
\ T\g Aborted by other
‘ \ instructions

@ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Aborting Immediately aborts the currently executing instruction and switches to this instruction.

If the direction of axis motion is reversed due to instruction switching, reverse running is
performed after the velocity is decelerated to zero.

The function block is started immediately after the last instruction motion is terminated.
Buffered No blending is performed here. When the end conditions (such as Done, InVelocity,
InEndVelocity, InGear, InSync, EndOfProfile) are reached, the new motion starts at the
velocity of the previous motion. If the previous motion was MC_MoveAbsolute or MC_
MoveRelative, the new motion will start in static state.

€ Start of other instructions during the execution of this instruction
Multiple instances of the instruction can be executed in an interrupted manner for the slave axis.

In this case, stop the gear operation and start executing multiple instances.

It is not allowed to execute multiple instances of the instruction in a non-interruptive manner.

MC_GearOut

This instruction aborts the MC_Gearln and MC_GearInPos instructions in execution.

-220-

6. Common MC Instructions

1) Instruction Format

Instruction Name Graphic Expression ST Expression
MC_GearOut_0 5 fic_cearouto(
Instruction MC_GearOut Slave:= ,
MC Gearout |O" canceling —=Slave Done Execute:=,
- electronic gear — Execute Busy Dane=> ,
. Busy=> ,
coupling Error|
Error=> ,
ErrorlD ErrorID=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yP Range Value P
. Reference to the axis, that is, an instance of
Slave Slave axis AXIS_REF_SM3 - - AXIS_REF_SM3
€ InputVariable
) Initial -
Input Variable Name Data Type Value Range value Description
Execute Executed BOOL TRUE, FALSE FALSE Execute the instruction at the rising edge
€ Output Variable
Output Initial
. Name Data Type Value Range Description
Variable yp & Value P
Set to TRUE when the electronic gear
Done Completed | BOOL TRUE, FALSE FALSE coupling between the slave axis and the
main axis is canceled
TRUE wh hei joni i
Busy Executing | BOOL TRUE, FALSE FALSE Set to TRUE when the instruction is being
executed
Error Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
ErrorlD Error code | SMC_ERROR See SMC_ERROR 0 Output an error code when an error occurs

3) Function Description

€ Attherising edge of Execute, execute the action of removing the electronic gearing.

@ IfExecuteis TRUE and ERROR is FALSE, then Busy and Done output TRUE.

@ Thesslave axis velocity is the same as that one before removal. Therefore, it is necessary to stop the

slave axis with the MC_Stop instruction.

@ Atthe falling edge of Execute, Done is FALSE.

€ The MC_Stop instruction resets the Busy signal.

-221-

6. Common MC Instructions

A
Execute

| -

>

Busy »

»

Done »

ERROR >
ERRORID 500 !

SLAVE_Velo
city

4) Error Description
An error in the parameter setting can cause an alarm.

An alarm will be caused if the axis is not disabled.

Note: For details on the error code, see “ “Appendix C Error Codes” .

MC_GearlnPos

This instruction sets the electronic gear ratio between the master axis and the slave axis to perform
electronic gearing.

Specify the master axis position, slave axis position, and distance at which synchronization of the master
axis starts, and insert the electronic gear based on these values.

1) Instruction Format

Instruction Name Graphic Expression ST Expression

o (

Master:= 5M Drive Virtual,
MC_GearInPos_0 Slave:= Rxis,
. MC_GearInPos Execute:= ,
Instruction _len ENO RaticNumerator:= ,
RaticDencminator:=
for = Master StartSync |— S
ifvi A Clave InSvne MasterSyncPositicn:= ,
Sspecitying £ . By SlaveSyncPosition:= ,
MC_GearInPos the position] =xecute usy — MasterStartDistance:= ,
. — RatioNumerator Active — BufferMode i=
to insert the — RatioDenominator CommandAborted |- o
. . LvoidReversal:= |
electronic — MasterSyncPosition Error —
SlaveSyncPosition ErrorlD Srertiyne=
gear —] 2lavesy . — InSync=> ,
couplin — MasterStartDistance Busy=>
pling — BufferMode . !
idR | Rotive=»>
g i s Cormandiborted=» ,

Errocr=» ,
ErrorID=>)

2) Related Variables

@ Input/Output Variable

Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P

M Ref h is, thati i f AXI

Master a.ster AXIS_REF_SM3)) eference to the axis, that is, an instance o S_
axis REF_SM3
Slave Reference to the axis, that is, an instance of AXIS_

Slave axis AXIS_REF - - REF_SM3

€ InputVariable

-222-

6. Common MC Instructions

) Initial -
Input Variable Name Data Type Value Range Value Description
I i E hei i h
Execute nstruc'tlon BOOL TRUE, FALSE FALSE 'x'ecutet e instruction at the
execution rising edge
RatioNumerator Gear ratio DINT) 1— Numératoriof master-slave
numerator velocity ratio
i D i f -
RatioDenominator Gear rafuo DINT) 3 enomlnatgr of master-slave
denominator velocity ratio
N Position of the Master axis position at the ‘
MasterSyncPosition . LREAL - - time of master-slave gear ratio
master axis .
coupling
Sync position Slave axis position at master.
SlaveSyncPosition of the slave LREAL - - P) .
. slave gear ratio coupling
axis
The slave axis calculates a
smooth curve based on this
position value and the values
MasterSyncPosition and
Master axis SlaveSyncPosition so that
MasterStartDistance | position for LREAL - - the slave axis is synchronized
sync execution with the master axis gear
at SlaveSyncPosition. The
master axis range for the
curve is [MasterStartDistance,
MasterSyncPosition].
Set to FALSE
if reverse running is performed
when the physical position of
the slave axis is overrun. Set to
Ve Aborting =0 TRUE
BufferMode Buffer mode B Buffered=1 0 if reverse running is not
BUFFER_MODE .
BlendingPrevious=3 allowed physically or a danger
will be caused. It applies only
to modulo axes. If reverse
running cannot be avoided,
the axis will stop with an error.
Set to FALSE if reverse running
is performed when the
physical position of the slave
axis is overrun. Set to TRUE if
Reverse reverse running is not allowed
AvoidReversal running BOOL TRUE, FALSE FALSE . & R
i physically or danger will be
inhibited .
caused. It applies only to
modulo axes. If reverse running
cannot be avoided, the axis
will stop with an error.
€ Output Variable
i Initial .
Output Variable Name Data Type Value Range Value Description
Coupling Set to TRUE if the electronic
StartSync processing BOOL TRUE, FALSE FALSE | gear coupling processing is
started started
Set to TRUE when the electronic
L gear coupling processing
Couplingin ;
InSync o pressg BOOL TRUE, FALSE FALSE is completed and master-
prog slave gear ratio coupling is in
progress.
Instruction in Set to TRUE when the
Busy actont! BOOL TRUE, FALSE FALSE | noR e
execution instruction is being executed
Set to TRUE wh trol i
Active Controlling BOOL TRUE, FALSE FALSE e' © when controtis
being performed
Instructi Int ted by oth trol
CommandAborted | - ueton BOOL TRUE, FALSE FALSE | oITUPted by ofhercontro
aborted instructions

-223-

-224-

6. Common MC Instructions

i Initial .
Output Variable Name Data Type Value Range value Description
Error Error BOOL TRUE, FALSE FALSE | S°tto TRUEwhen an error
occurs
ErrorID Error code SMC_ERROR See SMC_ERROR 0 Output an error code when an
error occurs

3) Function Description

*

*

Specify the object axis through Slave and specify RatioNumerator, RatioDenominator, ReferenceType,
Acceleration, and Deceleration to perform gearing.

The instruction position, feedback position, and latest instruction position can be specified for the
master axis (Master).

Start the instruction at the rising edge of Execute.

After the start of the action, the slave performs acceleration and deceleration with the target velocity
obtained by multiplying the master axis velocity by the gear ratio.

The whole synchronization process of this function block is essentially an electronic cam, in which the
slave axis follows the master axis during the synchronization interval. Based on the range of the master
axis (MasterSyncPosition-MasterStartDistance, MasterSyncPosition), the range of the slave axis (Current
position, SlaveSyncPosition), as well as the set gear ratio, the instruction automatically designs a cam
curve, and the slave axis follows the master axis to complete the cam action during the synchronization.

Note: If the master and slave axes are working in linear mode, ensure that the above parameters are set
properly; otherwise, the gearing action cannot be carried out correctly. Therefore, it is recommended
that the master and slave axes work in cyclic mode when this instruction is used.

For example, when the master and slave axes work in linear mode and both move in positive
direction, if Master axis position > MasterSyncPosition - MasterStartDistance or Slave axis position
> SlaveSyncPosition when this instruction is executed, then the electronic gearing action cannot be

inserted.
Sample timing diagrams for different parameters are given below:
When the master and slave axes work in cyclic mode (360):

18) MasterSyncPosition =280, MasterStartDistance = 50, SlaveSyncPosition = 60, Master axis velocity =
50, AvoidReversal = FALSE

6. Common MC Instructions

A
Execute
»
>
StartSync .
»
InSync >
280
sof H_ T Bo_7
100 /
Master axis position >
sl / _______
Slave axis position >
— — — 10— 7
Slave axis velocity |
ERROR ;
ERRORID ‘ 500 ‘ t

19) MasterSyncPosition =300, MasterStartDistance = 370, SlaveSyncPosition = 60, Master axis velocity =
50, AvoidReversal = FALSE

A
>
»
»
»
>
>
Master axis distance
of 370 between two points
<l |-
- >
360 f — —i— — g = ——— — — — -
Master axis position »
360
Slave axis position |
0
Slave axis velocity >

LIV

‘ 16400 t

20) MasterSyncPosition =300, MasterStartDistance = 50, SlaveSyncPosition = 60, Master axis velocity =
50, AvoidReversal = FALSE, Slave axis start position > 60

-225-

-226-

6. Common MC Instructions

Execute

v

StartSync

v

InSync

v

360

Master axis position

v

O T T T T T T T T T = i
200
60 _ i _ _ _____

Slave axis position

v

Slave axis velocity >

ERROR

»
>

ERRORID ‘ 16100 ‘ ¢

The target velocity will be reached when the synchronization is completed (InSync = TRUE). Slave axis
movement amount = Master axis movement amount x RatioNumerator/RatioDenominator

AvoidReversal: If the slave axis is a modulo axis and the master axis velocity (in a multiple relationship
with the gear ratio) is not relative to the slave axis velocity, then MC_GearInPos tries to avoid reverse
running of the slave axis. It tries to "stretch” the motion of the slave axis by adding 5 slave periods. If this
"stretching" is invalid, then an error occurs and the slave axis stops. If the slave axis velocity is related to
the major axis velocity (which is a multiple of the gear ratio), then an error occurs and the axis stops. If
the slave axis is a linear one, an error is generated at the rising edge of Execute.

4) Precautions

Before using the MC_SetPosition (current position change) instruction for the master axis, cancel the
relationship between the master axis and the slave axis.

5) Timing Diagram
At the rising edge of Execute, the electronic gearing action starts.

The value of Busy changes to TRUE when Execute is started. After the start of the action, the gearing
action is started by Active and StartSync.

When MasterSyncPosition and SlaveSyncPosition are reached, InSync changes to TRUE.

When this instruction is aborted by another instruction, the value of CommandAborted changes to TRUE
and those of Busy, Active, StartSync, and InSync change to FALSE.

6. Common MC Instructions

A
Execute
Pt
Busy
>t
StartSync Pt
InSync >t
MasterStart: ~ MasterSync
Masterposito Distance Position
np >
SlaveSyncP
osition
Slavepositon >
ERROR >t

€ Motion re-execution instruction
This instruction cannot be re-executed.
@ Start of this instruction during the execution of other instructions

When this instruction is started for the currently executing instruction, it will be switched or cached to
this instruction.

The action when multiple instances of this instruction are started is determined by BufferMode.

Buffer Mode Description

Aborting Immediately aborts the currently executing instruction and switches to this instruction.

If the direction of axis motion is reversed due to instruction switching, reverse running is
performed after the velocity is decelerated to zero.

The function block is started immediately after the last instruction motion is terminated.
No blending is performed here. When the end conditions (such as Done, InVelocity,
InEndVelocity, InGear, InSync, EndOfProfile) are reached, the new motion starts at the
velocity of the previous motion. If the previous motion was MC_MoveAbsolute or MC_
MoveRelative, the new motion will start in static state.

Buffered

MC_Phasing

This instruction specifies the phase shift between the master axis and the slave axis.

1) Instruction Format

[Instruction] Name | Graphic Expression ST Expression

-227-

-228-

6. Common MC Instructions

MC Phasing 0 MC_Fhasingl(
MC FPhasing Haster:= !
—Master - Done [— Slavei= '
p Execute:= ,
—Slave Busv — s
PhaseShift:= ,
CommandAborted — - .
Main- Velocity:= ,
. Error — .
MC_Phasing|slave axis Locceleration:=
—Execute ErrorID — e
phase . Deceleration:= ,
—Phase3hift .
shift] Jerk:=,
—Velocity Done=» ,
—Acceleration Buay=> ,
—Deceleration Cormandiborted=s:
—Jerk Error=> ,
ErrorID=>);
2) Related Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value .
Master Reference to the axis, that is, an instance of
M AXIS_REF_SM - -
aster axis S-REF_SM3 AXIS_REF_SM3
. Reference to the axis, that is, an instance of
Slave Slave axis | AXIS_REF - - AXIS_ REF_SM3
@ InputVariable
. Initial _—
Input Variable Name Data Type Value Range Value Description
u
Instructi
Execute ns ruc' on BOOL TRUE, FALSE FALSE Execute the instruction at the rising edge
execution
PhaseShift Master—sl.ave LREAL i 0 A P05|t|ve number indicates that the slave
phase shift axis lags.
)) Maximum velocity when the phase shift is
Velocity Velocity LREAL - 0
executed
Maximum acceleration rate when the phase
Acceleration Acceleration LREAL - 0 .XI. ! I W P
shift is executed
Maxi i hen the ph
Deceleration Deceleration LREAL - 0 e?><|r'num deceleration rate when the phase
shift is executed.
Second Maximum jerk when performing phase shift
Jerk derivative of LREAL - 0 . ! P gp
. is executed
velocity
€ Output Variable
) Initial ..
Output Variable Name Data Type Value Range value Description
u
Set to TRUE when the ph
Done Completed BOOL TRUE, FALSE FALSE e' C_) whenthe phase
shift is completed
Instruction in Set to TRUE when the
Busy uetonin i gooL TRUE, FALSE FALSE _ roEwhe
execution instruction is being executed
| i | h
CommandAborted nstruction BOOL TRUE, FALSE FALSE _ntermp_ted by other control
aborted instructions
Set to TRUE when an erro
Error Error BOOL TRUE, FALSE FALSE " error
occurs
h
ErrorlD Error code SMC_ERROR See SMC_ERROR 0 Outputan error code when an
error occurs

6. Common MC Instructions

3) Function Description

4

This instruction executes phase shift at the rising edge of Execute. The slave axis automatically
calculates a smooth curve to complete phase shift from the slave axis to the master axis, which is
specified by PhaseShift. A positive value indicates that the slave axis lags behind the master axis.

The Done signal outputs TRUE after phase shift is completed.

The master-slave phase shift is compensated based on the value of PhaseShift, Velocity, Acceleration
and Deceleration.

When the phase shift between the master axis and the slave axis reaches PhaseShift, the Done signal is
output.

When the instruction is executed, the instruction position and feedback position of the master axis
remain unchanged, and the slave axis is adjusted. The phase shift between the slave axis and the master
axis is the value of PhaseShift.

The final result of this instruction is the phase shift between the set values of the axes. Therefore, the
actual feedback value of the real axis may not be the same as the final shift.

This instruction is used in conjunction with the MC_Gearln instruction as follows: The master axis is
Virtual_x, and the slave axis is Virtual_y. At the rising edge of EX12, master axis velocity control and
master-slave electronic gearing are performed, and then the phase shift is performed. In addition, it can
be used in conjunction with an electronic cam. The slave axis acts as an "electronic cam master axis" to
achieve the phase shift effect of an electronic cam master axis.

Execute

Velocity

Acceleration

MC_Fhasing_0

MC_Phasing

-229-

6. Common MC Instructions

Lpgsitign) phase shift master position "seen” by slave
360 !
! >
physical master position
4
velocity lphase velocity
T mastervelocity
v £
t
&
Execute
Fy t
Dane

4) Timing Diagram

When the master and slave axes move in 360 cycles, adjustment is performed at the rising edge of the
Execute signal. After the adjustment, phase shift between the slave axis and the master axis is the value
of PhaseShift.

Execute

Busy

Done »

360

360

Masterpositon \)41 >t

PhaseShift

ERROR P t

5) Error Description

@ Ifthe Error outputs TRUE when the instruction is started, an error occurs.
@ Check ErrorID and check SMC_ERROR in the help to determine the alarm information. For details on the

“ o«

error code, see “ “Appendix C Error Codes” .

SMC_CAMBounds

-230-

6. Common MC Instructions

This function block calculates the maximum position, velocity, and acceleration rate of the slave axis
when the slave axis is cam-coupled to the master axis.

The master axis moves under the input maximum velocity and acceleration/deceleration limits. This
instruction can be used to check the correctness of the curves for cam table designs, provided that
the maximum acceleration/deceleration rate and velocity are known.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC CiMBounds 0(
- - CRM:= B
SMC ChMBounds 0 bExecute:= ,
o SMC_CAMBounds dMastervelMax:= ,
—|CRM bDene — dMasterdccMax:= ,
EBusy [— dMasterScaling:= ,
bError — dSlaveScaling:= ,
SMC_CAMBounds Cam upper and —kExecute nErrorID — bDone=>» ,
T —dMasterVelMax dMaxPos — bBusy=> ,
lower limits —dMastericcMax dMinPos — bError=: ,
—dMasterScaling dMaxVel — nErrorID=> ,
—{dslaveScaling dMinVel — dMaxFos=> ,
dMinPos=> ,
dMaxlAccDec — N
. | dMaxVel=> ,
dMinAccDec invel=s ,
dMaxiccDec=> ,
dMinZccDec=> | ;
2) Related Variables
€@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the cam, that is, an instance of
CAM C MC_CAM_REF - - ’ ’
am - MC_CAM_REF
€ InputVariable
. Initial A
Input Variable Name Data Type| Value Range Value Description
Instruction .) -
bExecute) BOOL TRUE, FALSE FALSE Execute the instruction at the rising edge
execution
Maximum Maximum master axis velocity in absolute
dMasterVelMax . LREAL - 1
velocity mode
Maximum Maximum master axis acceleration in absolute
dMasterAccMax AU ReAL - 0 ximu X ont !
acceleration mode
dMasterScaling Scaling factor | LREAL - 1 Scaling factor in master axis cam application
dSlaveScaling Scaling factor | LREAL - 1 Scaling factor in slave axis cam application
€ Output Variable
Output Initial
. Name Data Type Value Range Description
Variable yP & Value P
Set to TRUE when the calculation is
bDone Completed BOOL TRUE, FALSE FALSE
completed
bBusy Instruc.tion in BOOL TRUE, FALSE FALSE SeF to TRUE when the instruction is
execution being executed
bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output an error code when an error
nErrorlD Error code SMC_ERROR See SMC_ERROR 0 P
occurs
Maxi h i ition of th
dMaxPos ax.lr'num LREAL i 0 Calculat.et e ma?<|mum position of the
position slave axis according to the cam table
dMinPos Min?nﬁlum LREAL . 0 Calculat‘e the mir.1imum position of the
position slave axis according to the cam table.
Maximum . .
dMaxVel . LREAL - 0 Calculate the maximum velocity
velocity

-231-

6. Common MC Instructions

Output Initial
. Name Data Type Value Range Description
Variable yp g Value P
Minimum
dMinVel . LREAL - Calculate the minimum velocity
velocity
Maxi
dMaxAccDec axmum LREAL - Calculate the maximum acceleration
acceleration
. Minimum . .
dMinAccDec . LREAL - Calculate the minimum acceleration
acceleration

3) Function Description

@ Attherising edge of bExecute, the "maximum position", "minimum position" and other values of the

slave axis are calculated based on dMasterVelMax, dMasterAccMax, dMasterScaling, and dSlaveScaling
as well as the cam table data. For example, if the master axis has a period of 360 and the cam table is a
straight line with a slope of 2, the result of the calculation is shown in the figure below:

This instruction can be used when the master axis works in absolute mode, the master axis is set to
cyclic mode, or the modulus value is set to the master axis period.

The cam table is XYVA, which is valid in polynomial mode and not valid for 1D or 2D arrays.

SMC_ChMBounds 0

SMC CAMBounds

-232-

Ll

4) Timing Diagram

A

bBExecute

caMs —HcnM bhone F—ffeu—
bEBuay = Rpirgs
teati LError m= RNy

nErrorID— |SMC HO ERR

500 —dMasterVe lMax dMaxPos — T20
1000 —|dMasterfccMax dMinPos [—
1 —{dMasterScal ing dMaxVel —
1 —{dSlaveScaling dMinVel |-
dMaxkecDec —
dMiniccDec —

bERROR

5) Error Description

The cam table format

is not polynomial mode.

The MC_CAM_REF set value of the cam table does not match the actual cam table.

6. Common MC Instructions

Note: For details on the error code, see

SMC_CAMBounds_Pos

This function block calculates the maximum and maximum positions of the slave axis when the slave
axis is cam-coupled to the master axis. This function block does not calculate the maximum acceleration.

“ o«

Appendix C Error Codes” .

Its other functions are the same as those of the SMC_CAMBounds instruction.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
\MBounds_Pos0 (
SMC_CEMBounds Poa 0 CRM:= '
SMC_CAMBounds FPos bExecute:= ,
CLM bDone f= dMaster lax
bBusy ™ ia
SMC_CAMBounds_ |UPPerand bError = ing:=
lower cam
Pos it bExecute nErrorID— n
POS'I fon dMasterVelMax dMaxPos —
limits dMasterRoccMax dMinPos —
dMasterScaling
d5laveScaling nErrorID=> ,
dMaxPos=> ,
dMinPos=>»);
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the cam, that is, an instance of MC
CAM C MC_CAM_REF - - ’ ? -
am —-A- CAM_REF
€ InputVariable
i Initial —
Input Variable Name Data Type Value Range Value Description
Instruction . . -
bExecute ! ; I BOOL TRUE, FALSE FALSE Execute the instruction at the rising edge
execution
Miaxi VMiaxi - —
dMasterVelMax a><|n'1um LREAL i 1 aximum master axis velocity in
velocity absolute mode
Maximum Maximum master axis acceleration in
dMasterAccMax XMAM) REAL - 0 ximu rax ont
acceleration absolute mode
Scaling factor i t i
dMasterScaling Scaling factor | LREAL - 1 @ |.ng 'ac orin masteraxis cam
application
.) Scaling factorin sl i
dSlaveScaling Scaling factor | LREAL - 1 < |‘ng Aac orinsiave axiscam
application
& Output Variable
) Initial -
Output Variable Name Data Type Value Range value Description
Set to TRUE when th lculati
bDone Completed | BOOL TRUE, FALSE FALSE >etto when the catcutation
is completed
bBusy Instruc.tion in BOOL TRUE, FALSE FALSE -Set t? TRUE when the instruction
execution is being executed
bError Error BOOL TRUE, FALSE FALSE Set to TRUE when an error occurs
Output de wh
nErroriD Error code SMC_ERROR See SMC_ERROR 0 utputan error code when an
error occurs
. Calculate the maximum position of
Maximum . .
dMaxPos L LREAL - 0 the slave axis according to the cam
position table

-233-

6. Common MC Instructions

Calculate the minimum position of
the slave axis according to the cam
table.

Minimum
position

dMinPos LREAL - 0

3) Function Description

€ Attherising edge of bExecute, the "maximum position" and "minimum position" of the slave axis are
calculated based on dMasterVelMax, dMasterAccMax, dMasterScaling, and dSlaveScaling as well as the
cam table data.

€ Thisinstruction can be used when the master axis works in absolute mode, the master axis is set to
cyclic mode, or the modulus value is set to the master axis period.

@ Thecam table is XYVA, which is valid in polynomial mode and not valid for 1D or 2D arrays.

4) Error Description

The cam table format is not polynomial mode. The MC_CAM_REF set value of the cam table does not
match the actual cam table.

Note: For details on the error code, see” Appendix C Error Codes” .

SMC_WriteCAM

This instruction stores the edited cam table as a file when the program is running. It allows the cam table
to be used by instructions such as MC_Camin. For details on the content of the generated file, see "Cam
Format".

This instruction can be used in conjunction with SMC_ReadCAM.

1) Instruction Format

Instruction Name Graphic Expression ST Expression
SMC_WriteCiM 0
SMC WriteCAiM
—Hcam bDone
Cam upper EBuay =
SMC_WriteCAM and lower
limits bError =
== hExecute ErrorID—
—]3FileNames
2) Related Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
CAM cam MC_CAM._REF) Reference to the cam, that is, an instance of MC_
CAM_REF
€ InputVariable
Input Data Value Initial .
,p Name Description
Variable Type Range Value
bExecute Instruc4t|on BOOL TRUE, FALSE | FALSE Execute the instruction at the rising edge
execution
SFileName Document STRING o File nam.e in ASSII format con"t‘jalmng a cam description.
Name For details, see "Cam Format" in Help.

€ Output Variable

-234-

6. Common MC Instructions

. Initial -
Output Variable Name Data Type Value Range Value Description
TRUE wh h h
bDone Completed | BOOL TRUE, FALSE FALSE Setto TRUE when the cam has
been written to the file
Instruction in Set to TRUE when the
bBusy . BOOL TRUE, FALSE FALSE instruction execution is not
execution
completed
bError Error BOOL TRUE, FALSE FALSE Setto TRUE when an error
occurs
Output de wh
nErroriD Errorcode | SMC_ERROR See SMC_ERROR 0 utputan error code when an
error occurs

3) Function Description

*

*

This instruction is executed at the rising edge of bExecute. The cam information of the "Cam"
connection is stored in the file connected by the name "sFileName".

When the storage is complete, the bDone signal outputs TRUE.
The stored cam table information is limited by the hardware memory.

Note: This function is executed while the program is running. The cam table information can also be
manually stored offline.

7 Untitled1 project - InoProShop(¥0.0.9.10)

Eile Edit \iew Cam | Build Online Debug Tools Window Help
5 =l &S Read Cam Data from ASCII Table

Project

| \Write Cam Data into ASCIT Table |

Read Cam Online File

& Trace @ cam2 x

b¥] GEAR_mMPOS

WVA_TEST
Write Cam Online File

Display generated Code

Losod anes

4) Error Description

*

*

This instruction can only complete the cam table of XYVA polynomial mode. For 1D or 2D mode, an error
will be output.

The file name connected by "sFileName" does not exist or the information is wrong,.

Note: For details on the error code, see” Appendix C Error Codes” .

6.3 Other Functional Specifications

6.3.1 Instruction Cache

1) Aborting and buffered mode

*

*

Some function blocks (FBs) have a "BufferMode" input, which enables the FB to work in buffered or non-
buffered (default) mode. The difference between the modes lies in when the motion is started.

Non-buffered mode: The motion instruction takes effect immediately, even if it interrupts another
motion. The buffering area for the instruction movement is deleted.

Buffered mode: The motion instruction waits until the current function block sets its output to Done,
InPosition, or InVelocity. Buffered mode is also used to define the velocity curve during motion
blending.

Some buffer modes are shown below:

-235-

-236-

6. Common MC Instructions

Buffer Mode Description
Aborting Default mode without buffering. The function block is started immediately and aborts the
active motion. This instruction takes effect immediately for the axis.
The function block is started immediately after the last instruction motion is terminated.
Buffered No blending is performed here. When the end conditions (such as Done, InVelocity,

InEndVelocity, InGear, InSync, EndOfProfile) are reached, the new motion starts at the
velocity of the previous motion. If the previous motion was MC_MoveAbsolute or MC_
MoveRelative, the new motion will start in static state.

Blend at the low velocity

(BlendingLow)

The function block is started immediately after the last instruction motion is terminated.
The axis does not stop between motions but passes through the end position of the first
motion at the lower velocity of the two motion instructions.

Blend at the previous velocity

(BlendingPrevious)

The function block is started immediately after the last instruction motion is terminated.
The axis does not stop between motions but passes through the end position of the first
motion at the velocity of the first motion instruction.

Blend at the next velocity

(BlendingNext)

The function block is started immediately after the last instruction motion is terminated.
The axis does not stop between motions but passes through the end position of the first
motion at the velocity of the second motion instructions.

Blend at the high velocity
(BlendingHigh)

The function block is started immediately after the last instruction motion is terminated.
The axis does stop between motions but passes through the end position of the first
motion at the higher velocity of the two motion instructions.

2) Impact of buffering modes on defined function blocks

. Defined as a Buffering/ Follow a Buffering/ Signal for Activating the
Function Block)) . A . .
Blending Instruction Blending Instruction Buffering/Blending FB

MC_Power No No -
MC_Home No No -
MC_Stop No No -
MC_Halt No No -
MC_MoveAbsolute

Yes Yes Done
MC_MoveRelative
MC_MoveAdditive No No -
MC_MoveSuperimposed No No -
MC_MoveVelocity Yes Yes (Buffered only) InVelocity
SMC_
MoveContinuousAbsolute No Yes (Buffered only) InEndVelocity
SMC_MoveContinuousRelative
MC_PositionProfile
MC_VelocityProfile No No -
MC_AccelerationProfile

v if periodi
MC_Camln No es, also if periodic (only EndOfProfile
Buffered)

MC_CamOut No Yes (Buffered only) Done

Yes (BlendingPrevi
MC_Gearln es (BlendingPrevious Yes (Buffered only) InGear

only)
MC_GearQut No Yes (Buffered only) Done
MC_GearlnPos No Yes (Buffered only) InSync
SMC_FollowPosition
SMC_FollowVelocity

No No -
SMC_FollowPositionVelocity
SMC_FollowSetValues
SMC_SetTorque No Yes -

6. Common MC Instructions

. Defined as a Buffering/ Follow a Buffering/ Signal for Activating the
Function Block . : . A . .
Blending Instruction Blending Instruction Buffering/Blending FB
MC_Phasing No No
MC_Jog Yes (Buffered only) Busy
No
SMC_Inch Yes (Buffered only) Busy
SMC_BacklashCompensation No No

3) Execution order of cached function blocks

In buffered motion or blending motion mode, the FB instances of the next instruction motion must not
be executed earlier than the FB instance of the previous instruction motion (the execution order in the

main program). If this rule is violated, a new error SMC_MOVING_WITHOUT_ACTIVE_MOVEMENT will be
reported and the axis will switch to the Errorstop status.

4) Specific features of the mixed state

The buffering mode does not change the drive position characteristics. Rules of its valid blending
velocity are as follows:

If the blending velocity cannot be reached (without position overshoot), the valid blending velocity is
the next velocity that can be reached (without overshoot).

[Note]: The valid blending velocity can be higher or lower than the blending velocity.

If the second motion instruction starts in a direction opposite to that of the first motion instruction, the
valid blending velocity is set to 0. This prevents the position from going beyond its target position in the
direction of the first motion.

If the path of the second motion is too short to decelerate from blending velocity to 0, the valid blending
velocity will be adjusted. It is set to the maximum velocity that is allowed for safe braking to a standstill
status on the path of the second motion.

In the case of a rotary axis, the result of the input direction of MC_MoveAbsolute is not affected by
blending to the second motion. This means that the target position of the first motion is always in the
same modulus period, regardless of whether it follows the blending motion.

In the case of a rotary axis and a second motion of the MC_MoveAbsolute type, the blending velocity
does not affect the modulus period of the target position of the second motion instruction when
Direction = Fastest. This means that the target of the same period will be selected, regardless of whether
the second motion instruction uses buffered or blending mode.

5) Precautions for buffering mode

*

An instruction with a buffering area cannot be repeatedly triggered in the buffering area (during
execution in the non-aborting status). It can be repeatedly triggered if not in the buffering area (in
aborting status, when the instruction is complete, or in non-active status in Busy mode). That is, there
can only be one buffer instance with the Buffered/Blending function block.

During the execution of the buffer instruction, if the motion parameters are modified, there is no impact
on the original instruction. If the parameters are modified and re-triggered, only the modification to
aborting mode is supported.

6.3.2 Hitting Limit

21) Determination of hitting limit; processing rule for hitting the negative limit in positive direction: For

-237-

-238-

6. Common MC Instructions

positive motion, only the positive limit is judged, and an error is reported when the motion goes
beyond the positive limit. For negative motion, only the negative limit is judged, and an error is
reported when the motion goes beyond the negative limit.

22) Rules of changes in the status bit, axis status, and instruction output flag bit of hitting limit: When
the axis starts to decelerate upon software limit, it directly switches into the ErrorStop status and
the instruction enters the Error status.

23) Processing rule for hitting the limit switch: The instruction determines whether it will cross the limit
during the movement. If the trajectory of the current instruction will decelerate upon software limit
only after crossing the limit, then it will interrupt the current controlled instruction within the limit
and finally stop at the limit boundary through the deceleration parameter set in the background.

24) Stopping rule for hitting the software limit: If fSwLimitDeceleration is smaller than
fSWMaxDeceleration, it will stop based on fSWMaxDeceleration. If the distance of stopping
based on the maximum deceleration rate is larger than fSWErrorDistance, it will stop based on
fSWErrorDistance. The current velocity and position to the limit are calculated based on the
software maximum deceleration (fSWMaxDeceleration), software limit maximum deceleration
(fSwLimitDeceleration) and deceleration distance (fSWErrorDistance). The parameter for
deceleration will be the one that allows the minimum deceleration distance (maximum deceleration
rate), among the maximum software limit deceleration, software limit deceleration and the
maximum software limit deceleration. The software limit deceleration process is a T-curve, that is,
after deceleration upon soft limit is triggered, the acceleration rate jumps directly to the software
limit deceleration rate/maximum software limit deceleration rate/deceleration rate calculated based
on the maximum software limit deceleration distance.

25) If theinitial position is beyond or on the limit and the axis moves in the direction of the limit, the
axis processing logic and function block output flag bit change as follows: the axis directly enters
the ErrorStop status and the instruction is set to Error.

26) Added an option to make the axis that hits the limit not enter the ErrorStop status

For the above item 2/5, when the axis enters the software limit, it will switch to the ErrorStop status and
the instruction enters the Error status. The option Axis.bSWLimitNotErrorStopEnable is added so that:

If Axis.bSWLimitNotErrorStopEnable is TRUE, when the axis starts to decelerate upon software limit,
there is an option of not reporting an error, that is, the axis will be in non-ErrorStop status, making
it possible to reverse the movement away from the limit when a new instruction is triggered. If Axis.
bSWLimitNotErrorStopEnable is FALSE, the function of the above item 2 is kept.

Similarly for item 5, if Axis.bSWLimitNotErrorStopEnable is TRUE, when the initial position is beyond or
on the limit and the axis moves in the direction of the limit, there is an option of not reporting an error,
that is, the axis will be in non-ErrorStop status, making it possible to reverse the movement away from
the limit when a new instruction is triggered. If Axis.bSWLimitNotErrorStopEnable is FALSE, the function
of the above item 5 is kept.

6.3.3 Defaults of Motion Control Function Blocks

The default values of the motion variable input limits, that is, the velocity limit, acceleration limit,
deceleration limit and jerk limit, for any current motion instruction are all 0. However, during the
execution of the instruction, none of the limit input values can be 0. When the input values are not
assigned, the default values will be adopted. In this case, if the instruction is triggered directly, an error
will be reported.

Users can avoid the error that is reported when the limit value of the motion variable input of an
instruction is 0 or less than 0. That is, if the parameter Velocity, Acceleration, Deceleration or Jerk for
the motion control instruction exceeds the value range, a new default value will be used, which is in the

6. Common MC Instructions

structure stDynamicDefault.

stDynamicDefault description:

Structure Element Data Type Default Description
value
fDefaultVelocity LREAL 10 New default value of velocity
fDefaultAcceleration LREAL 100 ,a\l:cwel(ifafiiil; \;ztl:e of
stDynamicDefault
fDefaultDeceleration LREAL 100 lezvelii;?olavrzte of
fDefaultJerk LREAL 10000 New default value of jerk
The following instructions are involved:

Instruction Involved Velocity Acceleration Deceleration Jerk
MC_MoveAbsolute Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
MC_MoveAdditive Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
MC_MoveRelative Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
MC_MoveSuperlmposed Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk<0
MC_MoveVelocity Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
SMC_MoveContinuousAbsolute Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
SMC_MoveContinuousRelative Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
MC_Jog Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
SMC_Inch Velocity <0 Acceleration rate < 0 Deceleration rate < 0 Jerk <0
MC_Halt - - Deceleration rate < 0 Jerk <0
MC_Stop - - Deceleration rate < 0 Jerk <0

The default values will be assigned to the input variables of the above instructions within the ranges
shown in the table. However, there are two special cases:

@ Ifthevelocity is 0 in the position-related instruction but the desired displacement is not 0, an error will
be reported.

@ Ifthe velocity at the end of continuous motion is smaller than 0, the end velocity is set to 0.

6.3.4 Curve Reversal Prevention

@ I Axis.bCurvelnvertedEnable is TRUE, the current motion is interrupted by another motion, and the
displacement generated in the transition process between the velocity at the interruption and the target
velocity is larger than the relative displacement of the motion to the target position, the deceleration
rate will be automatically adjusted to avoid curve reversal.

@ If Axis.bCurvelnvertedEnable is FALSE, the original reversal phenomenon will be maintained.

When the target displacement is very small and the difference between the breakpoint velocity and the
target velocity is large, the velocity demand may not be satisfied at the target displacement because
the deceleration rate is too small, resulting in velocity reversal. The reversal is not acceptable in many
situations. Examples are shown below:

The parameters of continuous relative motion are as follows: initial velocity (breakpoint velocity) = 0,
end velocity = 10, target displacement when the end velocity is reached = 10 Based on this velocity and
acceleration/deceleration rate, the running displacement when the end velocity is reached in the fastest

-239-

6. Common MC Instructions

manner is ;== , which is greater than the target displacement of 10. In this case, there will be a

reversal, as shown in the figure:

Tocs o
100 e Configure
 pover 1 i Add variable
Poer 3
a P i - axis -
et
] 10.
Net comment e e 3
20 - s FACtPosition
MC_Power)
VCPower 1003 ‘Mr__‘,..« 9.671551704406738
N ENO 3 /,....—"‘ =
s —= Aods Status (= — 10
= Enable bRegulatorRealState = It - avis fActVelodity
= bRegulatorOn bDriveStartRealState = . oo s
= bDriveStart Busy =
FAL b 0 = ads Fethcceleration
Error !
ErrorlD |- 0
b = axis FActAcceleration
i i
Net comment 2 | 7.8678131103515625
SMC_MoveContinuousRelative 0 &
SMC_MoveContinuousRelative 10 o
N eNol ol
N i o
s —J s dvel s ol
[s E)fecute DistanceTravelled = — —
10 —| Distance Busy e e
20 —| Velocity ¢ daborted e Cd
10— EndVelocity [
1 —{ EndVelocityDirection Error D]
7 —F Acceleration
9 —JDeceleration
1 —Jerk
EIER AdzptEndVelToAvoidOvershoot

Confia_Globals.Axis.naxisSate

Confi_Globals.Axis.byControlatiode

Config_Globals.Axs.byRez|ContollerMode

That s, if the straight drop displacement of the initial and end velocity at the breakpoint is larger than
the total relative displacement, then there will be velocity reversal after the interruption.

To avoid the reversal, consider optimization within the algorithm to automatically change the
deceleration rate and take the smallest acceleration/deceleration value.

Examples are shown below:
Similar to the above case, it is known that the straight drop displacement is larger than the total relative
displacement. If bCurvelnvertedEnable is set to TRUE, the acceleration rate will be automatically

adjusted as follows: v _ E _10-As A=5 thevelocity reversal is avoided, as shown in the figure.
2% 4 2%4

smiEe) ruu A
. Application.PoU s B
400 M Configure
7 - Add variable
1C_Povier_0 g
1 M s fetPosition v
_,,..,:-M 346.1539011001587 | 356.1139411001567 | 4360039939
Netcomment 1 s = s fActPosition
MG Bowerl() o 346.1538972854614 | 355.6869297027588 | A8.53303241
EN e j MM == axis fSetVelocity
— .. o 0 | 5.980000000000008 | 49.930000000000008
s —Auds] e
Enable bRegulatorRed | ™ -=axis fActvelocty
bRequl B oo .
: On bD] R, 0.0007152557373046875 | 8.754557745361328 | 4755
bDriveStart = axis fstAcceleration
10° + *
3 ! 0585
E ; 151
1 | - s factaccelerstion
-04172325134277344 | -1L026B59263447266 | A-10.609
Net comment
SMC_MoveContinuol o]
SMC_MoveContinu
EN ki
Axis == Ais] i
[ravse R 1 A
10 — Distance 4 A
20 — Velocity 5|
10 — EndVelocity
1 —| EndVelocityDirection 4
5 —| Acceleration
5 —| Deceleration
1 —]Jerk
[FaLse B AdaptEndVelToAvoidOversho
3 i
t il
1Config_Globals.Axis.nAxesate "
1Config_Globals.Axis by Controlleode t g
sConfig_Globals.Axis.byRealCortroletode = ' T I Gt | i S A N
1Config_Globals.Axis iOvmer " »
)Config_Globals.Axis iNoOrmer 3 4 5 8 s 8 o 10s | i r

6.4 Axis Group Instructions

-240-

6. Common MC Instructions

1) Instruction List

Instruction Category

Name

Function

Axis Group Instructions

MC_GroupEnableV2

Enabling an axis group

MC_GroupDisableV2

Disabling an axis group

MC_ GroupHomeV2

Performing axis group homing

MC_GroupSetPositionV2

Setting the current position of an axis group

MC_GroupReadActualPositionV2

Reading the actual position of an axis group

MC_GroupReadActualVelocityV2

Reading the actual velocity of an axis group

MC_GroupReadActualAccelerationV2

Reading the actual acceleration rate of an axis
group

MC_GroupStopV2

Stopping an axis group immediately

MC_GroupHaltv2

Stopping an axis group

MC_GroupSetOverrideV2

Setting the axis group ratio

MC_MovelinearRelativeV2

Linear relative motion

MC_MoveLinearAbsoluteV2

Linear absolute motion

MC_MoveCircularRelativeV2

Arc relative motion

MC_MoveCircularAbsoluteV2

Arc absolute motion

MC_GroupResetV2

Resetting an axis group

MC_GroupReadErrorV2

Reading the axis group error message

MC_GroupReadStatusV2

Reading the axis group status

MC_GrouplnterruptV2

Pausing an axis group

MC_GroupContinueV2

Restarting an axis group

2) Axis group state machine

MC_MovelinearAbsolute
MC _MovelinearRelative
MC _MoveCircularAbsolute
MC _MoveCircularRelative

Notel and
MC _GroupHalt
MC _Grouplnterrupt
MC_GroupContinue

GroupMoving

@ Before switching the axis group state from GroupDisabled to GroupStandby, make sure all axes in the
axis group are mounted to the axis group, and all axes in the axis group have been enabled successfully

GroupHoming hs-===---_

GroupDisabled

MC _GroupSetPosition

without error messages.

@ Ifanaxisin the axis group has an error message when the axis group is in the GroupStandby state, the

axis group switches to the GroupErrorStop state.

”
s us F_er_\’_
o Ax\s‘s‘fa_t,,--

MC _Groupfiisable

-241-

-242-

6. Common MC Instructions

*

*

*

To switch the axis group state from GroupErrorStop to GroupStandby, you need to call the MC_
GroupReset instruction to clear errors of the axis group and errors of axes in the axis group. If the errors
still exist, state switching is not allowed.

To switch the axis group state from GroupStandby to GroupMoving or GroupHoming state, make sure
each configured axis in the axis group is enabled and is in the Synchronized_Motion or Standstill state.
Otherwise, an error will be generated when you call the axis group motion instruction. However, it does
not affect the axis group state machine.

When the axis group is in the GroupStopping state, you need to reset the output variable Done of the
MC_GroupStop instruction. When the input variable Execute is reset, the axis group switches to the
GroupStandby state.

After the axis group is enabled, the axes in the axis group cannot use single-axis instructions (except the
single-axis immediate stop instruction).

The MC_GroupSetPosition instruction for setting the current position of an axis group can only be called
when the axis group is in the GroupStandby or GroupMoving state and the motion is idle.

The MC_GroupDisable instruction can be used to switch the axis group state from GroupErrorstop to
GroupDisabled.

The GroupErrorstop state does not affect the state of a single axis in an axis group.

3) Axis group types

Diagrams of axis group types

27) XY type

28) XYZtype

6. Common MC Instructions

29) XYZU type

@ Diagram of axis group coordinate system

The core function of an axis group is coordinate motion. This section specifies the coordinate systems
associated with the axis group motion. The coordinate systems (CoordSystem) involved in the axis group
are shown below:

According to the characteristics of axis group motion, the coordinate system types include Axis
Coordinate System, Machine Coordinate System, Part Coordinate System, and World Coordinate System,
as listed in the table below:

Coordinate System Meaning Description
Axis-related, indicati dinates of each
Axis Coordinate System Axis Coordinate System (ACS) jcj(ilr?tre ated, Indicating coordinates of eac
Ai) .
Machine Coordinate System Machine Coordinate System (MCS) XS group base coordmate.system, axis group
relative to the World Coordinate System
Part Coordinate System Part Coordinate System (PCS) Workspace
B to all Machine Coordinat
World Coordinate System World Coordinate System (WCS) ase space common fo att Machine Loordinate
Systems
4) Variable
AXES_GROUP_REF: Axis group structure
Variable Type Description
ild E_GROUP_ID Axis group type identifier
iNo DWORD Axis group number
bDisableErrorLogging BOOL Print log information
fbeFBError ARRAY[0..5] OF MC_FBERROR Instruction error message

-243-

-244-

6. Common MC Instructions

Variable Type Description

bError BOOL Error state

iErrorID DWORD Error ID

eState E_AXES_GROUP_STATE Axis group state machine

bldle BOOL Idle state identifier
ACS/P i iti i

stcmd ARRAY [1..2] OF S_PNT [ACS/ CS.] coordinate p05|t|on,§/eIOC|tyfand
acceleration rate of the current instruction
[ACS/PCS] coordinate position, velocity, and

stFrontCmd ARRAY [1..2] OF S_PNT acceleration rate of the instruction in the
previous period
C treal-ti ACS/PCS dinat

stActual ARRAY [1..2] OF S_PNT urrent real-time [ACS/PCS] coordinate
position, velocity, and acceleration rate
Real-time [ACS/P i iti

stFrontActual ARRAY [1..2] OF S_PNT eal-time [ACS/PCS] coordinate position,

velocity, and acceleration rate of the last period

fActualPathVel

LREAL

Main dimension subspace resultant velocity of
the real-time TCP point (PCS)

fActualPathAcc

LREAL

Main dimension subspace resultant
acceleration of the real-time TCP point (PCS)

E_AXES_GROUP_STATE: Axis group state machine enumeration type

Variable Value Description
GROUP_ERRORSTOP 0 Axis group stopped due to an error
GROUP_DISABLED 1 Axis group disabled
GROUP_STOPPING 2 Axis group stopped immediately
GROUP_STANDBY 3 Axis group standby
GROUP_MOVING 4 Axis group in motion
GROUP_HOMING 5 Motion homing

E_COORD_TYPE: Curve profi

le type enumeration type

Variable Value Description
TRAPEZOIDAL_CURVE 0 Trapezoidal profile
CUBIC_CURVE 1 Cubic 7-segment S-curve
SEVENTH_CYRVE 2 Septuple 7-segment S-curve

E_ERROR_STOP: Stop mode

enumeration type

Variable Value Description
T_ERROR_STOPPED 0 Error stopped
T_ERROR_STOPPING 1 Stopping error
T_ERROR_STOP 2 Error stop activated

E_UNIT_SPACE: User maind

imension enumeration type

Variable Value Description
UNIT_TRAJECT 0 Position as user main dimension
UNIT_ORIENT 1 Orientation as user main dimension
UNIT_PERCENT) Uniaxial scale factor as user main dimension

orientation

MC_OUTMODE: Detachment mode enumeration type

6. Common MC Instructions

Variable Value Description
mcDecelerationStop 0 Position as user main dimension
mcConstantVelocity 1 Orientation as user main dimension
mclmmediateStop) Uniaxial scale factor as user main dimension

orientation

MC_BUFFER_MODE_2: Axis group buffer mode enumeration type

Variable Value Description
MC_ABORTING 0 Aborting mode
MC_BUFFEREN 1 Buffer mode
MC_BLEND_LOW 2 Blend at the low velocity
MC_BLEND_PRE 3 Blend at the previous velocity
MC_BLEND_NEXT 4 Blend at the next velocity
MC_BLEND_HIGH 5 Blend at the high velocity

MC_TRANSITION_MODE_V2:

Transition mode enumeration type

Variable Value Description
TM_NONE 0 No insertion of transition contour lines
TM_START_VELOCITY 1 Transition with the set starting velocity
TM_CORNER_DISTANCE 3 Transition with the set corner distance
Transition with the set maximum corner
TM_MAX_CORNER_DEVIATION 4 .
deviation
Transiti ith th i ity of th
TM_DEFINED_VELOCITY 10 ran5|t|(?n wit t e maximum velocity of the
current instruction
TM_RESET_ABORT 11 Reset aborting transition mode
TM_DEC_ABORT 12 Deceleration aborting transition mode

MC_CIRCMODE_V2: Arc mod

e enumeration type

Variable Value Description
BORDER_ARC 0 Three-point arc
CENTER_ARC 1 Center arc
RADIUS_ARC 2 Radius arc

MC_COORDSYSTEM_2: Coordinate system enumeration type

Variable Value Description
ACS 0 Axis Coordinate System
PCS 1 Machine Coordinate System

E_STOP_MODE_V2: Stop mode enumeration type

Variable Value Description
DEC_STOP 0 Decelerate to stop
IMMED_STOP 1 Stop immediately

MC_CIRC_PATHCHOICE_V2:

Axis group type library

Variable

Value

Description

SHORTPART

Short arc path

LONGPART

Long arc path

-245-

6. Common MC Instructions

6.4.1 MC_GroupEnableVv2

This instruction enables an axis group by switching its state from GroupDisabled to GroupStandby.

1) Instruction Format

Instruction Name LD Expression ST Expression
MC_GroupEnableV2 0
MC GrnupEnabIe‘UE MC_GroupEnableVa_0(
- AxesGroup:= AxesGroup,
. —|EN ENO — Execute:= ,
MC_ Enabling an = W D
GroupEnablev2 |axis group FREELE one Done=> ,
— Execute Busy [~ Buay=> ,
Error - Error=> ,
ErrorID=>):
ErrorlD —
2) Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable P Range Value P
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- of AXES_GROUP_REF
@ InputVariable
Input Data Value Initial .
. Name Description
Variable Type Range Value
Starting the -
Execute) . BOOL TRUE, FALSE | FALSE Started at the rising edge
instruction
€ Output Variable
) Initial s
Output Variable Name Data Type Value Range value Description
Done Instruction BOOL TRUE, FALSE FALSE Se’F to TRU.E vvhen the execution
completed of instruction is complete
E ti to TRUE after th
Busy 'xecu |r'1g BOOL TRUE, FALSE FALSE _Set © . v ,a ter_ €
instruction instruction is received
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
ErrorlD Fault code DWORD 0 Output an error code when an
error occurs

3) Function Description

€ Thisinstruction switches the axis group state specified by the input/output variable AxesGroup from
GroupDisabled to GroupStandby.

€ When the axis group is in the GroupStandby state, other axis group instructions can be executed.

€ Thisinstruction switches the state of a single axis (Axis) in the axis group specified by the input/output

variable AxesGroup to SYNCHRONIZED_MOTION.

4) Precautions

*

-246-

This instruction reports an error when there is an unconfigured single axis (Axis) in the axis group
specified by AxesGroup. Please configure a single axis (Axis) for the axis group specified by AxesGroup
as required.

6. Common MC Instructions

€ When this instruction is enabled, the single axis (Axis) in the axis group specified by AxesGroup of this
instruction must be in the off (PowerOff) or standby (StandsStill) state.

@ Ifasingle axis (Axis) in the axis group specified by AxesGroup of this instruction is in the ErrorStop state
when this instruction is enabled, the error code of the axis will be output.

@ Asingle axis (Axis) can be added to different axis groups (AxesGroup), but only one axis group
(AxesGroup) can be enabled. If an axis group (AxesGroup) configured with this axis is already enabled,
other axis groups (AxesGroups) configured with this axis cannot be enabled until the axis group
(AxesGroup) is disabled by using the MC_GroupDiable instruction.

@ Ifthe output variable Done changes to TRUE, the axis group specified by AxesGroup is enabled. In this

case, it is not allowed to execute a single-axis instruction for the single axis in the axis group (AxesGroup).

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.2 MC_GroupDisableV2

This instruction disables an axis group by switching its state to GroupDisabled.

1) Instruction Format

Instruction Name LD Expression ST Expression

WC GroupDisableV2 0

. MC GroupDisableVa 0
MC GroupDisablev2 - =
— LyesGroup:= LysaGroup,
MC_ Disabling an — EN ENO - Exscute:=
GroupDisableV2 |axis group = AxesGroup Done — Done=»
— Execute Error - Error=» ,
Erraril — ErrorID=> }:
2) Variables
€ Input/Output Variable
Input/Output Value Initial .
Name Data Type Description
Variable yP Range Value P

Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF

@ InputVariable

Input Data Value Initial .
. Name Description
Variable Type Range Value
Starting the -
Execute . : BOOL TRUE, FALSE | FALSE Started at the rising edge
instruction

€ Output Variable

Initial
Value

Output Variable Name Data Type Value Range Description

-247-

6. Common MC Instructions

| i TRUE wh h i
Done nstruction BOOL TRUE, FALSE FALSE Se’.t to U. w. en the execution
completed of instruction is complete
Instructi Set to TRUE wh
Error nstruction 1 gooL TRUE, FALSE FALSE etto TRUEwhen an error
error occurs
h
ErrorlD Fault code DWORD - 0 Output an error code when an
error occurs

3) Function Description

*

*

This instruction disables the axis group specified by the input/output variable AxesGroup by
changing its state to GroupDisabled.

If this instruction is executed when the axis group (AxesGroup) is in the GroupDisabled state,
the output variable Done is set to TRUE immediately.

When the axis group (AxesGroup) is in the GroupDisabled state, a single-axis instruction can
be executed for the single axis (Axis) in the axis group (AxesGroup).

This instruction does not affect the state of the single axis (Axis) in the axis group specified by
the input/output variable AxesGroup. If the axis group is in the GroupStandby state, the single
axis in the axis group will be switched to the Standstill state.

4) Precautions

*

*

This instruction can be executed when the axis group (AxesGroup) is in the GroupStandby,
GroupDisabled, or GroupErrorStop state and cannot be used in other states. Otherwise, an error will be
reported.

After this instruction is executed, a single-axis instruction can be executed for the axis in the axis group
(AxesGroup).

5) Timing Diagram

6) Error description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.3 MC_GroupHomeV2

This instruction enables an axis group to return to the mechanical zero position.

1) Instruction Format

Instruction Name LD Expression ST Expression
4C_GroupHomeVa_0 (
MC_GroupHomeV2_0 LxesGroup:= hxesGroup,
MC GroupHomeV2 Execute:= ,
— EN EMNO — Positicn:= ,
MC Performing = AxesGroup Done — CoordSystem:=
GrounHomeV2 axis group —| Execute Busy - Done=»
roupriome homing — Position Active — Bugy=>
==
— CoordSystem CommandAborted — Lotives
o |H ctive=» ,
Commandiborted=> |
ErrorlD [~
Error=» ,
Erroril=> }:

2) Variables

*

-248-

Input/Output Variable

6. Common MC Instructions

Input/Output Value Initial

. Name Data Type Description
Variable o Range | Value 2

Reference to the axis group, that is, an instance

AxesGroup Axis group AXES_GROUP_REF of AXES_GROUP_REF

€ InputVariable

Input Value Initial .
. Name Data Type Description
Variable . Range Value .
Starting the
Execute) I g, BOOL TRUE, FALSE | FALSE Started at the rising edge
instruction
. . ARRAY[0---gc_iAxis_Num- Absolute coordinate of the mechanical
Posit Posit - 0,0,0-
osthon osthon 1] OF LREAL [0,0,0-1 zero position
Coordinate MC_COORDSYSTEM .
CoordSystem systen: V2C_OORDSYSTEM7V_2 ACS ACS Select the coordinate system type
& Output Variable
i Initial -
Output Variable Name Data Type Value Range Value Description
u
| i TRUE wh h i
Done nstruction BOOL TRUE, FALSE FALSE SeF to U. w. en the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy SXECUHNE 1 gooL TRUE, FALSE FALSE >etto THUE atterthe
instruction instruction is received
Axis group
. under Set to TRUE when the axis
Active BOOL TRUE, FALSE FALSE .
control of the group is under control
instruction
Instruction
Command TRUE when th
execution BOOL TRUE, FALSE FALSE isnestt:ctioﬁ i:vat?;]rttej
Aborted aborted
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
h
ErrorID Fault code DWORD - 0 Outputan error code when an
error occurs

3) Function Description

€ Thisinstruction is started at the rising edge of Execute and enables the axis group (AxesGroup)
to return to the mechanical zero position.

€ Thisinstruction defines the homing sequence for each axis in the axis group (AxesGroup).

- No descending order is allowed in the defined homing sequence, and the homing number of the first
axis must be 1.

- For example, if the axis group type is XYZA, the homing sequence of the axis group can be defined as “1,
1,1,17, “1,2,3,47, “1,2,2,2” , “1,2,2,3” ,or “1,2,3,3” .

- Currently, the homing sequence can be defined in the axis group interface and the axis group
structure.

€ Thisinstruction cannot be triggered again.
4) Precautions

€ Thisinstruction can be executed only when the axis group (AxesGroup) is in the GroupStandby state. It
will report an error when being executed in other states.

@ Thisinstruction can be interrupted only by the MC_GroupStop instruction.

*

This instruction supports homing only under the ACS.

-249-

-250-

6. Common MC Instructions

@ Currently, only servo homing is supported. Other homing modes will be developed later.

5) Timing Diagram

6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.4 MC_GroupSetPositionV2

This instruction sets the current position of each axis in the axis group.

1) Instruction Format

Instruction Name LD Expression ST Expression
MC_Group3etPositionVa _0(
. RxesGroup:= AxesGroup,
MC_GroupSetPositionV2_0
- R Execute:= ,
MC_GroupSetPositionVv2 Position:= |
' — EN ENO Relative:e
Setting the = AxesGroup Done ,_.E ative:= |
MC_ current | Execute Busy Coord3ystem:=
GroupSetPositionV2 position of an —| Position Active Done=»
axis group — Relative CommandAborted Busy=> ,
— CoordSystem Error Betive=»
ErrorlD Commandiborted=> |
Error=» ,
ErrorIl=> }:
2) Variables
€ Input/Output Variable
Input/Output Value Initial —
. Name Data Type Description
Variable o Range Value =
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF

€ InputVariable

Input Value Initial
. Name Data Type Description
Variable e Range Value .
Starting the
Execute) I g. BOOL TRUE, FALSE | FALSE Started at the rising edge
instruction
" . ARRAY[0---gc_iAxis_Num- Position [u] in the corresponding
Posit Posit - 0,0~
osthon ostton 1] OF LREAL (0,0 coordinate type
Enabling
Relative relative BOOL TRUE, FALSE | FALSE RELATIVE=TRUE; ABSOLUTE=FALSE
coordinates
Coordinat
CoordSystem | ~0T"M¥*€ e COORDSYSTEM_V2 | ACS,PCS | ACS Select the coordinate system type
system type
& Output Variable
i Initial s
Output Variable Name Data Type Value Range value Description
Done Instruction BOOL TRUE, FALSE FALSE Se‘F to TRU.E vvhen the execution
completed of instruction is complete
E i TRUE aff h
Busy ,Xecum,]g BOOL TRUE, FALSE FALSE _Set to X v ,a tert_ N
instruction instruction is received

6. Common MC Instructions

Axis group
. under Set to TRUE when the axis

Active BOOL TRUE, FALSE FALSE .

control of the group is under control

instruction

Instruction
Command TRUE when th

execution BOOL TRUE, FALSE FALSE ?nestt:ctioi i;Na be;rttej
Aborted aborted

Instruction Set to TRUE when an error
Error uct BOOL TRUE, FALSE FALSE W

error occurs

h
ErrorID Fault code DWORD - 0 Outputan error code when an
error occurs

3) Function Description

*

*

This instruction specifies the current position of each axis in the axis group by setting the
input/output variable AxesGroup.

You can set the current position of each axis (Axis) in the axis group (AxesGroup) under the
ACS or PCS and update the axis offset or part coordinate system without changing the part
coordinate system type. You can also set the position in the dynamic coordinate system.

Relative (enabling relative coordinates)
You can select how to set the position by setting the input variable Relative of this instruction.

Relative=FALSE: Absolute coordinate system. After this instruction is executed, the actual position of
each axis (Axis) in the axis group (AxesGroup) equals the value set by the input parameter Position of this
instruction.

Relative=TRUE: Relative coordinate system. The actual position of each axis (Axis) in the axis group
(AxesGroup) after this instruction is executed equals the sum of the value set by the input parameter
Position of this instruction and the actual position of each axis (Axis) in the axis group (AxesGroup)
before this instruction is executed.

4) Precautions

*

*

When this instruction is executed, the axis group specified by the input/output variable AxesGroup
must be in the GroupStandby or GroupMoving state and the value of Idle must be TRUE. There is no
requirement on the state of axes (Axis) in the axis group (AxesGroup).

Setting the position under the ACS will affect the position of the axis group under the PCS. Setting the
position under the PCS will not affect the position of the axis group under the ACS.

5) Timing Diagram

6) Err

or Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.5 MC_GroupReadActualPositionV2

This instruction reads the actual position of an axis group in the selected coordinate system.

1) Instruction Format

| Instruction | Name | LD Expression | ST Expression |

-251-

-252-

6. Common MC Instructions

MC_GroupReadActualPositionV2_0 MC_GroupReadictualositionyz 0|
— AxesGroup:= AxesGroup,
MC_GroupReadActualPositionV2 Fnablei=
Reading —EN ENO [~ Coords Ifst;m'—
MC_GroupRead the actual = AxesGroup Valid : Lid i'_ T
valld=»> ,
ActualPositionV2 positionofan| —| Enable Busy = —
axis group — CoordSystem Error — us;—_ '
ErrarlD — Error=>
Position |— Errorll=> ,
Pogition=> }:
2) Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range | Value =
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- of AXES_GROUP_REF
€ InputVariable
Input Value Initial
. Name Data Type Description
Variable YR Range Value P
Enable Instruction BOOL TRUE. FALSE | FALSE TRUE: Execute the instruction; FALSE: Do
execution ’ not execute the instruction
Coordinat
CoordSystem s;s(’z;n:ntj/pee MC_COORDSYSTEM_V2 | ACS, PCS ACS Select the coordinate system type

€ Output Variable

i Initial L
Output Variable Name Data Type Value Range value Description
Valid
Set to TRUE when th i
valid instruction | BOOL TRUE, FALSE FALSE eLto TREE when the axis
group is under control
output
Executi Set to TRUE after th
Busy =xecuting BOOL TRUE, FALSE FALSE >etto TRUE afterthe
instruction instruction is received
Instructi Set to TRUE wh
Error nstruction 1 gooL TRUE, FALSE FALSE etto TRUE when an error
error occurs
h
ErrorID Fault code DWORD 0 Outputan error code when an
error occurs
ARRAY[1---N]JOF Ret th t iti
Position Position [] 0,0,+] eturn ‘e current position [u]
LREAL of the axis group
h
ErrorlD Fault code DWORD 0 Output an error code when an
error occurs

3) Function Description

€ When Valid is TRUE, this instruction obtains the actual position of all single axes (Axis) in the
axis group specified by the input/output variable AxesGroup of this instruction in the selected

coordinate type (CoordSystem) based on the control cycle.

4) Precautions

€ When this instruction is executed, the axis group specified by the input/output variable AxesGroup must
not be in the GroupDisabled state. There is no requirement on the state of axes (Axis) in the axis group

(AxesGroup).

5) Timing Diagram

6) Error Description

6. Common MC Instructions

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.6 MC_GroupReadActualVelocityV2

This instruction reads the actual velocity of an axis group in the selected coordinate system.

1) Instruction Format

Instruction Name LD Expression ST Expression
MC_GroupReadActualVelocityv2 0 MC_GroupReadictualVelocityVa 0(
MC_GroupReadActualVelocityv2 RxesGroup:= AxesGroup,
dEN END Enable:= |
Reading 4 . CoordSystem:=
= AxesGroup Valid - v T
MC_GroupRead o
_GroupRrea the aFtual | Enable Busy Valid=s |
ActualVelocityV2 velocity of an e Error Busy=> ,
axis group ErrerlD Error=» ,
Velocity ErrorID=> ,
PathVWelocity Velocity=> ,
PathVelocity=>);
2) Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF
@ InputVariable
Input Value Initial
. Name Data Type Description
Variable yp Range Value P
| i TRUE: E hei ion; FALSE: D
Enable nstruc.tlon BOOL TRUE, FALSE | FALSE u xecutet'e |nstrL.1ct|on, SE: Do
execution not execute the instruction
Coordinate .
CoordSystem | ~0°r¢!n? MC_COORDSYSTEM_V2 | ACS,PCS | ACS Select the coordinate system type
system type
€ Output Variable
i Initial -
Output Variable Name Data Type Value Range Value Description
Valid
TRUE wh h i
Valid instruction BOOL TRUE, FALSE FALSE Set to' UE when the axis
group is under control
output
Executin Set to TRUE after the
Busy Xecuting 1 gog) TRUE, FALSE FALSE . TR A
instruction instruction is received
| i TRUE wh
Error nstruction BOOL TRUE, FALSE FALSE Set to UE when an error
error occurs
Output an error code when an
ErrorlD Faultcode | DWORD - 0 utput an er W
error occurs
R h i
Velocty | ARRAVIOEC et thesisgrepmtie
Velocity y iAxis_Num-1] OF |- 0,0,] Isgroup
component corresponding coordinate
LREAL
system
Resultant velocity of the axis
. Resultant f
PathVelocity . LREAL - 0 group TCP main space axes
velocity
group

3) Function Description

€ When Valid is TRUE, the instruction obtains the actual velocity (velocity component) of all

-253-

6. Common MC Instructions

single axes (Axis) in the axis group specified by the input/output variable AxesGroup of this
instruction in the selected coordinate type (CoordSystem) and the resultant velocity of the
axis group under the PCS based on the control cycle.

4) Precautions

*

When this instruction is executed, the axis group specified by the input/output variable AxesGroup must
not be in the GroupDisabled state. There is no requirement on the state of axes (Axis) in the axis group
(AxesGroup).

The output variable Velocity is the component velocity in the given coordinate system. The position
dimension for the axis group (AxesGroup) to output the position scale of the coordinate component of
axes (Axis) in each coordinate system corresponds to the type of logical axes in each coordinate system
set by AxesGroup.

The output variable PathVelocity (resultant velocity) is the resultant velocity of the main dimension
space path. When the PCS or ACS is selected, the resultant velocity (position and attitude) of the user
main dimension subspace of the axis group TCP in the part coordinate system will be returned.

Position as main dimension: Output the resultant linear velocity of the position subspace TCP in the user
part coordinate system;

Attitude as main dimension: Output the resultant angular velocity of the attitude subspace TCP in the
user part coordinate system;

Ratio as main dimension: Output the TCP resultant velocity in the user part coordinate system
(dimensionless).

5) Timing Diagram

6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.7 MC_GroupReadActualAccelerationV2

This instruction reads the actual acceleration rate of an axis group in the selected coordinate system.

1) Instruction Format

Instruction Name LD Expression ST Expression
MC_GroupReadActualAccelerationV2_0 MC_GroupReadActualhccelerationVa 0(
MC_GroupReadActual AccelerationV2 AxesGroup:= RxesGroup,
Reading JEn ENO L Enable:= ,
= 0 Coord3ystem:= |
MC_GroupRead the actual 3 AxesGroup Walid - 1_1_5
. acceleration — Enable Busy - Valid=> ,
ActualAccelerationV2 rate of an axis - CoordSystem Ened— Busy=> ,
rou ErrorlD Error=» ,
group Acceleration — Errorll=> ,
PathAcceleration Acceleration=> ,
PathAcceleration=»)
2) Variables
@ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value P
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- of AXES_GROUP_REF
€ InputVariable

-254-

6. Common MC Instructions

Input Value Initial
. Name Data Type Description
Variable yp Range Value .
| i TRUE: E hei jon; FALSE: D
Enable nstruc.tlon BOOL TRUE, FALSE | FALSE U xecutet.elnstrgctlon, S 0
execution not execute the instruction
Coordinati
CoordSystem | ~00T"M¥*€ e COORDSYSTEM_V2 | ACS,PCS | ACS Select the coordinate system type
system type
€ Output Variable
) Initial .
Output Variable Name Data Type Value Range Value Description
Valid
TRUE when the axi
Valid instruction BOOL TRUE, FALSE FALSE Setto' UE when the axis
group is under control
output
E ti Set to TRUE after th
Busy SXECUtNG —f gogp TRUE, FALSE FALSE >etto IRUE atterthe
instruction instruction is received
[i TRUE wh
Error nstruction BOOL TRUE, FALSE FALSE Set to UE when an error
error occurs
Output an error code when an
ErrorlD Fault code DWORD - 0

error occurs

Return the acceleration rate
component of the axis group in
the corresponding coordinate

Acceleration | ARRAY[0---gc_
Acceleration rate iAxis_Num-1] OF - 0,0,]
component LREAL

system
Return the resultant
Resultant acceleration rate of the
Path Acceleration acceleration | LREAL - 0 . . .
rate axis group TCP in the main

dimension space

3) Function Description

€ When Valid is TRUE, the instruction obtains the actual acceleration rate (acceleration rate
component) of all single axes (Axis) in the axis group specified by the input/output variable
AxesGroup of this instruction in the selected coordinate type (CoordSystem) and the resultant
acceleration rate of the axis group under the PCS based on the control cycle.

4) Precautions

€ When this instruction is executed, the axis group specified by the input/output variable AxesGroup must
not be in the GroupDisabled state. There is no requirement on the state of axes (Axis) in the axis group
(AxesGroup).

The output variable Acceleration is the acceleration rate component in the given coordinate system.
The position dimension for the axis group (AxesGroup) to output the position scale of the coordinate
component of axes (Axis) in each coordinate system corresponds to the type of logical axes in each
coordinate system set by AxesGroup.

The output variable PathAcceleration (resultant acceleration rate) is the resultant acceleration rate of
the main dimension space path. When the PCS or ACS is selected, the resultant acceleration rate (position
and attitude) of the user main dimension subspace of the axis group TCP in the part coordinate system
will be returned.

Position as main dimension: Output the resultant linear acceleration rate of the position subspace TCP
in the user part coordinate system;

Attitude as main dimension: Output the resultant angular accelerate rate of the attitude subspace TCP in
the user part coordinate system;

Ratio as main dimension: Output the TCP resultant acceleration rate in the user part coordinate system
(dimensionless).

5) Timing Diagram

-255-

6. Common MC Instructions

6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.8 MC_GroupStopV2

This instruction makes the motion stop immediately. It is generally used for stopping an axis group
under an abnormal situation, and the current motion cannot be recovered.

1) Instruction Format

Instruction Name LD Expression ST Expression

Tl

C_GroupStopVa_0(
AxesGroup:= AxesGroup,

MC_GroupStopV2_ 0 Execute:=
MC_GroupStopV2 Stoptode:=
- EN ENO - DecelerationFactor:= ,
Stopping an 3 AxesGroup Done — JerkFactor:= ,
MC_GroupStopV2 axis group — Execute Busy Done=
immediately — StopMode Active — one=>
— DecelerationFactor Commandiborted — Busy=» ,
— JerkFactor Error — Lotive=s
ErrorlD |- CommandZborted=s |
Error=> |
ErrorID=>):
2) Variables
@ Input/Output Variable
Input/Output Value Initial L
. Name Data Type Description
Variable yp Range Value P

Reference to the axis group, that is, an instance

AxesGroup Axis group AXES_GROUP_REF of AXES_GROUP_REF

@ InputVariable

Input Initial
. Name Data Type Value Range Description
Variable yp 8 Value P
ing th
Execute §tart|ngt € BOOL TRUE, FALSE FALSE Started at the rising edge
instruction
0: DecStop DecStop: Decelerate to stop
StopMode Stop mode E_STOP_MODE_V2 0))
1: ImmedStop ImmedStop: Stop immediately
Deceleration Deceleration LREAL (0.01,1.0] 05 Ratio relaFive to the maximum
Factor factor deceleration of the axis group
Rati i h i jerk of th
JerkFactor Jerk factor LREAL [0.0,1.0] 0.5 a.tlo relative to the maximum jerk of the
axis group
€ Output Variable
) Initial L
Output Variable Name Data Type Value Range value Description
Done Instruction BOOL TRUE, FALSE FALSE SeF to TRU'E when the execution
completed of instruction is complete
Busy ,Exewt”j'g BOOL TRUE, FALSE FALSE ,Set to TRUFaftethe
instruction instruction is received
Axis group
d Set to TRUE when th i
Active under BOOL TRUE, FALSE FALSE €t to TRUE wher the axis
control of the group is under control
instruction

-256-

6. Common MC Instructions

Instruction
Command TRUE when th
execution | BOOL TRUE, FALSE FALSE isnestt:ctioli i;’Va ;;rttej
Aborted aborted
Instructi Set to TRUE wh
Error nstruction 1 gooL TRUE, FALSE FALSE etto TRUEwhen an eror
error occurs
h
ErrorID Fault code DWORD - 0 Outputan error code when an

error occurs

3) Function Description

@ Thisinstruction is started at the rising edge of Execute. It stops the axis group (AxesGroup)
immediately in case of abnormal operation.

€ StopMode

€ Thisinstruction sets the emergency stop method for abnormal operation of the axis group
(AxesGroup) by inputting the variable StopMode.

€ (O StopMode =0 (DecStop): Each axis (Axis) of the axis group (AxesGroup) decelerates and
stops according to the parameter set in the instruction. When deceleration and stopping
operations are completed, Done will be set to TRUE, and the axis group state will be switched
to GroupStopping.

€ (@ StopMode =1 (ImmedStop): The velocity of each axis (Axis) of the axis group (AxesGroup)
will be reduced to 0 in one cycle. Done will be set to TRUE, and the axis group state will be
switched to GroupStopping.

Velocity One period

Time

Deceleration

@ DecelerationFactor and JerkFactor

- The deceleration rate and jerk during the execution of this instruction are determined by the input
variables DecelerationFactor and JerkFactor, respectively.

- StopMode =0 (DecStop): Each axis (Axis) of the axis group (AxesGroup) decelerates and stops
according to the product of its software-limited maximum axis acceleration rate and DecelerationFactor
as well as the product of its software-limited maximum axis jerk and JerkFactor.

- JerkFactor

@ JerkFactor = 0: Velocity profile and deceleration profile

-257-

6. Common MC Instructions

—_—

Velocity1

Deceleration |------------

@ JerkFactor # 0: Velocity profile, deceleration profile, and jerk profile

Velocity

Acceleration

Jerk [~m77TtTeooe
@ StopMode is set to DecStop default.

@ StopMode = ImmedStop: DecelerationFactor and JerkFactor are invalid.

@ When this instruction is executed, the axis group state can only be GroupStandby or GroupMoving. It
will report an error if executed in other states.

@ This instruction can interrupt the motion FB being executed by the axis group (AxesGroup) and set the
axis group state to GroupStopping. In this state, it is forbidden to start any motion function instruction.
Otherwise, the corresponding motion instruction will report an error.

@ f this instruction is executed during the homing process of the axis group (AxesGroup), StopMode,
DecelerationFactor, and JerkFactor are invalid. The deceleration and stopping operations may not be
performed along the current path, and the axis group (AxesGroup) will decelerate and stop in the same
way as a servo stops.

@ When the axis group (AxesGroup) is in the GroupStopping state, this instruction cannot be started.
Otherwise, an error will be reported.

@ Repeated instruction triggering

- This instruction can be triggered again. If you trigger this instruction again after modifying the
parameters, the instruction will be executed based on the modified parameters. If the modified
parameters are not reasonable, the instruction will report an error, the velocity of the axis group
(AxesGroup) will be reduced to 0 immediately, and the axis group status will change to GroupErrorStop.

-258-

6. Common MC Instructions

Trigger

Velocity |7~

Re-trigger

Deceleration

Jerk
4) Precautions

@ Thetrajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, the input variable JerkFactor is invalid, and the instruction performs the deceleration and
stopping operations based on DecelerationFactor. If the profile type is cubic or septuple, the instruction
performs the deceleration and stopping operations based on DecelerationFactor and JerkFactor.

@ Whether the profile type of each axis (Axis) in the axis group (AxesGroup) is trapezoidal or S-shaped
does not affect the planning method of the axis group (AxesGroup).

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.9 MC_GroupHaltVv2

This instruction stops the motion of an axis group. It is generally used under normal conditions.

1) Instruction Format

Instruction Name LD Expression ST Expression
C_GroupHaltVa 0(
AxesGroup:= AxesGroup,
MC_GroupHaltvz_0
Execute:= |
MC_GroupHaltv2 .
JEn ENO DecelerationFactor:= |
st . = AxesGroup Done — JerkFactor:= .
(0] Ing an
MC_GroupHaltv2 .pp & -| Execute Gy | Done=3»
axis group — DecelerationFactor Active '
— lerkFactor CommandAborted — Buay=> ,
Error — Letive=r
ErrorlD [~ Commandiborted=s |
Error=» ,
Errorll=> }:
2) Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value 2
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- of AXES_GROUP_REF

€ InputVariable

-259-

-260-

6. Common MC Instructions

Input Initial
. Name Data Type Value Range Description
Variable yp & Value P
Starting the
Execute) g BOOL TRUE, FALSE FALSE Started at the rising edge
instruction
Deceleration Deceleration LREAL [0.01,1.0] 0.5 Ratio rela-tive to the maximum
Factor factor deceleration of the axis group
A i Rati i h i jerk of th
JerkFactor cceleration LREAL [0.0,1.0] 05 aFlo relative to the maximum jerk of the
factor axis group
€ Output Variable
i Initial L
Output Variable Name Data Type Value Range value Description
Instructi Set to TRUE when th ti
Done nstruction g TRUE, FALSE FALSE ¢ o TRLE when the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy SXecuting 1 gag) TRUE, FALSE FALSE >etto IrRUE atterthe
instruction instruction is received
Axis group
d Set to TRUE when th i
Active under BOOL TRUE, FALSE FALSE etto TRUE when the axis
control of the group is under control
instruction
Instruction
Command Set to TRUE when th
execution | BOOL TRUE, FALSE FALSE inestrzction iswa ;;rtej
Aborted aborted
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
Output de wh
ErroriD Faultcode | DWORD 0 utputan errorcodewhen an
error occurs

3) Function Description

€ Thisinstruction is started at the rising edge of Execute.

during normal operation.

@ DecelerationFactor and JerkFactor

- The deceleration rate and jerk during the execution of this instruction are determined by the input

variables DecelerationFactor and JerkFactor, respectively.

It stops the axis group (AxesGroup)

Each axis (Axis) of the axis group (AxesGroup) decelerates and stops according to the product of its

software-limited maximum axis acceleration rate and DecelerationFactor as well as the product of its

software-limited maximum axis jerk and JerkFactor.

- JerkFactor

@ JerkFactor = 0: Velocity profile and deceleration profile

Velocity

Deceleration|-----

6. Common MC Instructions

@ JerkFactor # 0: Velocity profile, deceleration profile, and jerk profile

Velocity

Deceleration

Jerk -------------

@ When this instruction is executed, the axis group state can only be GroupStandby or GroupMoving. It
will report an error if executed in other states.

@ This instruction cannot be triggered again.

@ This instruction can interrupt the instruction that makes the current axis group (AxesGroup)

move. When the axis group motion instruction is interrupted, the axis group (AxesGroup) keeps the
GroupMoving state. After its resultant velocity in the current motion space (workspace/axis space)
becomes 0, Done of the instruction is set to TRUE, and the axis group state switches to GroupStandby or
retains the GroupMoving state. The state changes as follows:

- If the current motion is in a static coordinate system, this instruction switches the axis group from
GroupMoving to GroupStandby.

- If the current motion is in the user PCS (LIN/CIRC type) under a dynamic coordinate system, this
instruction keeps the axis group in the GroupMoving state.

- If the current motion is in a dynamic coordinate system and also in the joint axis coordinate space
(DIRECT type), this instruction switches the axis group state to GroupStandby.

@ This instruction can be interrupted by other motion instructions.

@ This instruction cannot be executed when the axis group (AxesGroup) is in the homing process.
Otherwise, an error will be reported.

@ This instruction cannot be executed when the axis group is in the GroupStopping state. Otherwise, an
error will be reported.

@ This instruction can be interrupted by other MC_GroupHalt instructions, which can interrupt each
other sequentially. That is, the MC_GroupHalt instruction that starts later interrupts the one that starts
earlier, and the deceleration and stopping operations will be performed according to the parameters of
the MC_GroupHalt instruction that starts later.

4) Precautions

L 4

4

The trajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, the input variable JerkFactor is invalid, and the instruction performs the deceleration and
stopping operations based on DecelerationFactor. If the profile type is cubic or septuple, the instruction
performs the deceleration and stopping operations based on DecelerationFactor and JerkFactor.

Whether the profile type of each axis (Axis) in the axis group (AxesGroup) is trapezoidal or S-shaped
does not affect the planning method of the axis group (AxesGroup).

5) Timing Diagram

-261-

6. Common MC Instructions

6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.10 MC_GroupSetOverrideV2

This instruction sets the ratio of the axis group motion in the coordinate system. The ratio parameter
applies, as a factor, to the velocity, acceleration rate, deceleration rate, and jerk operation phases of
each function block in the axis group concurrently.

1) Instruction Format

Instruction Name LD Expression ST Expression
. iC_GroupSetOverrideVa 0(
MC_GroupSetOverrideV2_0 AxesGroup:= AxesGroup,
MC GroupSetOverrideV2 Enzble:= |
Setting the : EN ENO — VelFactor:= ,
i = L
MC_GroupSetOverrideV2 |axis grgoup J:xesGrDup Enabled AccFactor:=
ratio —| Enable Busy - JerkFactor:= ,
— VelFactor Error — Fnabled=s |
— AccFactor ErrarlD — Busy=> ,
— JerkFactor Error=>
ErrorID=> }:
2) Variables
@ Input/Output Variable
In;z/L;tr/ig;lt:ut Name Data Type ;/aa:; I\gﬂjael Description
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF

€ InputVariable

Input N Data T value R Initial Descrinti
. ame ata e alue Range escription
Variable yp & Value P
Enable Instrugtlon BOOL TRUE, FALSE FALSE TRUE: Execute the II’]StI’l.JCtIOI’]; FALSE: Do
execution not execute the instruction
Velocit ti
VelFactor faec?cfrl yratio LREAL [0.0, 100.0] 100.0 Percentage of speed ratio
Accelerati Rati lative to th i
AccFactor ceeteration 1 peaL (1.0, 100.0] 100.0 atioreative to the maximum
factor acceleration rate of the axis group
Rati lative to th i jerk of th
JerkFactor Jerk factor LREAL [0.0, 100.0] 100.0 a' o refative tothe maximum jerk o the
axis group
€ Output Variable
) Initial .
Output Variable Name Data Type Value Range value Description
Instruction Set to TRUE when the
Enabled executed BOOL TRUE, FALSE FALSE instruction is executed
successfully successfully
E ti Set to TRUE after th
Busy SXeCUting 1 goop TRUE, FALSE FALSE >etto TRUE afterthe
instruction instruction is received
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
Output de wh
ErrorID Fault code DWORD - 0 utputan error codewhen an
error occurs

-262-

6. Common MC Instructions

3) Function Description

This instruction is started at the rising edge of Enable. It sets the ratio of the axis group (AxesGroup)
motion in the coordinate system.

- The default value of VelFactor, AccFactor, and JerkFactor is 100.0. The value of VelFactor and
JerkFactor can also be 0.0.

- The unit of the ratio factoris [%]. “100” indicates 100% and “50” indicates 50%.

- When Enable is FALSE, the value of VelFactor, AccFactor, and JerkFactor will be restored to the default
value.

- When VelFactor is 0, the running velocity of the axis group (AxesGroup) changes to 0, but the axis
group state does not switch to GroupStandby, that is, the axis group (AxesGroup) keeps running at the
velocity of 0.

- Thisinstruction only affects the velocity at which the axis group (AxesGroup) is running without
interrupting its current motion.

- VelFactor can respond in real time and act on the current motion. If the instruction output Enabled
becomes TRUE, the velocity ratio factor has been set successfully. AccFactor and JerkFactor reflect the
ratio adjustment response speed and are only effective during the change of motion ratio.

Note: When the axis group state is grouphoming, groupsgtopping, or grouperrorstop, the ratio
instruction will report an error. However, the actual ratio will continue to take effect as long as the axis
group state restores to normal and the Enable input is TRUE.

VelFact

Velocity

VelFactor=20

A 4

Deceleration [-------------- ix—/

Time

Jerk [~777770

-263-

6. Common MC Instructions

Velocity ‘VelFactor=100

VelFactor=20

|
|
D P — o ——
Acceleration V—\‘

Jerk

During velocity ratio adjustment, the deceleration (acceleration) rate equals the product of the software-
limited maximum deceleration (acceleration) rate of the axis group and AccFactor. The jerk equals the
product of the software-limited maximum jerk of the axis group and JerkFactor.

@ The trajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, JerkFactor does not take effect.

4) Precautions

@ Thisinstruction can only be started when the axis group (AxesGroup) is in the GroupMoving or
GroupStandby state. Otherwise, an error will be reported.

@ Thisinstruction cannot be started when the axis group (AxesGroup) is controlled by the MC_GroupStop,
MC_GroupHalt, or MC_Grouplnterrupt instruction. Otherwise, an error will be reported.

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.11 MC_MovelLinearRelativeV2

This instruction enables the linear interpolation motion of the axis group from the current TCP point to
the relative position point under the given coordinate system.

1) Instruction Format

| Instruction | Name | LD Expression | ST Expression

-264-

6. Common MC Instructions

MC_Move

LinearRelativeV2

MC_MovelLinearRelativeV2_0

Linear
relative _
motion —

MC_MovelinearRelativev2

EN ENO
AxesGroup Done
Execute Busy
CoordSystem Active
Distance CommandAborted
Velocity Error
Acceleration ErrorlD

Deceleration

MC MoveLlinearRelativeV2 0
AxesGroup:= AxesGroup,
Execute:= |
CoordSystem:= |
Distance:= ,

Velocity:= ,

Acceleration:=
Deceleration:= ,
Jerk:= ,

BufferMode:= ,
TransitionMode:= ,

- derk TransitionParameter:= ,
— BufferMode Done=>
— TransitionMode one=>
— TransitionParameter Busy=> ,
Rctive=» |
CommandRborted=> |
Error=> ,
ErrorID=> }):
2) Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable yp Range Value P
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF

€ Input Variable

Input
. Name Data Type Value Range Initial Value Description
Variable yp g P
ne th he risi
Execute startingthe | g TRUE, FALSE FALSE Started at the ising
instruction edge
Coord Coordinate MC_COORDSYSTEM_ ACS, PCS PCS Currently, only PCSis
System type V2 supported
Displacement
Distance Rela'lt'ive ARRAY[0---gc_iAxis_) 0,0,+] ct')mpor?ent‘ in each
position Num-1] OF LREAL dimension in the given
coordinate system
Maximum main
Velocity Velocity LREAL >0 - velocity, not
necessarily reachable
Acceleration Maximum main
Acceleration LREAL >0 - acceleration rate, not
rate A
necessarily reachable
Deceleration Maximum main
Deceleration LREAL >0 - deceleration rate, not
rate)
necessarily reachable
Maximum main
Jerk Jerk LREAL >=0 - jerk, not necessarily
reachable
MC_ABORTING=0;
MC_BUFFERED=1;
MC_BLEND_LOW=2; i
BufferMode | Buffer mode | -2 0FTER-MODE_ T - MC_ABORTING | APorting; buffered,
V2 MC_BLEND_PRE=3; blend
MC_BLEND_NEXT=4;
MC_BLEND_HIGH=5

-265-

-266-

6. Common MC Instructions

Input
. Name Data Type Value Range Initial Value Description
Variable yp g P
TMNone=0;
TMStartVelocity=1;
o TMCornerDistance=3; Define the
Ti t iti
ransition Tragsmon mgBER':\/’;‘S”ION_ TMMaxCornerDeviation=4; TMNone transition trajectory
Mode mode - TMDefinedVelocity:lO; characteristics
TM_RESET_ABORT=11;
TM_DEC_ABORT=12
Transition Transition Velocity [0.0,1.0] The transition
arameter LREAL) 1 parameters vary with
Parameter p Distance [0.0,+ o) the transition mode
€ Output Variable
. Initial .
Output Variable Name Data Type Value Range Value Description
| i TRUE wh h i
Done nstruction BOOL TRUE, FALSE FALSE Se’.cto U. vv. en the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy SXecuting 1 gooL TRUE, FALSE FALSE >etto TRUE afterthe
instruction instruction is received
Axis group
TRUE wh h i
Active under BOOL TRUE, FALSE FALSE Set to, UE when the axis
control of the group is under control
instruction
Instruction
Command TRUE when th
execution BOOL TRUE, FALSE FALSE isnesttEZCtioL; i;Na be:rttej
Aborted aborted
Instructi Set to TRUE wh
Error NStrUetion 1 gooL TRUE, FALSE FALSE etto TREE whenan error
error occurs
h
ErrorlD Fault code DWORD - 0 Output an error code when an
error occurs

3) Function Description

@ This instruction is started at the rising edge of Execute and performs linear relative motion of 2 to 4

axes.

@ You can specify input variables CoordSystem, Distance, Velocity, Acceleration, Deceleration, Jerk,

BufferMode, TransitionMode, and TransitionParameter.

@ The target position of this instruction is the sum of the position (starting point) of the axis group
(AxesGroup) at the start of the instruction and the input variable Distance (relative position).

@ CoordSystem

- Specify the coordinate system for linear relative motion. Currently, only linear relative motion under

the PCS is supported.

@ Velocity, Acceleration, Deceleration, and Jerk

- If the velocity of any axis (Axis) in the axis group (AxesGroup) exceeds the software-limited maximum

velocity of the axis, an error stop will be performed.

- The trajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is

trapezoidal, Jerk does not take effect and is regarded as 0. (The profile type of the axis group is specified

in the axis group data structure).

- The linear motion is decomposed to each axis when linear relative motion is performed.

6. Common MC Instructions

Y direction End point (x2, Y2)

7 Start point (X1, Y1)

X direction

Axis 1

V: Target velocity for the axis group to perform linear motion
V1: Velocity decomposed to axis 1 V1=(X2-X1)*V/ v/ ([(X2-X1)]A2+[(Y2-Y1)]A2)
V2: Velocity decomposed to axis 2 V2=(Y2-Y1)*V/ v/ ([(X2-X1)]A2+[(Y2-Y1)]*2)

- The curves of velocity, acceleration rate, deceleration rate, and jerk with the conditions Jerk =0 and
Jerk # 0 are shown below.

Jerk =0, maximum interpolation velocity reachable

Velocity

Maximum speed |.-ceemmmen i

Acceleration 1Time

Deceleration [~777 77T e ' Time

Jerk =0, maximum interpolation velocity unreachable due to short motion distance

-267-

6. Common MC Instructions

Velocity

Maximum speed [--=----=-ssmmmmrm s

Time
Acceleration

.................. Time

Deceleration

Jerk # 0, maximum interpolation velocity reachable (Non-trapezoidal profile)

Velocity

Maximum speed

Acceleration

Deceleration

Jerk

JerkFactor # 0, maximum interpolation velocity unreachable due to short motion distance
(Non-trapezoidal profile)

Velocity

Maximum speed

Time
Acceleration
. Time
Deceleration
Jerk Time

@ Repeated instruction triggering
This instruction cannot be triggered again.
@ Starting multiple motion instructions

When this instruction is started for the currently executing instruction, it will be switched to this
instruction or this instruction will be buffered. Up to 8 instructions can be buffered for each axis group.
The motion of this instruction is specified by BufferMode when multiple instructions are started.

-268-

6. Common MC Instructions

@ BufferMode

Aborting (MC_ABORTING): Interrupt the current instruction and start to execute this instruction.

Buffered (MC_BUFFERED): This instruction is buffered and will be started after the current instruction is

executed.
/z—oPl V{
P {

Blend (MC_BLEND): Blend the velocity of two instructions in the specified way. This method is specified
in TransitionMode.

@ TransitionMode

The blend method of the velocity of two instructions when the input variable TransitionMode of this
instruction specifies BufferMode as blend.

- TMNone: No insertion of transition curve If TMNone is adopted as the blend mode, the result is the
same as the transition mode between the velocity of the two instructions in buffered mode.

TMStartVelocity: Blend at the previous velocity Blending is performed for the transition based on a
certain ratio (0,1] of the actual maximum velocity of the current motion instruction. Any transition
between motion instructions is valid.

-269-

6. Common MC Instructions

,- 100% |

%

TMCornerDistance: Corner transition mode In Cartesian space, specify the distance from the previous
instruction to the end under the main dimension space. Use this distance to open a transition trajectory
to link the neighboring trajectory. The distance here is in a broad sense and is related to the main
dimension type of the axis group.

(@ Position as main dimension: The parameter is the displacement from the transition point to the end
point.

@ Attitude as main dimension: The parameter is the attitude from the transition point to the end point.

(3 Ratio as main dimension: The parameter is the ratio of the resultant distance from the transition point
to the end point to the total resultant displacement (0-1).

- TMMaxCornerDeviation: Maximum corner position deviation transition mode

In Cartesian space, set the maximum position deviation distance for the trajectory transition of

the neighboring instructions in the position subspace. Two neighboring trajectories are linked by
constructing the corresponding transition trajectory. In this way, the maximum position deviation of the
transition trajectory is always within a certain range. Only the position deviation is involved here, which
is not related to the main dimension. Both instructions are valid when they are in Cartesian space (LIN/
CIRC). Otherwise, the instructions are processed in no-transition mode.

- TMDefinedVelocity: Blend at the next velocity

Blending is performed for the transition based on a certain ratio (0,1] of the actual maximum velocity of
the next instruction of the current motion. Any transition between motion instructions is valid.

-270-

6. Common MC Instructions

A 4

4) Precautions
€@ Thisinstruction only supports linear relative motion under the PCS.

€ When the current motion instruction is interrupted, the linear relative motion immediately starts to plan
a new instruction from the interrupted position. In the workspace, a transition trajectory is constructed
for deceleration and reverse reset along the velocity direction of the interrupted position, which ensures
a smooth link with the latter section of the trajectory. Here, only the velocity smoothing is guaranteed,
and the acceleration smoothing is not guaranteed.

@ Thisinstruction can only be started when the axis group is in the GroupMoving or GroupStandby state. If
itis started in other states, an error will be reported.

@ The execution of this instruction can be interrupted by other motion instructions as well as the MC_
GroupStop and MC_GroupHalt instructions.

@ After the execution of this instruction, the axis group (AxesGroup) state switches from GroupMoving to
GroupStandby or retains the GroupMoving state. The state changes as follows:

If the current motion is in a static coordinate system, the axes group state switches from GroupMoving
to GroupStandby. If the current motion is in a dynamic coordinate system, the axis group remains in the
GroupMoving state.

5) Program Example
Take a 2-axis group as an example to describe the linear relative motion.
Starting point: (0,0); first relative displacement: (100,200); second relative displacement: (200,150)

You need to execute two linear relative motion instructions in sequence, and the second instruction is in
buffered mode (MC_BUFFERED).

i 2¢

150«

200+

200+

1| 1
- Steps:

(D Determine the axis group (AxesGroup) type and the axes (Axis) in the axis group in InoProShop.

-271-

-272-

6. Common MC Instructions

(@ Execute the MC_Power instruction to enable axes (Axis) in the axis group (AxesGroup).

(3 Execute the MC_Home instruction to enable axes (Axis) in the axis group (AxesGroup) to perform the
homing operation.

Or execute the MC_GroupHome instruction after the execution of the MC_GroupEnable instruction to
enable axes (Axis) in the axis group (AxesGroup) to perform the homing operation.

@ Execute the MC_GroupEnable instruction to enable the axis group (AxesGroup).
® Set the parameters of the first point-to-point relative motion instruction.
® Set the parameters of the second point-to-point relative motion instruction.
@ Start two point-to-point relative motion instructions.
- Adding and setting the axis group
1. Right-click “Application” in the device Ul and select “Add Object” > “AddAxisGroup”

= -7 |Applicatio=
&P AxesGr Bl
o, g MM
@ =me &
PLC_PR ¥ MR

1] Pou (pr &y .
S ARE L gy
= & En,
L » |8 adanxiscroupcRRIGHTIRD). .
e = sz {7 Axis Group...
=g va 1 REERIE & camE...
=g B application &, CNCIERS...
) T Persists 0g mREl é CNCIEE..
E ERiERE “¢ DUT..
3¥] MODBUS_TCP (ModbusTCPAHIM3E) PersistentVarsvalueDetector. ..
@_ %HERCATJ: (EtherCAT Master SoftM... BEEE...
[5620M ([5620M_ECAT_v2.6.9) A
H&P Axis (Axis) e N
=- [l 1S620N_1 (1S520N_ECAT v2.6.9) :‘ ffﬂ%ﬁ”'
HgP Axis_1 (Axis) i OHSEE.-.
= [15620M_2 (15620N_ECAT_v2.6.9) & IR
H&P Axis_2 (Axis) =0 FMmE...
=- [l 1S620N_3 (1S520N_ECAT_v2.6.9) -, EAEES..
HgP axis_3 (Axis) R EES..
= [15620N_4 (1S620N_ECAT_v2.6.9) @ SETENE..
B8P ais_4 (ads) @ =PFREIEE..
=- [IS620N_5 (1S620N_ECAT_v2.6.9) & W
Hg7 axis_5 (Axis) = .
]) MEEEE...
" SoftMotion General Axis Pool N
ShERITRE...
@ RHEEIE kA
e I
O EA.
[ES T
|81 mFRawBEpou..

ZiRE

2. After adding an axis group, double-click the axis group to be set and enter the setting Ul.

Ese L —

SHNE FhER2EA v v
EEiE W Axis_1 v
Vi | Axis_2 -
W
EzA

Note 1: The profile type of the axis group should be specified in the axis group structure. By default, the
profile type is trapezoidal, and the jerk settings do not take effect.

Note 2: The type of a single axis in the axis group should be AXIS_REF_ETC_INOVANCE. If the selected
type does not match, you need to click “Commit” to make it take effect, which will trigger full loading.
If the single axis is released from the axis group and its axis type does not match that when it was added
to the axis group, you also need to click “Commit” to make it take effect, which will trigger full loading.

Note 3: Currently, the type of a single axis in the axis group can only be 402 (real axis only).

6. Common MC Instructions

arin N —
SinER AR xr ~
EELE »3h Axis_1 ~
i | Axis_2 ~
s
A
hxis 1 SiEARTEEAAR
i B S

3. Double-click the interface of the single axis selected in the axis group, and then set the parameters.
In “BasicSettings” , set the axis type (linear or rotary). (Note: Rotary axes cannot be added to the
axis group. Otherwise, an error will be reported.) Set limits for the axis velocity, acceleration rate,

deceleration rate, and jerk, and set positive and negative limits. Set the profile type of the axis (Note: The

profile type of the axis is valid only in the motion instruction of the axis. If the axis is added to an axis
group, its profile type is specified by the axis group).

- Ladder diagram

(D MC_Power_0 and MC_Power_1 are instantiations of the MC_Power (axis enable) instruction and they

enable Axis_1 and Axis_2 respectively. When MC_Power_0.Status and MC_Power_1.Status are set to
TURE, the two axes have been enabled. In this case, the axis homing instruction is executed.

@ MC_Home_0 and MC_Home_1 are instantiations of the MC_Home instruction and they enable Axis_1

(axis) and Axis_2 (axis) to return to the mechanical zero position respectively.

MC Power 0 MC Home 0
MC_Power MC Home
i1 —= Autis Status Avis 1 =5 fois Dane
1 Enable bRegulatorRealState MC_Power 0.5tatus Execute Busy
1 bRegulatorOn bDriveStartRealState lIl Position CommandAborted
1 — bDriveStart Busy Errar
Errar ErrorlD
ErrorlD
MC Power 1 MC Home 1
MC_Power MC Home
Pads 2 == Ais Status Rais Dane
1 Enable bRegulatorRealState MC Power_1.5tatus Execute Busy
1 bRegulatorOn bDriveStartRealState lII Position CommandAborted
1 — bDriveStart Busy Errar
Error ErrorlD
ErrorlD

(® MC_Home_0.Done and MC_Home_1.Done indicate that Axis_1 and Axis_2 have completed the
homing instruction respectively. Only after both axes have completed the homing instruction, the MC_
GroupEnable instruction will be executed for the axis group.

MC_GroupEnable_0 is the instantiation of the MC_GroupEnable instruction.

MC GroupEnableV2 0
MC GroupEnableV2

AxesGroup
MC Home 0.DoneANDMC Home 1.Done

ByesGroup Done
Execute Busy
Error

ErrarlD

1600000000

After the axis group is enabled, the linear relative motion begins. MC_MovelinearRelative_0 and MC_

-273-

6. Common MC Instructions

MovelinearRelative_1 are instantiations of the MC_MoveLinearRelative instruction. The input pin
parameter and buffer mode settings are as follows. The two instructions are triggered simultaneously.

MC MovelinearRelativeV? 0 MC MovelinearRelativeV? 1
MC MovelirearRelstiveV2 h MC MoveLinearRelatieV2
Aestroup —JhvesGroup Done W Avesroup — Avesrou Done W
- Ereate Busy m LU= Exceute Busy -m
— CoordSystem Active W E— ConrdSysten Aetive W
TMLR) —{Distance CommandAhorted m TMLRT — Distance CommandAborted W ‘
Nel| 10 —Velaciy Errer -m el 10— Velocty Error W
Nell 10 [—{Acceleration ErorlD{-16500000000] fiel [10— Aceeleration ErrorlD
el 10 —{Deceleration flel| 10— Deceleraton
el 10 —qlerk el 0 ek
medborting |-Bufferilode meBufered |~ BuferMode
TMNene | {TransizonMode ThNane | Transitiorode
1 ~{TransitionParmeter ’— 1 | TransitiorParameter

The first instruction will perform motions first, with its MC_MoveLinearRelative_0. Busy and MC_
MoveLinearRelative_0. Active both set to TRUE. The second instruction will be in the standby state with
only MC_MovelinearRelative_1. Busy set to TRUE. The second instruction MC_MoveLinearRelative_1.

-274-

Active will not be set until the first instruction MC_MoveLinearRelative_0.Done is set to TRUE.

@ The position parameter settings for each of the two instructions are shown below.

® The position profiles and velocity profiles of axes in the axis group are shown below.

@ fMLRD ARRAY [0..{gc_iAxis_Num - 1] OF LREAL
fMLRO[0] LREAL 100
fMLRO[] LREAL 200
@ fMLRO[Z] LREAL 0
@ fMLRO[3] LREAL 0
@ fMLR1 ARRAY [0..{gc_iAxis_Num - 1] OF LREAL
@ fMLR1D] LREAL 200
% fMLRI[1] LREAL 150
fMLR1[2] LREAL 0
f TMLR1[3] LREAL 0

MC MovelinearRelativeV2 0 MC MovelinearRelativeV2 1
|‘ MC MoveLinearRelatveV2 ﬁ E MC MoveLinearRelateV2
AxesGroup — AxesGroup Done AxesGroup — AxesGroup Done =g
- Execute Busy - Execute Busy =mR3
— CoordSystem Active — CoordSystem [TRUE
MLRO — Distance CommandAborted MLR1 — Distance CommandAborted =Sk
Vel 10 —{Velocity Error Vel 10 | Velocity Error -m
el 10 || Aceeleration ErrorlD el 10 || Acceleration ErrorlD (H 1600000000
el 10—y Deceleration Vel 10 [Deceleration
Vel 0 ek Vel 0 ek
mchborting | —f BufferMode meBuffered |— BufferMode
TMNone |~ TransitionMode TMNone | — TransitionMode
1 RLranstionParameter ‘ 1 — TransitionParameter

6. Common MC Instructions

Axis position curve i
,,_:——I—'_'_'_‘_ Target position oflhesr;cond instruction

Target position of the first instruction

Axis_1 position curve i

Axis velocity curve

Axis_1velocity curve

6) Timing Diagram
(@ This instruction operates normally.

Busy and Active change to TRUE when Execute is started. When the target position is reached, the axis
group velocity changes to 0, Done becomes TRUE, and Busy and Active become FALSE.

Execute - '
Jms

20s
Done :
Ims 10s 20s
Buss' : ‘—‘ : |‘—
Ims 10s 20s
ACU‘E Ims l(ic 20s
Command
Aborted e 10s %0
Error ; ‘
Ims 10s 20s
ErrorlD
Jms 10s 20
Velocity [: \

Jms 10s 20s

@ This instruction is interrupted by another instruction.

Busy and Active change to TRUE when Execute is started. When this instruction is interrupted by another
instruction, CommandAborted becomes TRUE and Busy and Active become FALSE.

-275-

-276-

6. Common MC Instructions

Execute D—‘

ms 3s 10s 18s

Done

Busy |

Active

Oms 3s 10s 135

Command \
Aborted 0w 5 10s 15s

Error

ErrorlD

Velocity / ‘ Y

Oms §s 10s 155

As mentioned in the notes, when the current motion instruction is interrupted, the linear relative motion
immediately starts to plan a new instruction from the interrupted position. In the joint space, a transition
trajectory is constructed for deceleration and reverse reset along the velocity direction of the interrupted
position, which ensures a smooth link with the latter section of the trajectory.

1
/ The value of CommandAborted
changes to TRUE.

+

105300s 10s350ms 1054005

The velocity starts to decrease
and then reverse.

® The current instruction is followed by a buffered instruction.

Execute of MovelinearRelativel and MovelinearRelative2 are started at the same time. Busy and Active
of MoveLinearRelativel change to TRUE and Busy of MoveLinearRelative2 changes to TRUE. The axis
group moves according to the parameters of MoveLinearRelativel until Done of MoveLinearRelativel
becomes TRUE. In the meantime, Busy and Active of MoveLinearRelativel become FALSE and Active of
MovelinearRelative2 becomes TRUE. In this case, the axis group moves according to the parameters of
MovelinearRelative2. When the target position of MoveLinearRelative2 is reached, the velocity of the
axis group becomes 0, Done of MoveLinearRelative2 becomes TRUE, and Busy and Active become FALSE.

6. Common MC Instructions

MovelLinearRelative 1

Execute‘

Oms

Done

10s

13s

Ums

as

1Us

Busy \
—_—

las

Oms

10s

Active

—

13s

Oms

CommandAborted

lds

Oms

Error

10s

Oms

ErroriD

Oms

Velocity Va

Oms

MoveLinearRelative

Velocity /—
e

10s

e

13s

13s

Execute |

Oms

Done

10s

.
15s

T
10=

Busy |

15=

Oms

Active

as

165

15s

Oms

CommandAborted

10s

1os

Oms

Error

.
10s

Oms

ErrorlD

10s

Oms

7) Error description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.12 MC_MovelLinearAbsoluteV2

This instruction enables the linear interpolation motion of the axis group from the current TCP point to

10s

the absolute position point under the given coordinate system.

1) Instruction Format

| Instruction | Name |

LD Expression

ST Expression

277-

6. Common MC Instructions

MC MovelinearAbsoluteVa 1(
RxesGroup:= AxesGroup,

Execute:= ,
MC_MovelinearAbsoluteV2_1 Coord3ystem:= ,
MC_MoveLinearAbsolutev2 Position:=,
1 EN ENO - Velocity:= ,
4 L
CECSEITE Eorz Lecceleration:=
— Execute Busy .
Linear - CoordSystem Active [~ Deceleration:= ,
MC_Move Ibeal ; — Position Commandaborted Jerk:i= ,
absolute .
LinearAbsoluteV2 ; g ey Er | BufferMode:=
motion - Acceleration ErrorlD [~ .
1 Deceleration TransitionMode:= ,
- Jerk TransitionParameter:= ,
- BufferMode Done=»
—{ TransitionMode
—{ TransitionParameter Busi_'_} !
Bctive=» ,
Commandiborted=> |,
Error=» ,
ErrorIl=>);
2) Variables
@ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable o Range | Value 2
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF

€ InputVariable

Input Variable| Name Data Type Value Range Initial Value Description
Execute §tart|ngthe BOOL TRUE, FALSE EALSE Started at the rising
instruction edge
Coord i i
Coordinate | MC_COORDSYSTEM_ ACS, PCS PCS Currently, only PCSis
System type V2 supported
Absolute position
Position Position ARRAY[0---gc_iAxis_ 0 coordinates of each
Num-1] OF LREAL dimension in the given
coordinate system
Maximum main
Velocity Velocity LREAL >0 - velocity, not necessarily

reachable

Acceleration Maximum main
Acceleration LREAL >0 - acceleration rate, not
rate)
necessarily reachable

Deceleration Maximum main
Deceleration LREAL >0 - deceleration rate, not
rate .
necessarily reachable

Maximum main jerk, not

Jerk Jerk LREAL >=0 - .
necessarily reachable

MC_ABORTING=0;
MC_BUFFERED=1;
MC_BUFFER_MODE_ | MC_BLEND_LOW=2; MC_ Aborting, buffered,
V2 MC_BLEND_PRE=3; ABORTING blend

MC_BLEND_NEXT=4;
MC_BLEND_HIGH=5

BufferMode Buffer mode

-278-

6. Common MC Instructions

Input Variable| Name Data Type Value Range Initial Value Description
TMNone=0;
TMStartVelocity=1;
TMCornerDistance=3; i
- > Define the
Transition Transition | MC_TRANSITION_ . < _
TMMaxCornerDeviation=4; TMNone transition trajectory
Mode mode MODE_V2 . e
TMDefinedVelocity=10; characteristics
TM_RESET_ABORT=11;
TM_DEC_ABORT=12
Transition Transition Velocity [0.0,1.0] The transition
arameter LREAL . 1 parameters vary with
Parameter i Distance [0.0,+) the transition mode

€ Output Variable

i Initial "

Output Variable Name Data Type Value Range value Description

Instructi Set to TRUE when th ti
Done nstruction - gaa TRUE, FALSE FALSE et TRUE When the execution

completed of instruction is complete

E ti Set to TRUE after th
Busy Sxecuting — gagp TRUE, FALSE FALSE >etto IrRUE atterthe

instruction instruction is received

Axis group

d Set to TRUE when th i

Active under BOOL TRUE, FALSE FALSE etto TRUE when the axis

control of the group is under control

instruction

Instruction
Command

execution | BOOL TRUE, FALSE FALSE Isnestt:z;iiﬁzvah;;::;
Aborted aborted
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error

error occurs

Output de wh
ErrorlD Faultcode | DWORD . 0 ttput an error code when an
error occurs

3) Function Description

@ This instruction is started at the rising edge of Execute and performs linear absolute motion from axis
2 to axis 4.

@ You can specify input variables CoordSystem, Position, Velocity, Acceleration, Deceleration, Jerk,
BufferMode, TransitionMode, and TransitionParameter.

@ CoordSystem
- Specify the coordinate system for linear absolute motion.
Velocity, Acceleration, Deceleration, and Jerk

If the velocity of any axis (Axis) in the axis group (AxesGroup) exceeds the software-limited maximum
velocity of the axis, an error stop will be performed.

- The trajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, Jerk does not take effect and is regarded as 0. (The profile type of the axis group is specified
in the axis group data structure)

- The linear motion is decomposed to each axis when linear absolute motion is performed.

-279-

6. Common MC Instructions

Y direction End point (x2, Y2)

1 Start point (X1, Y1)

X direction

Axis 1

V: Target velocity for the axis group to perform linear motion
V1: Velocity decomposed to axis 1 V1=(X2-X1)*V/ v/ ([(X2-X1)]A2+[(Y2-Y1)]A2)
V2: Velocity decomposed to axis 2 V2=(Y2-Y1)*V/ / ([(X2-X1)]2+[(Y2-Y1)]*2)

- The curves of velocity, acceleration rate, deceleration rate, and jerk with the conditions Jerk =0 and

Jerk # 0 are shown below.

JerkFactor = 0, maximum interpolation velocity reachable

Velocity

Maximum speed

1 Time

Acceleration |

| ITime

,,,

Deceleration

JerkFactor = 0, maximum interpolation velocity unreachable due to short motion distance

-280-

-281-

6. Common MC Instructions

1
c
(e}
=
[0}
Q
c
©
i)
L2
) o
W w <
1t E 4 E = £ £ £ c
= = - A = A .=
= = o = = = i)
a ° - 4 2 4+ £
< ; = = =
© € :
9 +
m Rt Rt ietls Rt M ' o :
0 . @ m
Q. o H
© '
— + H
+ (] D
(< L P EL L P T EE [EEE LT LTSS SEES SECETIETY — =] : r -
o o H
........... z @ m
= o :
B SN Y AN U S L © : N I
e H = H ;
© S S S RIS
< ; :
[¢] [H :
a B S e S — i !
[} = : :
o 5 i :
> >, [i :
..................... =t = H :
S N i || O : m
o i i) : m
0] : [} Py A T b
> ! > ! : :
c i < : : :
.0 (S R W N S : .0 : T N :
=l h :] : i :
< : H < H H i
[) : : o) : : :
o ' H o
5 : . 5 z B s S =
[() S] S 2
- 5 § p= Z 3 8 § T € E z 5 g B
S x © © = R & © ® - = = 5 E El
= @
2 £ < ks IS = E 2 2 e £ 2 &
g S 3 = £ S 3 2 =
£ < =1 e =] < e €
g E = 3
(]
S € =
-~ - =
o o QO
1 * =
— — ©
5 22
® s R
[N L. o
X X o
S S
9] v O
- = S

6. Common MC Instructions

@ Repeated instruction triggering
- This instruction cannot be triggered again.
@ Starting multiple motion instructions

- When this instruction is started for the currently executing instruction, it will be switched to this
instruction or this instruction will be buffered. Up to 8 instructions can be buffered for each axis group.
The motion of this instruction is specified by BufferMode when multiple instructions are started.

@ BufferMode

- Aborting (MC_ABORTING): Interrupt the current instruction and start to execute this instruction.

- Buffered (MC_BUFFERED): This instruction is buffered and will be started after the current instruction

is executed.
/Z—QPz Vl
P {

- Blend (MC_BLEND): Blend the velocity of two instructions in the specified way. This method is
specified in TransitionMode.

TransitionMode

The blend method of the velocity of two instructions when the input variable TransitionMode of this
instruction specifies BufferMode as blend.

- TMNone: No insertion of transition curve If TMNone is adopted as the blend mode, the result is the
same as the transition mode between the velocity of the two instructions in buffered mode.

-282-

6. Common MC Instructions

- TMStartVelocity: Blend at the previous velocity Blending is performed for the transition based on
a certain ratio (0,1] of the actual maximum velocity of the current motion instruction. Any transition
between motion instructions is valid.

- TMCornerDistance: Corner transition mode In Cartesian space, specify the distance from the previous
instruction to the end under the main dimension space. Use this distance to open a transition trajectory
to link the neighboring trajectory. The distance here is in a broad sense and is related to the main
dimension type of the axis group.

(@ Position as main dimension: The parameter is the displacement from the transition point to the end
point.

@ Attitude as main dimension: The parameter is the attitude from the transition point to the end point.

(® Ratio as main dimension: The parameter is the ratio of the resultant distance from the transition point
to the end point to the total resultant displacement (0-1).

B g By

- TMMaxCornerDeviation: Maximum corner position deviation transition mode In Cartesian space, set
the maximum position deviation distance for the trajectory transition of the neighboring instructions
in the position subspace. Two neighboring trajectories are linked by constructing the corresponding
transition trajectory. In this way, the maximum position deviation of the transition trajectory is always
within a certain range. Only the position deviation is involved here, which is not related to the main
dimension. Both instructions are valid when they are in Cartesian space (LIN/CIRC). Otherwise, the
instructions are processed in no-transition mode.

-283-

-284-

6. Common MC Instructions

- TMDefinedVelocity: Blend at the next velocity Blending is performed for the transition based on a
certain ratio (0,1] of the actual maximum velocity of the next instruction of the current motion. Any
transition between motion instructions is valid.

4) Precautions
@ Thisinstruction only supports linear absolute motion under the PCS.

€ When the current motion instruction is interrupted, the linear absolute motion immediately starts
to plan a new instruction from the interrupted position. In the workspace, a transition trajectory is
constructed for deceleration and reverse reset along the velocity direction of the interrupted position,
which ensures a smooth link with the latter section of the trajectory. Here, only the velocity smoothing
is guaranteed, and the acceleration smoothing is not guaranteed.

@ Thisinstruction can only be started when the axis group is in the GroupMoving or GroupStandby state. If
itis started in other states, an error will be reported.

@ The execution of this instruction can be interrupted by other motion instructions as well as the MC_
GroupStop and MC_GroupHalt instructions.

@ After the execution of this instruction, the axis group (AxesGroup) state switches from GroupMoving to
GroupStandby or retains the GroupMoving state. The state changes as follows:

@ Ifthe current motion is in a static coordinate system, the axes group state switches from GroupMoving
to GroupStandby. If the current motion is in a dynamic coordinate system, the axis group remains in the
GroupMoving state.

5) Program example

Refer to the MC_MovelLinearRelative instruction for the program example of this instruction. Motion
instructions of the axis group (AxesGroup) can be used together.

6) Timing Diagram
(@ This instruction operates normally.

Busy and Active change to TRUE when Execute is started. When the target position is reached, the axis
group velocity changes to 0, Done becomes TRUE, and Busy and Active become FALSE.

6. Common MC Instructions

Execute

Jus 10s 20s

Done

M'w

I
I

Busy

Active

Command
Aborted s s 05

Error

ErrorlD

Velocity

Jus 10s 20s

@ This instruction is interrupted by another instruction.

Busy and Active change to TRUE when Execute is started. When this instruction is interrupted by another
instruction, CommandAborted becomes TRUE and Busy and Active become FALSE.

TR0 [— ‘
(nz H 1 1

Done
:: 0
Busy
"t fa 1fs 1 .‘\s
Agtive
a1 0 i
Command
Aborted 5 i s 168
Error
- 0
ErrorlD
[§ 0
Velocity / |/
£T)) ’ ’ .] i i i i '.E T) .\“"

As mentioned in the notes, when the current motion instruction is interrupted, the point-to-point
absolute motion immediately starts to plan a new instruction from the interrupted position. In the
joint space, a transition trajectory is constructed for deceleration and reverse reset along the velocity
direction of the interrupted position, which ensures a smooth link with the latter section of the
trajectory.

-285-

6. Common MC Instructions

Thevalue of CommandAborted
changes to TRUE.

L 1 L
10540l

4

The velocity starts to decrease
and then reverse.
L3 N

/

@ The current instruction is followed by a buffered instruction.

Execute of MoveLinearAbsolutel and MovelinearAbsolute2 are started at the same time. Busy and Active
of MovelinearAbsolutel change to TRUE and Busy of MoveLinearAbsolute2 changes to TRUE. The axis
group moves according to the parameters of MoveLinearAbsolutel until Done of MoveLinearAbsolutel
becomes TRUE. In the meantime, Busy and Active of MoveLinearAbsolutel become FALSE and Active of
MoveLinearAbsolute2 becomes TRUE. In this case, the axis group moves according to the parameters

of MoveLinearAbsolute2. When the target position of MoveLinearAbsolute2 is reached, the velocity of
the axis group becomes 0, Done of MoveLinearAbsolute2 becomes TRUE, and Busy and Active become
FALSE.

-286-

6. Common MC Instructions

MoveLinearAbsolutel

Execute]
(ms tH 10s 155
Done ‘
(ms 55 10s 155
Busy ‘ ‘
(ms 5s 10s 15s
Active ‘
[r— L T T
(ms s 10s 15s
CommandAborted
(s iH 10s 13s
Error
(ms 55 10s 155
ErrorlD
(ms 5s 10s 15s
i i
(ms s 10s 15s
MoveLinearAbsolute2
Velocity /f \ / \
Ons s 10s 155
Execute
| i |
[b 10 133
Done |
(s s 10s 13s
Busy ‘
Ons 8s 10s 18s
Active
(ms 55 10s 13s
CommandAborted
I] R L
(ms s 10s 13s
Error
(ms s 10s 13s
ErrorlD
| . . .
Ons b 10s 135

7) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.13 MC_MoveCircularRelativeV2

This enables the arc interpolation motion of the axis group from the current TCP point to the relative
position point under the given coordinate system.

1) Instruction Format

| Instruction | Name |

LD Expression ST Expression

-287-

-288-

6. Common MC Instructions

MC_Move

CircularRelativeV2

MC_MoveCircularRelativeVa_0

MC_MoveCircularRelativev2

— EN ENO -
3 AxesGroup Done
— Execute Busy —
— CircMode Active
— CoordSystem CommandAborted —
. — AuxPoint Error -
Arc relative — Endpoint ErrorlD -
motion — PathChoice
— Velocity

— Acceleration

— Deceleration

— Jerk

— BufferMode

— TransitionMode

— TransitionParameter

MC MoveCircularRelativeVa _0(

RAxesGroup:= AxesGroup,
Execute:= ,
CircMode:= ,
CoordSyatem:= ,
AuxPoint:= ,
Endpoint:=
PathChoice:= ,
Velocity:= ,
Aeceleration:=

Deceleration:= ,
Jerk:= ,
BufferMode:= ,
TransitionMode:= |
TransitionParameter:= ,
Done=> |,

Buay=> ,

Aotive=» |
CommandAborted=> |
Error=> ,
ErrorID=>):

2) Variables

@ Input/Output Variable

Input/Output
Variable

Name Data Type

Value Initial
Range Value

Description

AxesGroup

Axis group AXES_GROUP_REF

Reference to the axis group, that is, an instance
of AXES_GROUP_REF

€ InputVariable

Input
Variable

Name

Data Type Value Range

Initial Value Description

Execute

Starting the
instruction

BOOL TRUE, FALSE

FALSE

Started at the rising edge

CircMode

Arc mode

BORDER_ARC_TYPE =0;
MC_CIRCMODE_V2 ENTER_ARC_TYPE =1,
RADIUS_ARC_TYPE =2

0: Three-point arc;
1: Center arc;

2: Radius arc.

CoordSystem

Coordinate
type

MC_COORDSYSTEM_

ACS, PCS
V2 ’

PCS

Currently, only PCSis
supported

AuxPoint

Auxiliary
point

ARRAY[0---gc_iAxis_
Num-1] OF LREAL

[0,0,-+]

Position of the auxiliary
point relative to the
starting point for each
dimension in the given
coordinate system

EndPoint

End point

ARRAY[0---gc_iAxis_
Num-1] OF LREAL

[0,0,-+]

Position of the end point
relative to the starting
point for each dimension
in the given coordinate
system

PathChoice

Path choice

MC_CIRC_ SHORT_ARC=0;
PATHCHOICE_V2 LONG_ARC=1

Clockwise and anti-
clockwise paths (center

SHORT_ARC | arc);

Long or short path (radius
arc)

Velocity

Velocity

LREAL >0

Maximum main jerk, not
necessarily reachable

Acceleration

Acceleration
rate

LREAL >0

Maximum linear
acceleration rate, not
necessarily reachable

6. Common MC Instructions

Input
. Name Data Type Value Range Initial Value Description
Variable yp & P
Deceleration Maximum linear
Deceleration LREAL >0 - deceleration rate, not
rate -
necessarily reachable
Maxi i jerk
Jerk Jerk LREAL =0 i a><|murT1 linear jerk, not
necessarily reachable
MC_ABORTING=0;
MC_BUFFERED=1;
MC_BUFFER_MODE_ | MC_BLEND_LOW=2; MC_
BufferMode Buffer mode - - - Aborting, buffered, blend
V2 MC_BLEND_PRE=3; ABORTING
MC_BLEND_NEXT=4;
MC_BLEND_HIGH=5
>TMNone=0;
TMStartVelocity=1;
TMCornerDistance=3; + i
-, ; Define th
Transition | Transition | MC_TRANSITION_ o efine the transition
TMMaxCornerDeviation=4; TMNone trajectory characteristics
Mode mode MODE_V2 d
TMDefinedVelocity=10; and type
TM_RESET_ABORT=11;
TM_DEC_ABORT=12
Transition Transition Velocity [0.0,1.0] The transition parameters
Arameter LREAL . 1 vary with the transition
Parameter p Distance [0.0,+ o) mode
€ Output Variable
i Initial .
Output Variable Name Data Type Value Range value Description
Instructi Set to TRUE when th ti
Done nstruction g TRUE, FALSE FALSE ¢ ro TRLE when the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy SXecuting 1 gag) TRUE, FALSE FALSE >etto IRUE atterthe
instruction instruction is received
Axis group
d Set to TRUE when th i
Active under BOOL TRUE, FALSE FALSE etto TRUE when the axis
control of the group is under control
instruction
Instruction
Command
execution | BOOL TRUE, FALSE FALSE ?ne;t:z;i:ﬁ:vah;;r::j
Aborted aborted
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
Output dewh
ErroriD Faultcode | DWORD - 0 utputan errorcodewhen an
error occurs

3) Function Description

€ Thisinstruction is started at the rising edge of Execute and performs arc relative motion from axis
2 to axis 4.

€ You can specify input variables CircMode, CoordSystem, AuxPoint, EndPoint, PathChoice, Velocity,
Acceleration, Deceleration, Jerk, BufferMode, TransitionMode, and TransitionParameter.

€ CircMode

BORDER_ARC_TYPE (three-point arc): An arc consists of three points: start point (current position of
the axis group), auxiliary point (AuxPoint), and end point (EndPoint). If the three points form a straight

line or two of them coincide, the trajectory is a straight line connecting the start point and the end point.

If the three points do not form a straight line, the trajectory is an arc passing through the three points.
The range of the arc angle is (0, 2m). The figure shows the composition of a three-point arc in space, with
axis Z facing off-screen.

-289-

-290-

6. Common MC Instructions

Y 0 S_tart point

End point

l‘

- ENTER_ARC_TYPE (center arc): An arc is defined by using the current position of the axis group
(AxesGroup) as the start point, AuxPoint as the center and EndPoint as the end point. PathChoice
specifies whether the arc is long or short. The arc angle range is less than 2 and not equal to t. When
the three points form a straight line, the trajectory is a straight line connecting the start and end points.
If the distance between the start point and the end point to the center of the circle deviates too much, an
error will be reported. If there is a small deviation (<=0.1 mm), the center of the circle will be corrected
automatically. The figure shows the composition of a center arc in space, with axis Z facing off-screen.

Y o Startpoint

End point

&

[
Auxiliary point

C p
X

- RADIUS_ARC_TYPE (radius arc): The radius of the arc is determined by the length of the AuxPoint
vector, and the arc normal vector is determined by the vector direction. PathChoice determines whether
the arcis long or short. The arc angle range is less than 2. When the start and end points are not
perpendicular to the normal vector, an error will be reported if the deviation angle is too large. If the
deviation is small (<10°), the direction of the normal vector will be corrected according to the parameter.
If the distance between the start point and the end point is greater than twice the normal vector
modulus, the arc reports an error. If the normal vector modulus is less than the calculation accuracy
1e06, an error will be reported.

A 0
Start point

End point

0>

Normal vector
(The vector lengthis
equal to the radius.)

= ¥

@ CoordSystem

6. Common MC Instructions

- Specify the coordinate system for arc relative motion. Currently, only arc relative motion under

the PCS is supported.
@ PathChoice

Depending on the CircMode, there are different choices for the arc direction and length.

- ENTER_ARC_TYPE (center arc): You can set a clockwise or counterclockwise path.

A
Y 0 Start point

End point

l'

Auxiliary point

& »
A
Y Start point
\j point
[}
Aucxiliary point
C »

X

- RADIUS_ARC_TYPE (radius arc): You can set a long or short path.

Y Start point
End point
Normal vector
(The vector length is
equal to the radius.)
X
A
Y Start poin;\
End point
Normal vector
(The vector length is
equal to the radius.)
>
X

@ Velocity, Acceleration, Deceleration, and Jerk

- If the velocity of any axis (Axis) in the axis group (AxesGroup) exceeds the product of the software-

-291-

6. Common MC Instructions

limited maximum velocity of the axis and the warning specification ratio factor, an error stop will be
performed.

- The trajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, Jerk does not take effect and is regarded as 0. (The profile type of the axis group is specified
in the axis group data structure)

- The curves of velocity, acceleration rate, deceleration rate, and jerk with the conditions Jerk = 0 and
Jerk # 0 are shown below.

Jerk =0, maximum interpolation velocity reachable

Velocity

Maximum speed |..eeeeeemmiimmien e

ETime

Acceleration

Time

..

Deceleration

Jerk =0, maximum interpolation velocity unreachable due to short motion distance

Velocity

Maximum speed

Time

........................ Q Time

Acceleration

Deceleration

Jerk # 0, maximum interpolation velocity reachable (Non-trapezoidal profile)

-292-

6. Common MC Instructions

Velocity

Maximum speed f-------=sssemsmmsrmmnsmnnnnnns s

Acceleration

Deceleration

Jork proseeemeeeneeinnns

Jerk # 0, maximum interpolation velocity unreachable due to short motion distance (Non-trapezoidal
profile)

Velocity

Maximum Speed |-,

1 1
| | 1 | ! Time
i | | !
| | | | !
i | |
S R v 0 |) ! !
Acceleration ' ' ! 1 ; :
: ‘ : :
| i i)
. ! i i Time
Deceleration f---------- R _/.
i i
| H | i
H
______ [IS
Time
Jerk fo----eeeeoeoenee-

@ Repeated instruction triggering
- This instruction cannot be triggered again.
@ Starting multiple motion instructions

- When this instruction is started for the currently executing instruction, it will be switched to this
instruction or this instruction will be buffered. Up to 8 instructions can be buffered for each axis group.
The motion of this instruction is specified by BufferMode when multiple instructions are started.

@ BufferMode

- Aborting (MC_ABORTING): Interrupt the current instruction and start to execute this instruction.

-293-

6. Common MC Instructions

- Buffered (MC_BUFFERED): This instruction is buffered and will be started after the current instruction

is executed.
/2—on Vl
P t

- Blend (MC_BLEND): Blend the velocity of two instructions in the specified way. This method is
specified in TransitionMode.

v

@ TransitionMode

The blend method of the velocity of two instructions when the input variable TransitionMode of this
instruction specifies BufferMode as blend.

- TMNone: No insertion of transition curve If TMNone is adopted as the blend mode, the result is the
same as the transition mode between the velocity of the two instructions in buffered mode.

op; V

- TMStartVelocity: Blend at the previous velocity Blending is performed for the transition based on
a certain ratio (0,1] of the actual maximum velocity of the current motion instruction. Any transition
between motion instructions is valid.

-294-

6. Common MC Instructions

v
100%¢-

0%

— ¥

- TMCornerDistance: Corner transition mode In Cartesian space, specify the distance from the previous
instruction to the end under the main dimension space. Use this distance to open a transition trajectory
to link the neighboring trajectory. The distance here is in a broad sense and is related to the main
dimension type of the axis group.

(@ Position as main dimension: The parameter is the displacement from the transition point to the end
point.

@ Attitude as main dimension: The parameter is the attitude from the transition point to the end point.

(3 Ratio as main dimension: The parameter is the ratio of the resultant distance from the transition point
to the end point to the total resultant displacement (0-1).

- TMMaxCornerDeviation: Maximum corner position deviation transition mode In Cartesian space, set
the maximum position deviation distance for the trajectory transition of the neighboring instructions
in the position subspace. Two neighboring trajectories are linked by constructing the corresponding
transition trajectory. In this way, the maximum position deviation of the transition trajectory is always
within a certain range. Only the position deviation is involved here, which is not related to the main
dimension. Both instructions are valid when they are in Cartesian space (LIN/CIRC). Otherwise, the
instructions are processed in no-transition mode.

[;2_/&6 By

- TMDefinedVelocity: Blend at the next velocity Blending is performed for the transition based on a
certain ratio (0,1] of the actual maximum velocity of the next instruction of the current motion. Any
transition between motion instructions is valid.

-295-

6. Common MC Instructions

4) Precautions
@ Thisinstruction only supports arc relative motion under the PCS.

€ When the current motion instruction is interrupted, the arc relative motion immediately starts to plan
a new instruction from the interrupted position. In the workspace, a transition trajectory is constructed
for deceleration and reverse reset along the velocity direction of the interrupted position, which ensures
a smooth link with the latter section of the trajectory. Here, only the velocity smoothing is guaranteed,
and the acceleration smoothing is not guaranteed.

€ Thisinstruction can only be started when the axis group is in the GroupMoving or GroupStandby state. If
it is started in other states, an error will be reported.

@ The execution of this instruction can be interrupted by other motion instructions as well as the MC_
GroupStop and MC_GroupHalt instructions.

@ After the execution of this instruction, the axis group (AxesGroup) state switches from GroupMoving to
GroupStandby or retains the GroupMoving state. The state changes as follows:

@ Ifthe current motion is in a static coordinate system, the axes group state switches from GroupMoving
to GroupStandby. If the current motion is in a dynamic coordinate system, the axis group remains in the
GroupMoving state.

5) Program example

Refer to the MC_MovelLinearRelative instruction for the program example of this instruction. Motion
instructions of the axis group (AxesGroup) can be used together.

6) Timing Diagram
7) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.14 MC_MoveCircularAbsoluteV2

This instruction removes all axes from an axis group by disassociating the mapping of all configured
axes.

1) Instruction Format

-296-

6. Common MC Instructions

Instruction Name LD Expression ST Expression
MC MoveCirculardbsoluteVa_((
BkxeaGroup:= AxesGroup,
Execute:= ,
MC_MoveCircularAbsoluteV2_0 CircMode:= ,
MC_MoveCircularAbsoluteV2 Coord3ystem:=
—EN ENC EuxPoint:= ,
= — .
‘:"esﬁr“’”p E;“’“e Endpoint:= ,
= Execute usy — ~ : =
— CircMode Active — f’_ath\..'fllClCE. !
— CoordSystem CommandAborted — Velocityi=
MC_Move Arc absolute —| AuxPoint Error Acceleration:= |
) motion — Endpoint ErrorlD — Deceleration:= ,
CircularAbsoluteV2 otio - PathChoice Jeriie |
gL . BufferMode:= ,
— Acceleration o
- Deceleration TransitionMode:= ,
— Jerk TransitionParameter:= ,
| BufferMode Done=»
— TransitionMode Busy=> ,
— TransitionParameter Activess
CommandAborted=» |
Error=» ,
ErrorID=> }:
2) Variables
@ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable P Range Value P
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF
@ InputVariable
Input Name Data Type Value Range Initial Value Description
. u iti u ipti
Variable yp & P
Starting th
Execute SNg e - gL TRUE, FALSE FALSE Started at the rising edge
instruction
BORDER_ARC_TYPE =0; 0: Three-point arc;
CircMode Arc mode MC_CIRCMODE_V2 ENTER_ARC_TYPE =1; 0 1: Center arc;
RADIUS_ARC_TYPE =2 2: Radius arc.
Coordinate | MC_COORDSYSTEM Currently, only PCSis
CoordSystem : - = | ACS, PCS PCS urrenty, onfy FL> |
type V2 supported
Position of the auxiliary
int relative to th
Aot Auxiliary | ARRAY[O---gc_iAxis_ 0,01 Stc;'rr;mre ao'l\; et er ezch
point Num-1] OF LREAL 7 -arting port .
dimension in the given
coordinate system
Position of the end point
lative to the starti
EndPoint End point | AR AV0 BCiAXS [0,0,-+] reo?nltvff:roeacﬁjjian:el:ion
P Num-1] OF LREAL ™ P : .
in the given coordinate
system
Clockwise and anti-
clockwise paths (center
PathChoi Path choi MC_CIRC SHORT_ARCZ0; SHORT_ARC |arc) e (
t t - . 5
a oiee ath choice PATHCHOICE_V2 LONG ARC=1 -
- Long or short path (radius
arc)
. . Maximum linear velocity,
Velocity Velocity LREAL >0 . .
not necessarily reachable

-297-

6. Common MC Instructions

Input
. Name Data Type Value Range Initial Value Description
Variable yp & P
Acceleration Maximum linear
Acceleration LREAL >0 - acceleration rate, not
rate A
necessarily reachable
Deceleration Maximum linear
Deceleration LREAL >0 - deceleration rate, not
rate)
necessarily reachable
Maxi i jerk
Jerk Jerk LREAL =0 i aX|mun.1 linear jerk, not
necessarily reachable
MC_ABORTING=0;
MC_BUFFERED=1;
MC_BUFFER_MODE_ | MC_BLEND_LOW=2;)
BufferMode Buffer mode - - - MC_ Aborting, buffered, blend
V2 MC_BLEND_PRE=3;
ABORTING
MC_BLEND_NEXT=4;
MC_BLEND_HIGH=5
TMNone=0;
TMStartVelocity=1;
TMCornerDistance=3;
TMMaxCornerDeviation=4;
TMDefinedVelocity=10; + i
Transition Transition | MC_TRANSITION_ Defme the trans't'or?)
TM_RESET_ABORT=11; TMNone trajectory characteristics
Mode mode MODE_V2
TM_DEC_ABORT=12 and type
TMMaxCornerDeviation=4;
TMDefinedVelocity=10;
TM_RESET_ABORT=11;
TM_DEC_ABORT=12
Transition Transition Velocity [0.0,1.0] The transition parameters
Arameter LREAL . 1 vary with the transition
Parameter p Distance [0.0,+ o0) mode
€ Output Variable
i Initial .
Output Variable Name Data Type Value Range value Description
Done Instruction BOOL TRUE, FALSE FALSE Se.t to TRU.E When the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy SXecuting 1 gag) TRUE, FALSE FALSE >etto IRUE atterthe
instruction instruction is received
Axis group
Active under BOOL TRUE, FALSE FALSE Set to TRUE when the axis
control of the group is under control
instruction
Instruction
Command Set to TRUE when th
execution | BOOL TRUE, FALSE FALSE mestrzction iswa ;;rtej
Aborted aborted
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
Output de wh
ErrorlD Faultcode | DWORD - 0 utput an error code when an
error occurs

3) Function Description

€ Thisinstruction is started at the rising edge of Execute and performs arc absolute motion from axis
2 to axis 4.

€ You can specify input variables CircMode, CoordSystem, AuxPoint, EndPoint, PathChoice, Velocity,
Acceleration, Deceleration, Jerk, BufferMode, TransitionMode, and TransitionParameter.

-298-

6. Common MC Instructions

€ CircMode

- BORDER_ARC_TYPE (three-point arc): An arc consists of three points: start point (current position of
the axis group), auxiliary point (AuxPoint), and end point (EndPoint). If the three points form a straight
line or two of them coincide, the trajectory is a straight line connecting the start point and the end point.
If the three points do not form a straight line, the trajectory is an arc passing through the three points.
The range of the arc angle is (0, 2m). The figure shows the composition of a three-point arc in space, with

axis Z facing off-screen.

&

o Start point

End point

.k

Auxiliary point

»

X

- ENTER_ARC_TYPE (center arc): An arc is defined by using the current position of the axis group
(AxesGroup) as the start point, AuxPoint as the center and EndPoint as the end point. PathChoice
specifies whether the arc is long or short. The arc angle range is less than 2 and not equal to t. When
the three points form a straight line, the trajectory is a straight line connecting the start and end points.
If the distance between the start point and the end point to the center of the circle deviates too much, an
error will be reported. If there is a small deviation (<=0.1 mm), the center of the circle will be corrected
automatically. The figure shows the composition of a center arc in space, with axis Z facing off-screen.

Y

4

A
o Start point

End.point

.k

.
Auxiliary point

C

>

X

- RADIUS_ARC_TYPE (radius arc): The radius of the arc is determined by the length of the AuxPoint
vector, and the arc normal vector is determined by the vector direction. PathChoice determines whether
the arcis long or short. The arc angle range is less than 2m. When the start and end points are not
perpendicular to the normal vector, an error will be reported if the deviation angle is too large. If the
deviation is small (<10°), the direction of the normal vector will be corrected according to the parameter.
If the distance between the start point and the end point is greater than twice the normal vector
modulus, the arc reports an error. If the normal vector modulus is less than the calculation accuracy

1e06, an error will be reported.

€ CoordSystem

(]
Start point

End point

.}

Normal vector
(The vector length is
equal to the radius.)

><V'

-299-

6. Common MC Instructions

- Specify the coordinate system for arc relative motion. Currently, only arc relative motion under
the PCS is supported.

€ PathChoice
Depending on the CircMode, there are different choices for the arc direction and length.

- ENTER_ARC_TYPE (center arc): You can set a clockwise or counterclockwise path.

A
Y o Start point

_End point

L[]
Auxiliary point

-+ RADIUS_ARC_TYPE (radius arc): You can set a long or short path.

A o
Y Start point
End point

.b

Normal vector
(The vector length is
equal to the radius.)

A
Y Start poin:\

N~ L

End point

Normal vector
(The vector length is
equal to the radius.)

X;
@ Velocity, Acceleration, Deceleration, and Jerk

- If the velocity of any axis (Axis) in the axis group (AxesGroup) exceeds the software-limited maximum
velocity of the axis, an error stop will be performed.

- The trajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, Jerk does not take effect and is regarded as 0. (The profile type of the axis group is specified
in the axis group data structure)

- The curves of velocity, acceleration rate, deceleration rate, and jerk with the conditions Jerk =0 and
Jerk # 0 are shown below.

Jerk =0, maximum interpolation velocity reachable

-300-

6. Common MC Instructions

Velocity

Maximumspeed

Acceleration

Time

Deceleration

Time

Jerk =0, maximum interpolation velocity unreachable due to short motion distance

Velocity

Maximum speed

Acceleration

Time

Deceleration

Time

Jerk # 0, maximum interpolation velocity reachable (Non-trapezoidal profile)

Velocity

Maximum speed

Acceleration

Time

Deceleration

Time

Jerk

Jerk # 0, maximum interpolation velocity unreachable due to short motion distance (Non-trapezoidal

profile)

Time

-301-

6. Common MC Instructions

Velocity

MAXIMUM SPEE |- o= nmmm e e e m oo

Time
Acceleration
X Time
Deceleration
Time

Jerk

@ Repeated instruction triggering
- This instruction cannot be triggered again.
@ Starting multiple motion instructions

- When this instruction is started for the currently executing instruction, it will be switched to this
instruction or this instruction will be buffered. Up to 8 instructions can be buffered for each axis group.
The motion of this instruction is specified by BufferMode when multiple instructions are started.

@ BufferMode

- Aborting (MC_ABORTING): Interrupt the current instruction and start to execute this instruction.

I3 t

- Buffered (MC_BUFFERED): This instruction is buffered and will be started after the current instruction
is executed.

op,

[V

1§ t:

- Blend (MC_BLEND): Blend the velocity of two instructions in the specified way. This method is
specified in TransitionMode.

-302-

6. Common MC Instructions

@ TransitionMode

The blend method of the velocity of two instructions when the input variable TransitionMode of this
instruction specifies BufferMode as blend.

- TMNone: No insertion of transition curve If TMNone is adopted as the blend mode, the result is the
same as the transition mode between the velocity of the two instructions in buffered mode.

- TMStartVelocity: Blend at the previous velocity Blending is performed for the transition based on
a certain ratio (0,1] of the actual maximum velocity of the current motion instruction. Any transition
between motion instructions is valid.

- TMCornerDistance: Corner transition mode In Cartesian space, specify the distance from the previous
instruction to the end under the main dimension space. Use this distance to open a transition trajectory
to link the neighboring trajectory. The distance here is in a broad sense and is related to the main
dimension type of the axis group.

(@ Position as main dimension: The parameter is the displacement from the transition point to the end
point.

@ Attitude as main dimension: The parameter is the attitude from the transition point to the end point.

(® Ratio as main dimension: The parameter is the ratio of the resultant distance from the transition point
to the end point to the total resultant displacement (0-1).

- TMMaxCornerDeviation: Maximum corner position deviation transition mode In Cartesian space, set
the maximum position deviation distance for the trajectory transition of the neighboring instructions
in the position subspace. Two neighboring trajectories are linked by constructing the corresponding
transition trajectory. In this way, the maximum position deviation of the transition trajectory is always
within a certain range. Only the position deviation is involved here, which is not related to the main
dimension. Both instructions are valid when they are in Cartesian space (LIN/CIRC). Otherwise, the
instructions are processed in no-transition mode.

-303-

6. Common MC Instructions

%_/&e Y

M

- TMDefinedVelocity: Blend at the next velocity Blending is performed for the transition based on a

certain ratio (0,1] of the actual maximum velocity of the next instruction of the current motion. Any
transition between motion instructions is valid.

4) Precautions

*
*

This instruction only supports arc absolute motion under the PCS.

When the current motion instruction is interrupted, the arc absolute motion immediately starts to plan
a new instruction from the interrupted position. In the workspace, a transition trajectory is constructed
for deceleration and reverse reset along the velocity direction of the interrupted position, which ensures
a smooth link with the latter section of the trajectory. Here, only the velocity smoothing is guaranteed,
and the acceleration smoothing is not guaranteed.

This instruction can only be started when the axis group is in the GroupMoving or GroupStandby state. If
it is started in other states, an error will be reported.

The execution of this instruction can be interrupted by other motion instructions as well as the MC_
GroupStop and MC_GroupHalt instructions.

After the execution of this instruction, the axis group (AxesGroup) state switches from GroupMoving to
GroupStandby or retains the GroupMoving state. The state changes as follows:

If the current motion is in a static coordinate system, the axes group state switches from GroupMoving
to GroupStandby. If the current motion is in a dynamic coordinate system, the axis group remains in the
GroupMoving state.

5) Program example

Refer to the MC_MoveLinearRelative instruction for the program example of this instruction. Motion
instructions of the axis group (AxesGroup) can be used together.

6) Timing Diagram

7) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.15 MC_GroupResetV2

-304-

This instruction resets an internal error of an axis group to make the axis group state switch from
GroupErrorStop to GroupStandby. It also performs the axis error reset operation for all axes in the axis

6. Common MC Instructions

group.
1) Instruction Format
Instruction Name LD Expression ST Expression
MC_GroupResetV2_ 0 MC GroupResetVa 0(
MC_GroupResetV2 AxesGroup:= AxesGroup,
—HEN END Execute:= ,
R)
MC_GroupResetV2 afissettr:f’an 3 AxesGroup Done — Done=> ,
group —| Execute Busy Busy=> ,
Error [Error=s |,
ErrorlD ErrorID=s |
2) Variables
€ Input/Output Variable
Input/Output Value Initial .
. Name Data Type Description
Variable o Range Value .
Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF
€ InputVariable
Input Initial
. Name Data Type Value Range Description
Variable YP & Value P
Starting th
Execute e e ool TRUE, FALSE | FALSE Started at the rising edge
instruction
€ Output Variable
i Initial -
Output Variable Name Data Type Value Range Value Description
I i TRUE when th i
Done nstruction BOOL TRUE, FALSE FALSE Se’.t to U. w. en the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy SXECUTNE 1 gooL TRUE, FALSE FALSE >etto TRUE atterthe
instruction instruction is received
Error Instruction BOOL TRUE, FALSE FALSE Set to TRUE when an error
error occurs
Output an error code when an
ErrorID Fault code DWORD - 0
error occurs

3) Function Description

€ Thisinstruction is started at the rising edge of Execute. It performs the reset operation for errors of an
axis group in the GroupErrorStop state and the axis errors in an axis group.

@ Starting other instructions during the execution of this instruction

- If you execute multiple instantiated MC_GroupReset instructions for the same axis group (AxesGroup),
each axis group reset instruction will be executed in the order in which the instructions are triggered.

- If you execute the MC_Reset instruction for an axis (Axis) in the specified axis group (AxesGroup) when
executing the MC_GroupReset instruction for the axis group (AxesGroup), the two instructions will be
executed sequentially in the order in which they are triggered.

4) Precautions

€@ If you execute this instruction when an axis group communication error occurs or the axis group

-305-

6. Common MC Instructions

(AxesGroup) is in the GroupErrorStop state but the stopping action has not been completed, the axis
group reset operation fails and an error will be reported.

@ Ifanaxis (Axis) in the axis group (AxesGroup) has an error, execute this instruction to reset all axes (Axis).
An error will be reported if the reset times out. After the reset is completed, initialize the axis group
(AxesGroup) again, and update the coordinate system (ACS/PCS). The axis group state will switch from
GroupErrorStop to GroupStandby.

@ Do not execute this instruction in the GroupDisabled state. Otherwise, an error will be reported. If you
execute this instruction in a non-GroupErrorStop state, Done is set to TRUE immediately and the axis
group remains unchanged.

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.16 MC_GroupReadErrorV2

This instruction reads the error message of the specified axis group (AxesGroup) and describes the
general axis group errors that are not related to the axis group instruction error.

1) Instruction Format

Instruction Name LD Expression ST Expression

iC_GroupReadErrorVa 0(

MC_GroupReadErrorV2_0 . - N -
- - AEEICL0UR.= AXe3LIOUR,

MC_GroupReadErroryv2 I
Reading — EN ENO - .
MC_Group the axis 3 AxesGroup Valid Valid=> ,
ReadErrorV2 group error - Enable Busy Busy=> ,
message ETE | Error=» ,
ErrorlD -
GroupErrorlD - ErrorlD=> ,

GroupErrorID=>):

2) Variables
@ Input/Output Variable

Input/Output Value Initial

N Data T D ipti
Variable ame ata lype Range Value escription

Reference to the axis group, that is, an instance
of AXES_GROUP_REF

AxesGroup Axis group AXES_GROUP_REF

@ InputVariable

Input Initial
. Name Data Type Value Range Description
Variable yp & Value P
I i TRUE: E hei ion; FALSE: D
Enable nstruc.tlon BOOL TRUE, FALSE FALSE U xecutet.elnstrgctlon, S 0
execution not execute the instruction
@ Output Variable
) Initial L
Output Variable Name Data Type Value Range value Description
Valid
Set to TRUE when th i
valid instruction | BOOL TRUE, FALSE FALSE etto TRUE when the axis
output group is under control

-306-

6. Common MC Instructions

Executin Set to TRUE after the
Busy ,X) |.g BOOL TRUE, FALSE FALSE . L .
instruction instruction is received
Instructi Set to TRUE wh
Error nstruction 1 gooL TRUE, FALSE FALSE etto TRUEwhen an error
error occurs
h
ErrorlD Fault code DWORD - 0 Output an error code when an
error occurs
GroupErroriD Fault code DWORD - 0 Axis group error code

3) Function Description

@ When Valid is TRUE, the error message of the axis group specified by the input/output variable
AxesGroup of this instruction is obtained. If there is an axis group error, GroupErrorID outputs the
corresponding error code. If there is no error in the axis group, GroupErrorID outputs 0.

4) Precautions

€ When thisinstruction is executed, the axis group specified by the input/output variable AxesGroup must
not be in the GroupDisabled state. There is no requirement on the state of axes (Axis) in the axis group
(AxesGroup).

@ The output variable ErrorID of this instruction is the error code corresponding to the error message
when an execution error of this instruction occurs. GroupErrorlD is the error code corresponding to the
error message of the axis group (AxesGroup) read during the execution of this instruction.

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.17 MC_GroupReadStatusV2

This instruction reads the state of the specified axis group.

1) Instruction Format

Instruction

Name

LD Expression

ST Expression

MC_GroupReadStatusVa_0

Enable:= |
MC_GroupReadStatusv2 Talide
Hen ENO |- valid=>,
3 AxesGroup Valid — Busy=>» ,
-] Enable Busy — GroupMoving=» ,
GroupMoving —

GroupHoming

GroupDisabled
ConstantVelocity
Accelerating
Decelerating

InPosition —]
Error — Decelerating=»> ,
ErrorlD [— InPosition=> ,
Error=> ,
ErrorlID=>):

Tl

4C_GroupReadStatusVa 0(

MC_GroupRead Ob.taining the GroupErrorStop — GroupErrorStop=r |
axis group GroupStandby — GroupStandby=>
Statusv2 state GroupStopping —

AxesGroup:= LxesGroup,

GroupHoming=> ,

GroupStopping=r ,
Grouplisabled=» |
ConstantVelocity== ,
Accelerating=» |

2) Variables

*

Input/Output Variable

-307-

6. Common MC Instructions

Input/Output Value Initial

. Name Data Type Description
Variable o Range | Value 2

Reference to the axis group, that is, an instance
of AXES_GROUP_REF

AxesGroup Axis group AXES_GROUP_REF

€ InputVariable

Input N Data T value R Initial Descrinti
. ame ata e alue Range escription
Variable yp & Value P
Enable Instrugtion BOOL TRUE, FALSE FALSE TRUE: Execute the instrL.Jction; FALSE: Do
execution not execute the instruction

€ Output Variable

. Initial .
Output Variable Name Data Type Value Range Value Description
u
valid Valid instruction BOOL TRUE, FALSE FALSE Set to TRUE when the axis
output group is under control
E ti Set to TRUE after th
Busy . xecu ”?g BOOL TRUE, FALSE FALSE . ctto . .a e . €
instruction instruction is received
i -
GroupMoving n:(:tii:)up n BOOL TRUE, FALSE FALSE Axis group state machine
Performing axi
GroupHoming N8 25| ool TRUE, FALSE FALSE Axis group state machine
group homing
Axis group
GroupErrorStop stopped dueto | BOOL TRUE, FALSE FALSE Axis group state machine
an error
Axis gro . .
GroupStandby XIS group BOOL TRUE, FALSE FALSE Axis group state machine
standby
i
GroupStopping XS g.roup BOOL TRUE, FALSE FALSE Axis group state machine
stopping
. Disabling an . .
GroupDisabled tsabling BOOL TRUE, FALSE FALSE Axis group state machine
axis group
M t t locit:
ConstantVelocity Constant speed | BOOL TRUE, FALSE FALSE ov.e @ corTs ant velocity on
the instruction path
Acceleration Accelerate on the instruction
Accelerating ' BOOL TRUE, FALSE FALSE nstruct
rate path
D i D hei i
Decelerating eceleration BOOL TRUE, FALSE FALSE ecelerate on the instruction
rate path
T t iti
InPosition argetposition fpag). TRUE, FALSE FALSE Target position reached
reached
TRUE wh
Error Instruction error | BOOL TRUE, FALSE FALSE Setto TRUE when an error
occurs
Output de wh
ErrorD Fault code DWORD - 0 utputan erorcode when an
error occurs

3) Function Description

€ When Valid is TRUE, this instruction obtains the state of the axis group specified by input/output
variable AxesGroup of this instruction.

4) Precautions

€ When thisinstruction is executed, there is no requirement on the state of the axis group specified by
input/output variable AxesGroup and the state of axes (Axis) in the axis group (AxesGroup)

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

-308-

6. Common MC Instructions

6.4.18 MC_GrouplinterruptVv2

This instruction pauses an axis group along the current motion path of the axis group, which does not
change the current motion state of the axis group.

1) Instruction Format

Instruction Name LD Expression ST Expression
C_GroupInterruptVa _0(
AxesGroup:= AxesGroup,
MC_GrouplnterruptV2_ 0 Execute:= ,
MC_Groupinterruptva DecelerationFactor:= ,
— EN ENO - ~ o
MC_Group Pausing an | AxesGroup Done JerkFactor:= ,
A — Execute Busy — Done=y
InterruptV2 axis group — DecelerationFactor Active
— JerkFactor CommandAborted Busy=> r
[Ear | Letive=»
ErrorlD [~
ComrmandAborted=»> |
Error=» ,
ErrorID=> };:
2) Variables
€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yP Range Value P
) Reference to the axis group, that is, an instance
AxesGroup Axis group AXES_GROUP_REF |- - of AXES_GROUP_REF

€ InputVariable

i Initial i
Input Variable Name Data Type Value Range Value Description
Starting the
Execute) g, BOOL TRUE, FALSE FALSE Started at the rising edge
instruction
Deceleration Deceleration LREAL (0.0,.10] 03 Ratio rela.tive to the m.aximum
Factor factor deceleration of the axis group
Rati i h i jerk of
JerkFactor Jerk factor LREAL [0.0,1.0] 0.3 atio relatlve to the maximum jerk o
the axis group
€ Output Variable
) Initial .
Output Variable Name Data Type Value Range Value Description
Done Instruction BOOL TRUE, FALSE EALSE SeF to TRUAE when the execution
completed of instruction is complete
E ti Set to TRUE after th
Busy .Xecu |r.1g BOOL TRUE, FALSE FALSE ,e © . _a er, N
instruction instruction is received
Axis group .
Set to TRUE when th
Active under control of | BOOL TRUE, FALSE FALSE etto TRUE when the axis
: h group is under control
the instruction
Instruction
Command Set to TRUE when th
execution BOOL TRUE, FALSE FALSE inestrzction ifa;;rtej
Aborted aborted
TRUE wh
Error Instruction error | BOOL TRUE, FALSE FALSE Set to TRUE when an error
occurs
Output de wh
ErroriD Fault code DWORD - 0 utputan errorcodewhen an
error occurs

3) Function Description

€ Thisinstruction is started at the rising edge of Execute. It pauses an axis group (AxesGroup) along the

-309-

6. Common MC Instructions

current motion path of the axis group, which does not change the current motion state of the axis
group.

@ Thisinstruction does not make the axis group (AxesGroup) pause immediately upon the execution but
makes it decelerate based on Deceleration and JerkFactor. After this instruction is started, the current
motion instruction of the axis group will not be interrupted. Busy of this instruction is always set. After
Active is reset, the axis group maintains the original state.

@ Toresume the motion paused by this instruction, execute the MC_GroupContinue instruction.

€ Thisinstruction can be interrupted by the MC_GroupContinue, MC_GroupHalt, MC_GroupStop, or
another MC_Grouplnterrupt instruction, as well as by a new axis group (AxesGroup) motion instruction.

@ DecelerationFactor and JerkFactor

- The deceleration rate and jerk during the execution of this instruction are determined by the input
variables DecelerationFactor and JerkFactor, respectively.

- Each axis (Axis) of the axis group (AxesGroup) pauses according to the product of its software-limited
maximum axis acceleration rate and DecelerationFactor as well as the product of its software-limited
maximum axis jerk and JerkFactor.

- JerkFactor

@ JerkFactor = 0: Velocity profile and deceleration profile

Velocity

Deceleration

(@ JerkFactor # 0: Velocity profile, deceleration profile, and jerk profile

Velocity

Deceleration

Jerk

@ Repeated instruction triggering
- This instruction cannot be triggered again.
4) Precautions

€ Thisinstruction cannot be executed when the axis group (AxesGroup) is GroupStandby, GroupErrorstop,

-310-

6. Common MC Instructions

GroupDisabled, or GroupStopping state. Otherwise, an error will be reported.

€ Thisinstruction cannot be executed when the axis group (AxesGroup) is controlled by the MC_GroupHalt
and in the homing process. Otherwise, an error will be reported.

@ Thetrajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, the input variable JerkFactor is invalid, and the instruction performs the pause operation
based on DecelerationFactor. If the profile type is cubic or septuple, the instruction performs the pause
operation based on DecelerationFactor and JerkFactor.

@ Whether the profile type of each axis (Axis) in the axis group (AxesGroup) is trapezoidal or S-shaped
does not affect the planning method of the axis group (AxesGroup).

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.19 MC_GroupContinueV2

This instruction restarts an axis group and allows the motion that is currently paused or in the process of
being paused to return to the original motion path.

1) Instruction Format

Instruction Name LD Expression ST Expression
MC GroupContinueVa_0(
AyeaGroup:= AxesGroup,
MC_GroupContinueV2_0 Execute:= 1
MC_GroupContinueVv2 LeeelerationFactor:= |
1= ENO ™ JerkFactor:=
MC_Group Restarting an 7| AxesGroup s | g o
. R — Execute Busy — Done=> ,
ContinueVv2 axis group — AccelerationFactor Active — Busy=
5_} r
— JerkFactor CommandAborted —
Error — Aotive=»
ErrorlD — CommandAborted=» |,

Error=» ,
Errorll=>):

2) Variables

€ Input/Output Variable
Input/Output Value Initial
. Name Data Type Description
Variable yp Range Value 2

Reference to the axis group, that is, an
instance of AXES_GROUP_REF

AxesGroup Axis group AXES_GROUP_REF

€ InputVariable

i Initial L
Input Variable Name Data Type Value Range value Description
Starting the
Execute) I g, BOOL TRUE, FALSE FALSE Started at the rising edge
instruction
Acceleration Acceleration LREAL 0.0,1.0] 03 Ratio relaFive to the maximum
Factor factor deceleration of the axis group
Rati i h i jerk of
JerkFactor Jerk factor LREAL [0.0,1.0] 0.3 atio |telat|ve to the maximum jerk o
the axis group

€ Output Variable

-311-

-312-

6. Common MC Instructions

) Initial _—
Output Variable Name Data Type Value Range value Description
| i TRUE wh h i
Done nstruction BOOL TRUE, FALSE FALSE SeF to U. w' en the execution
completed of instruction is complete
Executin Set to TRUE after the
Busy . ‘g BOOL TRUE, FALSE FALSE . Lo .
instruction instruction is received
Axis group .
TRUE wh h
Active under control of | BOOL TRUE, FALSE FALSE setto . UE when the axis
. . group is under control
the instruction
Instruction
Command
execution BOOL TRUE, FALSE FALSE isnesi:(:;:qoifsi:\/ah[)egr::j
Aborted aborted
Set to TRUE wh
Error Instruction error | BOOL TRUE, FALSE FALSE ctto TRUE when an error
occurs
ErroriD Fault code DWORD : 0 Outputan error code when an
error occurs

3) Function Description

*

*

This instruction is started at the rising edge of Execute. It restarts an axis group and allows the motion
that is currently paused or in the process of being paused to return to the original motion path.

After this instruction is started, Active of the currently paused motion instruction becomes TRUE when
Busy and Active of this instruction are set. The axis group accelerates based on the parameters of this
instruction until it recovers the velocity at the moment of being paused, and Done of this instruction is
set to TRUE.

This instruction is used in pairs with the MC_Grouplnterrupt instruction.

This instruction can be interrupted by the MC_GrouplInterrupt, MC_GroupHalt, MC_GroupStop, or
another MC_GroupContinue instruction, as well as by a new axis group (AxesGroup) motion instruction.

AccelerationFactor, JerkFactor

- The acceleration rate and jerk during the execution of this instruction are determined by the input
variables AccelerationFactor and JerkFactor, respectively.

- Each axis (Axis) of the axis group (AxesGroup) restarts according to the product of its software-limited
maximum axis acceleration rate and AccelerationFactor as well as the product of its software-limited
maximum axis jerk and JerkFactor.

- JerkFactor

(@ JerkFactor = 0: Velocity profile and acceleration profile

Velocity

Acceleration Time

@ JerkFactor # 0: Velocity profile, acceleration rate profile, and jerk profile

6. Common MC Instructions

Velocity

Acceleration]

Jerk |7

@ Repeated instruction triggering
- This instruction cannot be triggered again.
4) Precautions

€ Thisinstruction cannot be executed when the axis group (AxesGroup) is GroupStandby, GroupErrorstop,
GroupDisabled, or GroupStopping state. Otherwise, an error will be reported.

€ Thisinstruction cannot be executed when the axis group (AxesGroup) is controlled by the MC_GroupHalt
and in the homing process. Otherwise, an error will be reported.

@ Thetrajectory profile type of the axis group (AxesGroup) is set as required. If the profile type is
trapezoidal, the input variable JerkFactor is invalid, and the instruction performs the restart operation
based on AccelerationFactor. If the profile type is cubic or septuple, the instruction performs the restart
operation based on AccelerationFactor and JerkFactor.

@ Whether the profile type of each axis (Axis) in the axis group (AxesGroup) is trapezoidal or S-shaped
does not affect the planning method of the axis group (AxesGroup).

5) Timing Diagram
6) Error Description

Refer to the error code for the error description, cause, and solution when an error occurs.

6.4.20 Axis Group Error Codes

The fault code for the relevant function is shown below:

0X XXXX XXXX

Error code ID
Instruction
D

Hexadecimal

dentifier

0x30031B60 is used as an example for illustration:

0X 3003 1860

Error information: The axis in
the axis group is in the error state.

Instruction:
MC_GroupEnable

Error code information: MC_GroupEnable instruction,
with the axis in the axis group in the error state

€ Instruction codes

-313-

6. Common MC Instructions

Command Code . . .
. Instruction Instruction Function
(Hexadecimal)

3003 MC_GroupEnable Enabling an axis group

3004 MC_GroupDisable Disabling an axis group

3005 MC_GroupHome Performing axis group homing

3006 MC_GroupSetPosition Setting the current position of an axis group

3007 MC_GroupReadActualPosition Reading the actual position of an axis group

3008 MC_GroupReadActualVelocity Reading the actual velocity of an axis group

3009 MC_GroupReadActualAcceleration Reading the actual acceleration rate of an axis group

300A MC_GroupStop Stopping an axis group immediately

300B MC_GroupHalt Stopping an axis group

300C MC_GroupSetOverride Setting the axis group ratio

300F MC_MoveCircularRelative Arc relative motion

3010 MC_MoveCircularAbsolute Arc absolute motion

3011 MC_MovelLinearRelative Linear relative motion

3012 MC_MovelinearAbsolute Linear absolute motion

3013 MC_GroupReset Resetting an axis group

3014 MC_GroupReadError Reading the axis group error message

3015 MC_GroupReadStatus Reading the axis group status

3018 MC_Grouplnterrupt Pausing an axis group

3019 MC_GroupContinue Restarting an axis group

¢ Fault Code
Fault | Fault

Code | Code Error Message Cause Solution

(Dec.) | (Hex.)

Axis type of the axis The axis type of the axis group controlled by this Select the axis type for the single axis in the axis

7001 1B59 : . . A) .

group is not defined instruction is not defined. group as required.

If the axis group for setting the ratio is in the

. . . L GROUP_DISABLED state, use the MC_GroupEnable
7002 1B5A ::IescizzFi)nC?nnvr:l)itdbsetate ET;A?IEgrg::lgé%rjsttll_'nogwtlméittftles in the GROUP_ instruction to switch the axis group state from the
- ’ axis group GROUP_DISABLED to GROUP_STANDBY.
Then, execute this instruction.
The axis group controlled by this instruction is in . . .
o) Use the MC_GroupEnable instruction to switch

7003 | 1B5B | Axis group disabled the GROUP_DISABLED state. This |nstrucF|on can pe the axis group state to GROUP_STANDBY and then
triggered and executed only when the axis group is execute this instruction
in the GROUP_MOVING or GROUP_STANDBY state. :

1. Use the MC_GroupDisable instruction to switch
the axis group state from GROUP_STOPPING
to GROUP_DISABLED. Then, use the MC_
GroupEnable instruction to switch the axis group
The axis group controlled by this instructionisin | State to GROUP_STANDBY and then execute this
Axis eroub in stobbin the GROUP_STOPPING state. This instruction can | instruction.

7004 | 1B5C stateg P pping be triggered and executed only when the axis group | 2. Check whether the output variable Done of the
is in the GROUP_MOVING or GROUP_STANDBY MC_GroupStop instruction, which makes the axis
state. group change to the GROUP_STOPPING state, is

set. If yes, reset the input variable Execute of the
MC_GroupStop instruction. When the axis group
isin the GROUP_STANDBY state, execute this
instruction again.
The axis group controlled by this instruction is in
Axis group in homing the GROUP_HOMING state. This instruction can be Walt “”F'l the axis group comp!et.es the homing
7005 |1B5D . : - |instruction and the axis group is in the GROUP_
state triggered and executed only when the axis group is STANDBY state before executing this instruction
in the GROUP_MOVING or GROUP_STANDBY state. g)
The axis group controlled by this instruction is in
Axis eroun stopped due the GROUP_ERRORSTOP state. This instruction can | Execute the MC_GroupReset to switch the axis

7006 | 1BSE to angerroF:‘ PP be triggered and executed only when the axis group | group state to GROUP_STANDBY and then execute
is in the GROUP_MOVING or GROUP_STANDBY this instruction.
state.

-314-

6. Common MC Instructions

Fault | Fault
Code | Code Error Message Cause Solution
(Dec.) | (Hex.)
1. Check whether the axis group to be reset has a
single axis that enters the AXIS_ERRORSTOP state
due to the MC_ImmediateStop instruction. If yes,
execute the MC_Reset instruction to reset the
Axis eroup stopping due | The @Xis group to be reset has a single axis that single axis and then execute the MC_GroupReset
7007 |1B5F | >80P STOPPING enters the AXIS_ERRORSTOP state due to the MC_ | instruction.
ImmediateStop instruction. 2. Check whether several instantiations of the MC_
GroupReset instruction are executed concurrently
for the axis group to be reset. If yes, delete the extra
instantiation of the MC_GroupReset instruction
and execute the MC_GroupReset instruction again.
Check whether the state of an axis in the current
axis group is in the AXIS_POWEROFF state. Execute
7008 | 1B60 Axis in axis group in error | The current axis group has a single axis that is in the MC_Reset instruction to switch the axis state
state the AXIS_POWEROFF state. from AXIS_POWEROFF state to AXIS_STANDSTILL
or AXIS_POWER_OFF, and then execute this
instruction again.
Th'e perlod Of 2 smgle. The axis group has an axis of which the task period | Correct the setting of the task period parameter for
7009 |1B61 | axisin the axis groupis . . :
is less than or equal to 0. the axes in the axis group.
not set correctly.
. . . . Wait until the execution of the MC_GroupHalt
7010 |1B62 Axis group cqntrolled by The axis group Is executing the MC_GroupHalt instruction is completed for the axis group before
stop instruction instruction. . L X
executing this instruction.
Axis group controlled The axis group is executing the MC_GroupStop Walt unFll the execution of the MC_‘GroupStop
7011 |1B63 |byemergency stop . ’ instruction is completed for the axis group before
. A instruction. . S -
instruction executing this instruction.
Execute the MC_GroupContinue instruction to
7012 |1B6a Axis group controlled by | The axis group is controlled by the MC_ switch the instruction type of the axis group from
interrupt instruction Grouplnterrupt instruction. GROUP_INTERRUPT to GROUP_SETOVERRIDE, and
then execute this instruction.
7016 | 1868 Ax!s not configured in the | -)
axis group
1. For relative motion, the input variable Distance | 1. Based on the positive limit, select the
of this instruction causes the axis group to exceed | appropriate moving distance for relative motion of
7017 | 1869 Axis coordinates exceed | its positive limit when this instruction is executed. | the axis group before executing this instruction.
positive limit 2. For absolute motion, the input variable Position | 2. Based on the positive limit, select the
of this instruction causes the axis group to exceed | appropriate target position for absolute motion of
its positive limit when this instruction is executed. | the axis group before executing this instruction.
1. For relative motion, the input variable Distance 1. Based on the negative limit, select the
of this instruction causes the axis group to exceed | appropriate moving distance for relative motion of
7018 | 1p6A Axis coordinates exceed | its negative limit when this instruction is executed. |the axis group before executing this instruction.
negative limit 2. For absolute motion, the input variable Position | 2. Based on the negative limit, select the
of this instruction causes the axis group to exceed | appropriate target position for absolute motion of
its negative limit when this instruction is executed. | the axis group before executing this instruction.
The absolute velocity of a single axis in an axis
. . . group under the joint coordinate system (ACS)
7019 |1B6B Axis coordlqate velocity is greater than the absolute value of the product Adjust the mo.tlon velocity parameter of the axis
exceeds limit . ; . . group as required.
of the warning planning ratio factor and the axis
planning velocity.
s group in state Of. Some function blocks cannot be triggered while the | Trigger this instruction again after the switchover
7020 |1B6C | switching part coordinate | = . : e) .
system axis group is switching the part coordinate system. |is complete.
. The MC_MoveDirectRelative or MC_
Axis group under The axis group is under a dynamic part coordinate ; . .
: .) . MoveDirectAbsolute instruction cannot be
7021 |1B6D | dynamic part coordinate | system, and the MC_MoveDirectRelative or MC_) . .
; .) executed when the axis group is under a dynamic
system MoveDirectAbsolute instruction has been executed. .
part coordinate system.
It is prohibited to set the part coordinate system Itis forbidden to trigger the relevant function
. . . or trigger continuous trajectory function blocks or | blocks during the motion of the axis group.
7022 | 1B6E | Axis group in motion jog function blocks when the axis group is in the Trigger this function block after the interpolation
process of interpolation motion. movement is complete.
Coupling drive ratio set The cou.phng factor sgttlngs should be rever5|ble_. Check and modify the coupling factor and drive
7023 1B6F | . Otherwise, an error will be reported when the axis N R " .
incorrectly . ratio settings to ensure rationality.
group is enabled or reset.
. L Asingle axis in the axis group is not enabled when | Check the enabling state of the single axis in
Assingle axis in axis group) . : ;] ;
7024 |1B70 |. the axis group is in motion or under a dynamic the axis group to meet the requirements of the
is not enabled) X R S B)
coordinate system. instruction. Then, execute this inspection again.
Axis in axis eroun in Asingle axis in the axis group is in the stopped Check the enabling state of the single axis in
7026 |1B72 sroup state when the axis group is in motion or under a the axis group to meet the requirements of the

stopped state

dynamic coordinate system.

instruction. Then, execute this inspection again.

-315-

-316-

6. Common MC Instructions

Fault | Fault
Code | Code Error Message Cause Solution
(Dec.) | (Hex.)
1. The value range of input variable VelFactor of the | 1. Correct the value of input variable VelFactor
X . MC_MoveDirectRelative or MC_MoveDirectAbsolute | of the MC_MoveDirectRelative or MC_
7040 | 1Bgo | AXis group velocity instruction is (0.0,1.0]. MoveDirectAbsolute instruction.
beyond lower limit
2. The value of input variable Velocity of the 2. Correct the value of input variable Velocity of the
instruction is less than or equal to 0. instruction.
1.The valug range Of.mPUt variable Ve!Factor of the 1. Correct the value of input variable VelFactor
MC_MoveDirectRelative or MC_MoveDirectAbsolute fth . .
X . instruction is (0.0,1.0] of the MC_MoveDirectRelative or MC_
7041 |1BS81 Axis group VeloF'tY T MoveDirectAbsolute instruction.
beyond upper limit 2. The value of input variable Velocity of the)))
; . S 2. Correct the value of input variable Velocity of the
instruction exceeds the upper limit of the system :)
. instruction.
motion parameter.
1. The value range of input variable AccFactor of the | 1. Correct the value of input variable AccFactor
. . MC_MoveDirectRelative or MC_MoveDirectAbsolute | of the MC_MoveDirectRelative or MC_
7042 | 1Bgp | AXisgroupacceleration o ction is (0.0,1.0]. MoveDirectAbsolute instruction.
rate beyond lower limit . .) . .]
2. The value of input variable Acceleration of the 2. Correct the value of input variable Acceleration
instruction is less than or equal to 0. of the instruction.
1.The valug range Of.mPUt variable AC.CFaCtor of the 1. Correct the value of input variable AccFactor
MC_MoveDirectRelative or MC_MoveDirectAbsolute fih] :
X . instruction is (0.0,1.0] of the MC_MoveDlret{tRelatl\{e orMC_
7043 | 1Bg3 | AXis group acceleration Rt MoveDirectAbsolute instruction.
rate beyond upper limit | 2. The value of input variable Acceleration of the)))
; . S 2. Correct the value of input variable Acceleration
instruction exceeds the upper limit of the system . .
: of the instruction.
motion parameter.
1. The value range of input variable AccFactor of the | 1. Correct the value of input variable AccFactor
X . MC_MoveDirectRelative or MC_MoveDirectAbsolute | of the MC_MoveDirectRelative or MC_
7044 | 1B84 Axis group decelera.tlo'n instruction is (0.0,1.0]. MoveDirectAbsolute instruction.
rate beyond lower limit . . . i . .
2. The value of input variable Deceleration of the 2. Correct the value of input variable Deceleration
instruction is less than or equal to 0. of the instruction.
L. The valug range of'mput variable Ac_cFactor of the 1. Correct the value of input variable AccFactor
MC_MoveDirectRelative or MC_MoveDirectAbsolute X .
. . instruction is (0.0,1.0] of the MC_MoveDirectRelative or MC_
7045 | 1B85 Axis group decelerapqn B MoveDirectAbsolute instruction.
rate beyond upper limit | 2, The value of input variable Deceleration of the .))
; . S 2. Correct the value of input variable Deceleration
instruction exceeds the upper limit of the system . .
) of the instruction.
motion parameter.
1. The value range of input variable JerkFactor 1. Correct the value of input variable JerkFactor
X . of the MC_MoveDirectRelative or MC_ of the MC_MoveDirectRelative or MC_
7046 | 1B86 lAX'S grlgu;_atjerk beyond | voveDirectabsolute instruction is [0.0,1.0]. MoveDirectAbsolute instruction.
ower limi
2. The value of input variable Jerk of the instruction | 2. Correct the value of input variable Jerk of the
is less than or equal to 0. instruction.
1. The value range of input yarlable JerkFactor 1. Correct the value of input variable JerkFactor
of the MC_MoveDirectRelative or MC_ . .
i i MoveDirectAbsolute instruction is [0.0,1.0] of the MC_MoveDirectRelative or MC_
7047 | 1B87 Axis grqupjerk beyond T MoveDirectAbsolute instruction.
upper limit 2. The value of input variable Jerk of the instruction .)
S . 2. Correct the value of input variable Jerk of the
exceeds the upper limit of the system motion :)
instruction.
parameter.
7048 | 1B88 Axis group velocity factor | The value range of input variable VelFactor of the Correct the value of input variable VelFactor of the
beyond lower limit MC_GroupSetOverride instruction is [0,100]. instruction.
7049 | 1B89 Axis group velocity factor | The value range of input variable VelFactor of the Correct the value of input variable VelFactor of the
beyond upper limit MC_GroupSetOverride instruction is [0,100]. instruction.
7050 | 1B8A Axis group acceleration | The value range of input variable AccFactor of the | Correct the value of input variable AccFactor of the
factor beyond lower limit | MC_GroupSetOverride instruction is [1,100]. instruction.
7051 |1B8B Axis group acceleration | The value range of input variable AccFactor of the | Correct the value of input variable AccFactor of the
factor beyond upper limit | MC_GroupSetOverride instruction is [1,100]. instruction.
7052 | 1B8C Axis group jerk factor The value range of input variable JerkFactor of the | Correct the value of input variable JerkFactor of
beyond lower limit MC_GroupSetOverride instruction is [0,100]. the instruction.
7053 |1B8D Axis group jerk factor The value range of input variable JerkFactor of the | Correct the value of input variable JerkFactor of
beyond upper limit MC_GroupSetOverride instruction is [0,100]. the instruction.
The value of input variable TransitionParameter
Axis groun transition of the instruction varies with the input variable
group TransitionMode. If TransitionMode is related to Correct the value of input variable
7054 |1B8E | parameter beyond lower . o . o - .
limit Velocity, the value range of TransitionParameter is | TransitionParameter of the instruction.
[0, 1]. If TransitionMode is related to Distance, the
value range of TransitionParameter is [0, + oo).
The value of input variable TransitionParameter
Axis eroup transition of the instruction varies with the input variable
group TransitionMode. If TransitionMode is related to Correct the value of input variable
7055 |1B8F | parameter beyond upper

limit

Velocity, the value range of TransitionParameter is
[0, 1]. If TransitionMode is related to Distance, the
value range of TransitionParameter is [0, + o0).

TransitionParameter of the instruction.

6. Common MC Instructions

Fault | Fault
Code | Code Error Message Cause Solution
(Dec.) | (Hex.)
Axis group buffer mode is | The value of input variable BufferMode of the Select a buffer mode as required to make the axis
7056 1B90 L . L
not defined instruction is out of range. group move.
Axis group transition The value of input variable TransitionMode of the | Select a transition mode as required to make the
7057 1B91 .] . L :
mode is not defined instruction is out of range. axis group move.
1. If the input variable BufferMode of the MC_
MoveXXXRelative or MC_MoveXXXAbsolute
instruction is Blend, the input variable
TransitionMode of this instruction cannot be
7058 | 1B9y | AXis group transition TMResetAbort or TMDecAbort. Select a transition mode as required to make the
mode not allowed 2. If the input variable BufferMode of the MC_ axis group move.
MoveXXXRelative or MC_MoveXXXAbsolute
Mandatory is Aborting, the input variable
TransitionMode of this instruction must be
TMResetAbort, TMDecAbort, or TMnone.
Axis group arc mode is The value of input variable CircMode of the MC_ Select an arc mode to make the axes grou
7059 | 1B93 group MoveCircularRelative or MC_MoveCircularAbsolute : . group
not defined . A perform arc motion as required.
instruction is out of range.
. The value of input variable PathChoice of the MC_ . .
7060 |1B94 AXIS. group arc path not MoveCircularRelative or MC_MoveCircularAbsolute Selecta path as Teq“'md to make the axis group
defined . A perform arc motion.
instruction is out of range.
7061 1895 Failed to reset buffered | The instruction is triggered again after the buffer Do not trigger the instruction again after the buffer
motion mode of the buffer instruction to MC_ABORTING. mode of the buffer instruction to MC_ABORTING.
Kinematic model does The kinematic model of the axis group controlled . .
7063 1897 not exist by the instruction does not exist. Select the axis group type as required.
Wait until the instructions currently being executed
Full instruction buffer Up to 8 instructions can be buffered for an axis and the buffered instructions of the axis group
7065 1B99 - .
area of the axis group group. have been executed before executing other
buffered motion instructions.
Incorrect communication . . . - .
7068 | 1B9C | status of a single axis Asmgle axisin thevaX|s' group to be enabled has an Check the communication status of each axis in the
A incorrect communication status. axis group.
mounted to axis group
G\Zfe%::tz gar;lj t?ﬂts The deceleration time is longer than the motion At this time, the axis group is in an error stop state.
7081 | 1BA9 : quits. time of the next instruction when the current Execute the axis group reset instruction and then
motion after motion is . S . ; : .
. instruction is interrupted by the next instruction. perform the corresponding operation.
interrupted
Axis group path planning | EN/ENO in LD language is adopted. The axis Check whether EN/ENO in LD language is adopted
7083 |1BAB |abnormallyinterrupted | group motion instruction is blocked by EN during | and the axis group motion instruction is blocked
and pulse stopped execution. by EN during execution.
On the IDE interface, choose "PLC" > "Motion
Kinematic model does The kinematic model of the axis group controlled | Control" > "Axis Group" > Name of axis group for
7091 1BB3 Wy R A
not exist by the instruction does not exist. arc relative motion > "Basic Settings" > "Axis Group
Type". Select the axis group type as required.
7092 |1BB4 %errzjc;\;\ilgnmotlon The motion instruction is undefined. Check whether the motion instruction is correct.
Cannot set dynamic The following axis eroun is the same as the main When setting dynamic coordinates, ensure that the
7093 | 1BB5 |coordinate system based axis erou & group following axis group is not the same as the main
on the same axis group group- axis group.
Identifier of the axis to
be mounted to the axis | The identifier of the axis to be added exceeds the Check whether the identifier of the axis to be
7100 1BBC
group beyond the set maximum number of physical axes allowed. added is appropriate.
range
Axis mounted to the XI5 1 The axis to be added is already assigned to an axis | The axis to be added is already assigned to an axis
7101 | 1BBD |group already assigned :
) group. group and does not need to be added again.
to an axis group
Axis object already))
mounted to current axis | 1. The axis to be added is already mounted to 1. Check whether the axis to be added is correct.
7102 |1BBE needs to be unmounted | another axis group.) R th ic to be added the oth .
and then mounted again, | 2. The axis is already added to the axis identifier : emovz he axis to be ah_ edirom theother axis
axis already added to and cannot be added to the axis identifier again. group, and then execute this instruction.
axis identifier
7103 | 1BBF Axis to bg removed no The axis to be removed is not in the axis group. The axis to be removed is not in the axis group and
longer exists does not need to be removed again.
The number of single Check whetcl;zr the smg]!er?xes in tfhiaXIS group
axes in the axis group The number of single axes in the axis group to be are removed because of the use o .t eMC_
7106 |1BC2 UngroupAllAxes or MC_RemoveAxisFromGroup

does not match the axis
group type

enabled does not match the axis group type.

instruction. If yes, execute the MC_AddAxisToGroup
instruction to add the single axes to the axis group.

-317-

-318-

6. Common MC Instructions

Fault | Fault
Code | Code Error Message Cause Solution
(Dec.) | (Hex.)
Check whether any of the axes in the axis group to
Axis already enabled by | Asingle axis in the axis group to be enabled is be enabled are mounted to another enabled axis
7107 1BC3 R . R R
an axis group enabled by another axis group. group. If yes, disable the enabled axis group and
then execute this instruction.
7108 1BC4 |- - -
Axis 2rouD in stoboin The axis group is in the axis group stopping state.
7109 |1BC5 stateg P pping The axis group is in the GROUP_STOPPING state. In this case, the MC_GroupHalt instruction cannot
be started.
7110 | 1BC6 Axis state machine in the | The axis to be added by the MC_AddAxisToGroup Switch the state of the axis to be added to
axis group not satisfied | instruction is not in the StandStill state. Standstill or PowerOff.
1. The axis to be added by the MC_AddAxisToGroup
instruction is rotary.
2. The axis to be added by the MC_AddAxisToGroup
instruction is an encoder axis.
Asingle axis is rotary and | = The conveyor axis of the MC_TrackConveyorBelt | Check whether a single axis in the axis group
& Y instruction is rotary. with an instruction error is rotary or whether the
7111 | 1BCT7 |cannotbe added to an . . i isofthe i L ¢ h
axis group 4. Asingle axis in the axis group to be enabled by | axis of the instruction is rotary. If yes, select the
' the MC_GroupEnable instruction is rotary. appropriate linear axis to execute the instruction.
5. The turnplate axis of the MC_TrackRotaryTable
instruction is rotary.
6. The datum axis of the MC_
SetCoordinateTransform instruction is rotary.
1. Execute the MC_SetControllerMode instruction
. 1. The axis to be added by the MC_AddAxisToGroup ?S;W:nc: :ﬁ:ncg:ggzlt?t%ieMog tzzg:z;%(ésr\é:r
Instructlon.not a“QW?d instruction is in non-CSP or non-CSV mode. R - P
7112 |1BC8 when the single axis is 2. A single axisin the axi 1o b bled b instruction.
in non-CSP or non-CSV -AsINgie axis I the axis group to be enabled by |5 g, te the MC_SetControllerMode instruction
de the MC_GroupEnable instruction is in non-CSP or . .
mo non-CSY mode to switch the control mode of the axis to CSV
' or CSP, and then execute the MC_GroupEnable
instruction.
The configured axis in the axis group space
- o of the MCGroupRead, Actua!P05|t|on, 1. Configure the axis group again.
7113 |1BCo Position not periodically | MC_GroupReadActualVelocity, or heck whether the ki . fth
refreshed MCGroupReadActualAcceleration instruction is 2. Check whether the kinematics parameters of the
missing, or there is an error in positive kinematics | @XIS group are correct.
calculation.
Check whether the axis group corresponding to the
Axis group object does The axis group object of the error instruction does | error instruction is configured on the IDE interface.
7114 1BCA R .) .
not exist not exist. If not, configure the axis group and then execute
the corresponding instruction.
The axis to be added by the MC_AddAxisToGroup
S The axis to be added by the MC_AddAxisToGroup instruction does not exist. Check whether the axis
7115 |1BCB | Axis objectis empty - ; .
instruction does not exist. is configured on the IDE interface. If not, configure
this axis and then execute the instruction again.
1. Check whether the slave device to which the
single axis is mounted is a servo drive. 2. Check
Axis group The status of the servo slave to which the single axis whether the servo has an alarm message.
7116 | 1BCC |communication status mounted to the axis group of the error instruction | 3. Check whether the network cable connected to
abnormal belongs is abnormal. the slave is normal.
4. Replace the network cable.
5. Restart the servo drive.
1. The MC_GroupHome instruction only supports
homing under the ACS.
2. The MC_GroupSetPosition, MC_
GroupReadActualPosition, MC_
COORDSYSTEM GroupReadActualVelocity, MC_))
7117 | 1BCD | parameter input GroupReadActualAcceleration, MC_ Select the appropriate coordinate system
MoveDirectRelative, MC_MoveDirectAbsolute, and | parameters according to the error instruction.
abnormal -))
MC_MovelinearAbsolute instructions can only be
executed under the ACS or PCS.
3. Currently, the MC_MoveCircularRelative and MC_
MoveCircularAbsolute instructions only support the
PCS mode.
7119 | 1BCF AX|s_ group type not }
defined

6. Common MC Instructions

Fault | Fault
Code | Code Error Message Cause Solution
(Dec.) | (Hex.)
1. Check whether multiple identical instantiated
instructions are executed in the PLC program. If
7120 | 18Do | AXis group motion cannot | This instruction is started again when being yes, delete the repeated instantiated instructions
be triggered again executed by the axis group. and execute this instruction again.
2. This instruction cannot be executed again when
being executed by the axis group.
Execute the MC_Power instruction to switch the
7121 |1BD1 Single axis in the axis Asingle axis in the axis group of this instructionis | state of a single axis that is in the off state to the
group is not enabled not enabled. standby state, and then execute this instruction
again.
7123 |1BD3 Axis group homing start | The homing sequence of the first axis in the axis The homing sequence of the first axis in the axis
point sequence error group must be 1. group must be 1.
Axis eroun homin The homing sequence of an axis in the axis group | Correct the homing sequence of the axis group to
7124 | 1BD4 group g exceeds the number of axes in the axis group oris | make it greater than 0 and smaller than or equal to
sequence out of range .
smaller than 0. the number of axes in the group.
Axis group homing The homing method of the axis group is not servo MOdIfY the homing method thhe single axis in
7125 |1BD5 o) ; the axis group as servo homing or host controller
method is incorrect homing or host controller homing. homing
Axis group homing The homing sequence of the axis group must be . .
7126 | 1BD6 |sequenceis not ascending, which can be defined as "1, 1,1,1","1,2, ;zrésiﬁéhaesggrﬂi:g Sszq ﬁi%tﬁrg'ﬁeﬁ?w to
ascending 3,4"."1,2,2,2","1,2,2,3", or"1,2,3,3". 83€q q :
Limit triggered for the
single axis in the axis The limit is triggered for the single axis in the Check whether the single axis in the axis group is
group, and the planning - . TR -) S . -
S axis group, and the planning velocity direction of configured with a limit. If yes, modify the positive
7128 | 1BD8 | velocity direction of such . o AR) R -
- o such single axis is the same as the limit triggering | and negative limit ranges or uncheck the limit as
a single axis is the same S)
AR : direction. required.
as the limit triggering
direction
Axis eroun obiect Check whether multiple axis groups execute
switcghin pdurJin axis Another axis group starts the MC_GroupStop the same instantiated instruction. If yes, create
7129 | 1BD9 gauring instruction again when the instruction is executed | unrepeated instantiated instructions for each axis
group operation is not b . d h dingi :
allowed y an axis group. group and execute the corresponding instruction
again.
The start point and end point of the instruction
7130 | 1BDA | Pointoverlapping overlap. Itis used for internal determination,and |-
not displayed externally.
When the input variable CircMode of the MC_
Distance between the MoveCircularRelative or MC_MoveCircularAbsolute . . .
- . . L . Before executing the instruction, select an end
start point and end point | instruction is RADUS_ARC_TYPE, the improper value . . .
7131 |1BDB |: : . ; s . point as required to make the axis group perform
is too long (larger than of the input variable EndPoint of this instruction arc motion
the given diameter) causes a long distance between the start point and ’
end point.
When the input variable CircMode of the MC_
Distance between the MovquculgrRelatlve or MC_MoveQr_cularAbsolute Before executing the instruction, select an end
: instruction is RADUS_ARC_TYPE, the improper value .) .
7132 | 1BDC |startend and end point : . } I . point as required to make the axis group perform
: of the input variable EndPoint of this instruction .
is too short -) arc motion.
causes a short distance between the start point and
the end point.
When the input variable CircMode of the MC_ . . .
ireul lati ircularAbsol Before executing the instruction, select an end
7133 1BDD | Radius is too short MOVQCW.CU z_arRe ative or MC_MoveCircularA _so _ute point as required to make the axis group perform
instruction is RADUS_ARC_TYPE, the arc radius is .
arc motion.
too short.
Normal vector is not When the input variable CircMode of the MC_ . . .
. . - - Before executing the instruction, select an end
7134 | 1BDE perpendicular (error MoveCircularRelative or MC_MoveCircularAbsolute point as required to make the axis group perform
reported if deviation is instruction is RADUS_ARC_TYPE, the normal vector .
. . arc motion.
more than 10 degrees) is not perpendicular.
Distance from start point When the input variable CircMode of the MC_
to center of circle is?}ot MoveCircularRelative or MC_MoveCircularAbsolute | Before executing the instruction, select an end
7135 | 1BDF instruction is ENTER_ARC_TYPE, the distance from | point as required to make the axis group perform
equal to that from end . [.
oint to center of circle the start point to the center of circle is not equal to | arc motion.
P that from the end point to the center of circle.
- . . - Upgrade the SoftMotion version to 1.4.2.0 or later
7800 1E78 SM3_Basic library version | The version of SM3_Basic lll?ra_ry does not match and the SM3._Basic library version to 4.10.4.0 or
does not match that of the new Inovance axis library. later
Absolute motor mode The absolute motor mode homing offset is beyond | Ensure that the absolute motor axis homing offset
7810 |1E82 | homing offset beyond g y 8

limit

the limit.

is less than 2731-1.

-319-

-320-

6. Common MC Instructions

5.5.4 Reference and Dynamic Switchover of the Cam Table
The cam table is stored in an array within the controller. It can be pointed to by a specific MC_CAM_REF
variable type, such as the following declaration:
Cam table p: MC_CAM_REF;

Users can assign a value to this variable, which can also be regarded as making it point to a specific cam
table:

Cam table p:=Cam0; //Point to the required cam table

Cam table p: MC_CAM_REF; //Cam table pointer;

TablelD: uint; //Cam table selection command, which can be set by HMI;
Case TablelD of

0: Camtable p:=Cam table A;

1: Cam table p: = Cam table B;

2: Cam table p:=Cam table C;

End_case

MC_CamTableSelect_0(//Cam relationship
Master:= Virtual master axis,
Slave:= Cam slave axis,
CamTable:= Cam table p,

Execute:= ReSelect, //Cam table selection, rising edge-triggered
Periodic:= TRUE,

MasterAbsolute:=FALSE,

SlaveAbsolute:= FALSE);

In the above programming example, users can use the value of the MC_CAM_REF variable to achieve the
switchover of multiple cam tables.

.. Chapter 7 Simulation and

Commissioning

7. Simulation and Commissioning

7. Simulation and Commissioning

7.1 Simulation Controller

If no AM600 controller hardware is available for user program commissioning, users can use the
simulation function of InoProShop to debug the logic of the user program. The following figure shows
how to enable the simulation function. In the simulation state, there is a reminder of simulation state in
red at the bottom of the programming software.

Bl Edt Vew Project Buld

00 BFHEI&

e | Debug Toos Wndow _telp
At s | 08

culsrs

Sevices ns as @ cm [5) MCPRG x| ([Dewe [ns Ausi |fi) Wb
=3 Camrestzproject

= @ Deve (amso0-cru 16087}

@ Fat

=€ Networ

LU 0

& LocalBus Config
= @ pLcoge

= © Applcation

@ cam

8 s
= @ rask coniguration
= & enencar
B) ETHERCAT EtherCAT Task
Bpcrme

"3 SoftMotion General Axis Pool

[+i6+_SPEED 10 (h Speed 10 Modue)
= [B] ETHERCAT (EtherCAT Master SoftMoton)

=@ mosveson (sveso_axis 00915)

0_tAis_00915)

<
ats. thexvelocsey + 4 /
3 pous s vevees

! Config Device Information Output| (& Messages - Total 0 error(s), 1 war

Lastbuid: ©@ 0 ® 1 Precompie: o~ | EEENNNNONN Current user: (nobody)
In the simulation state, you can also compile the user program and "log in" to the controller. By
loading the user program into the PC simulator, you can monitor the user program, forcibly modify

the parameters, and observe the execution result of the user program as if you have connected to the
controller, as shown in the following figure:

-322-

7. Simulation and Commissioning

EAlInoProShop\CamTest?\CamTest2\CamTest2.project” - InoProShap(V1.8.0.0) - o X
Ele Edit Ven Project fuid Onine Debug
[eXSARER=2=RF=1] 105 O n@&l 1o |
= < 8 x| @ e [revorkconfwaton |ne aws @ com [2] Pcpre x ([Devee (s s |l Uberyversger | ememcar | =
=4 camrestz ~| T
= A1) Devie [cornected] (AMS0-CRUIOSTR) | ¢, csion Type Value Prepared value Address Comment ~
Q. Fauit Diagnose # @ MC_Power 0 MC_Power a
= Netmork Confguation & MCrouert MC_Poner
4 EthercaT confa # @ MC_CamTableSelect 0 MC_CamTableSelect
B Locabus oy # selectTeb Bo0L FALSE
= B0 rLC Logic v
< >
-} Avplication [run]
& com ~
8 Lsrary Mznger
PLC_PRG (PRG)
=8 Task Configuration
= ETHERCAT
8] ETHERCAT EtherCAT_T
& pic PrG
& Trace
(=) Resources List
"2 SoftMotion General Axis Pool
Al +HiGH_SPEED 10 (High Speed 10
=AM ETHERCAT (EtherCAT Master Softvd
= A [0 nosveson (sves0_1axis_0091:
ARG avis (Axs) VelocityDifd] = S0,
=\ 5 TnoSveEON_1 (SU660_Lis_00 Receteracionl k= 100 [100% [& v
AMD st (i) Watcht -~ x
Expression Application Type Value Prepared value Executionpaint "
= @ 1oconfig_Globalsads Device Appication M3 Drive_ETC... Cydic Monitoring
 whsStructiD VIORD 65042 Cydic Monitoring
* nacsstte SMC_AXIS_STATE _ standstil Cydic Monitoring
“ bregulatoron BooL Cydic Monitoring
BooL
< > BooL o
FOUS | 3 Devices < >
Lastbuld: € 0 & 0 Precompile: o/ T Program loaded Program unchanged Q

Although it is not possible to simulate the operation of the network bus, users can observe the execution
logic of the program and check the execution result after the data structure parameters of the servo axis

are forcibly modified.

The steps of the simulated monitoring and commissioning program are the same as those in the
scenario with AM600. After "logging in", users can click "Run" or "Stop" to execute or stop the user
program. Before modifying the user program, users need to "log out".

7.2 Simulation Servo Drive

If the AM600 controller is available but no servo drive is available or the servo drives are insufficient
during MC application commissioning, users can use the "virtual axis" instead of the servo drive axis, as

shown in the following figure:

Devices B x Tiae |30 NetworkConfiguoton 74 Axis X (@ Cam |[E] PLCPRG | [J Deve 2 At Lbrary Vansger | & ETERCAT
e
=1 Comrestz -
&-@ Device (AHS00-CRUIGOTPIY GeneralSettng Axis type andLinits
o Saaling 2 Vinual mode | Modulo setings Velocity amp type
oming Seting Modulo value: 360] puse © Trapozoid
oming Settn Osims
© Modulo
Mapping O auadntic
Over limits reaction wadrat
Commissioning verlimitsreactior O quadtic(smooth)
i Deceleration 1000] pulse/st
su g cenercososozi o || O Pt PR emtifcat
o entiication
= (& Task Configuration IEC Objects
= & eneRear status NG Bynamic imits Position sg supenvsion
) ETHERCAT EtherCAT Task
Vel: pulsefs Acc: pulse/st Dec: pulse/st Jerk: pulse/st v
8 pcpre Information
& Troce E R 1000] | 1000) 10000] pulse
& Res
3 Softol e
| e (Hioh Speed 10 Module)
=] ETHERCAT (therCAT Mester Softoten)
= @ 1osveson (sves0_taxs_00915)
B s ()
= @ Tosveson_t (sveso_taxis_00915)
B 1 ()

Check the "Virtual Axis Mode" option in the figure. During controller commissioning, the servo drive axis
will be simulated. If a physical servo is available, you can uncheck this option.

During programming commissioning, if the number of connected servo axes is different from the
number configured in the user program, the system will generate an alarm and the commissioning will
fail. After virtual axis is connected, the system will not generate an alarm, but will run by simulating the
servo through the software. You can visualize the "running" state of the axis to check correctness of MC
program.

Virtual axes are also axes. Although it is a "virtual axis", the axis status operation logic must be designed
in accordance with the PLCopen Specification. For example, run MC_Power before the operation. After
an error occurs, MC_Reset must be run. This can help debug and eliminate the logic errors in the user
program.

If a physical servo axis is connected, just uncheck "Virtual Axis Mode" option shown in preceding figure.

-323-

Chapter A Appendix

8. Appendix

Appendix A Homing Modes Supported by
IS620N

A.1 Description of Homing Modes:

1) 6098h=1
Mechanical home: motor Z signal
Deceleration point: negative limit switch

@ Deceleration point signal inactive at start of homing

Negative limit

@Wmm

H
Motion profile C‘{

Motor Z signal

Negative limit signal

Note: In the figure, "H" represents 6099-1h (Speed during search for switch), which is high speed, and "L
represents 6099-2h (Speed during search for zero), which is low speed.

The N-OT signal is inactive initially, and the motor starts homing in negative direction at the high
velocity. After reaching the rising edge of the N-OT signal, the motor decelerates and changes to run in
positive direction at the low velocity. After reaching the falling edge of the N-OT signal, the motor stops
at the first motor Z signal.

@ Deceleration point signal active at start of homing

Negative limit

@z]i_[rﬁ?fwmfmﬁmﬁﬁ?m@

Motion profile |

L

Motor Z signal

Negative limit signal

The N-OT signal is active initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the falling edge of the N-OT signal, the motor stops at the first motor Z signal.

2) 6098h=2
Home: Z signal
Deceleration point: positive limit switch

@ Deceleration point signal inactive at start of homing

-325-

8. Appendix

Positive limit

(¢ sdeaaaad] [qadaadr
H
.) [T
Motion profile —L)
Motor Z signal H
Positive limit signal

The P-OT signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
After reaching the rising edge of the P-OT signal, the motor decelerates and changes to run in negative

direction at the low velocity. After reaching the falling edge of the P-OT signal, the motor stops at the first
motor Z signal.

@ Deceleration point signal active at start of homing
Positive limit

o)

@(((((/(((((((((((/f((f(/(((((f((f((((ﬁ (|0

B
|

Motor Z signal

|
Positive limit signal

The P-OT signal is active initially, and the motor directly starts homing in negative direction at the low
velocity. After reaching the falling edge of the P-OT signal, the motor stops at the first motor Z signal.

3) 6098h =3

Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing

Home switch
T
@W Tad ([eraaaaaaam
|
Motion profile -]
Motor Z signal |_|
Home switch signal ,_\—

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
After reaching the rising edge of the HW signal, the motor decelerates and changes to run in negative

direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at the first
motor Z signal.

@ Deceleration point signal active at start of homing

-326-

8. Appendix

Home switch

@i? Addaaaadda aaada

Motor Z signal

1

—

Home switch signal

The HW signal is active initially, and the motor directly starts homing in negative direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

4) 6098 =4
Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing

Home switch
—
el
g

2

‘WJﬂﬂﬂﬂﬂ Taqad

L

Motion profile }

Motor Z signal T

I -

Home switch signal

The HW signal is inactive initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the rising edge of the HW signal, the motor stops at the first motor Z signal.

@ Deceleration point signal active at start of homing

Home switch

1

raao

|

=]

Motor Z signal

|

Home switch signal

The HW signal is active initially, and the motor starts homing in negative direction at the high velocity.
After reaching the falling edge of the HW signal, the motor decelerates and changes to run in negative
direction at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first
motor Z signal.

5) 6098h =5
Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing

-327-

8. Appendix

Home switch

(Cawaa

Motion profile

~ 4

Motor Z signal

|

Home switch signal

The HW signal is inactive initially. The motor starts homing in negative direction at the high velocity.
After reaching the rising edge of the HW signal, the motor decelerates and changes to run in positive
direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at the first
motor Z signal.

@ Deceleration point signal active at start of homing

Home switch

A

@m{ lmaaaaaaada®

If

Motion profile

Motor Z signal

|

Home switch signal

The HW signal is active initially, and the motor directly starts homing in positive direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

6) 6098 =6
Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing

Home switch

@mmﬁm

Motion profile

S

Motor Z signal F

|

Home switch signal

The HW signal is inactive initially, and the motor directly starts homing in negative direction at the
low velocity. After reaching the rising edge of the HW signal, the motor stops at the first motor Z signal.

@ Deceleration point signal active at start of homing

-328-

8. Appendix

Home switch
@ []
H
’7
Motion profile kL)
Motor Z signal |_|

Home switch signal

The HW signal is active initially, and the motor starts homing in positive direction at the high velocity.
After reaching the falling edge of the HW signal, the motor decelerates and changes to run in negative
direction at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first
motor Z signal.

7) 6098=7
Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing, not reaching positive limit switch

Home switch

— Positive limit
=
.) H
Motion profile —
-L)
[a—
Motor Z signal |_|
Home switch signal
Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and changes to run in negative direction at
the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor stops at the first motor Z signal.

@ Deceleration point signal inactive at start of homing, reaching the positive limit switch

Home switch

Positive limit
=
o

@m((mmmm a mmwaé%rm

Motion profile

Motor Z signal F

Home switch signal

Positive limit switch

The HW signal is inactive initially and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, the motor automatically runs in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and continues to run in
negative direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at

-329-

8. Appendix

the first motor Z signal.

@ Deceleration point signal active at start of homing

Home switch
° ° Positive limit
v =

L

\
%

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in negative direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

8) 6098 =8
Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing, not reaching positive limit switch

Home switch
Ca Positive limit
v
wﬂﬂ daaaadad adao
—
Motor Z signal C‘Lﬂ
Home switch signal [

—

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and changes to run in negative direction at
the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor changes to run in positive direction at the low velocity, and stops at the first motor Z
signal.

@ Deceleration point signal inactive at start of homing, reaching the positive limit switch

Home switch Positive limit
=]
'm
((eeaaaaaaaa] faaaaan

H

Motion profile H

C

EN

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high
velocity. If the motor reaches the limit switch, it automatically changes to run in negative direction at
the high velocity. After reaching the rising edge of the HW signal, the motor decelerates and continues to

-330-

8. Appendix

run in negative direction at the low velocity. After reaching the falling edge of the HW signal, the motor
changes to run in positive direction at the low velocity, and stops at the first motor Z signal.

@ Deceleration point signal active at start of homing

o Home switch
Negative limit Positive limit

—
: :

=1

Motor Z signal

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in negative direction at
the low velocity. After reaching the falling edge of the HW signal, the motor changes to run in positive
direction at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first
motor Z signal.

9) 6098 =9
Home: Z signal
Deceleration point: home switch (HW)

@ Deceleration point signal inactive at start of homing, not reaching positive limit switch

Home switch

Negative limit Positive limit
—
| H L
f
)
P
Motor Z signal H
Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and changes to run in positive direction at
the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor changes to run in negative direction at the low velocity, and stops at the first motor Z
signal.

@ Deceleration point signal inactive at start of homing, reaching the positive limit switch

Home switch Positive limit

—
=

@(Jﬂﬂﬂﬂ@(ﬂﬂﬂ aada [&@
}—H

H

Motion profile Ci
i

Motor Z signal ﬂ

Home switch signal

Positive limit switch

-331-

-332-

8. Appendix

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, it automatically changes to run in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and resumes running in
positive direction at the low velocity. After reaching the falling edge of the HW signal, the motor changes
to run in negative direction at the low velocity, and stops at the first motor Z signal.

@ Deceleration point signal active at start of homing

10)

Home switch

eaeaae]

Positive limit

aaaaaaan

B

Motor Z signal

TL 7 &l

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in positive direction at the low
velocity. After reaching the falling edge of the HW signal, the motor changes to run in negative direction
at the low velocity. After reaching the rising edge of the HW signal, the motor stops at the first motor Z
signal.

6098 =10
Home: Z signal
Deceleration point: home switch (HW)

Deceleration point signal inactive at start of homing, not reaching positive limit switch

Home switch Positive limit
=
T
@Wﬁﬁéwm qadddddd dan
Motor Z signal —I
Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor does not reach the limit switch, it decelerates and continues to run in positive direction at
the low velocity after reaching the rising edge of the HW signal. After reaching the falling edge of the HW
signal, the motor continues to run in positive direction at the low velocity, and stops at the first motor Z
signal.

@ Deceleration point signal inactive at start of homing, reaching the positive limit switch

8. Appendix

Home switch
1
7
Negative limit - Positive limit
= k=l
((ceeaaaaaaaaad Faao

Motion profile T
L
Motor Z signal

Home switch signal

Positive limit switch

The HW signal is inactive initially, and the motor starts homing in positive direction at the high velocity.
If the motor reaches the limit switch, it automatically changes to run in negative direction at the high
velocity. After reaching the rising edge of the HW signal, the motor decelerates and resumes running in
positive direction at the low velocity. After reaching the falling edge of the HW signal, the motor stops at
the first motor Z signal.

@ Deceleration point signal active at start of homing

11)

12)

Home switch
Positive limit
T o

(dadaadad aa@o

T«

(Caccaaai

Motor Z signal

\4

Home switch signal

Positive limit switch

The HW signal is active initially, and the motor directly starts homing in positive direction at the
low velocity. After reaching the falling edge of the HW signal, the motor stops at the first motor Z signal.

6098h =11&12&13&14
Similar to the profile when 6098 = 7 to 10, opposite in the initial running direction only
6098h =17 to 30

Same profiles as 6098 = 1 to 14, without the step of searching for motor Z signal. The motor stops
immediately at receiving the following home signal.

Homing mode 6098 Home signal
17 N-OT falling edge
18 P-OT falling edge
19 HW falling edge
20 HW rising edge
21 HW falling edge

-333-

-334-

8. Appendix

22

HW rising edge

23

HW falling edge

24

HW rising edge

25

HW rising edge

26

HW falling edge

27

HW falling edge

28

HW rising edge

29

HW rising edge

30

HW falling edge

13) 6098h=31to 32

This mode is not defined in the standard 402 protocol. It can be used for expansion purpose.

14) 6098h =33 and 34
Home: Z signal

Deceleration point: None

€ Homing mode 33: The motor runs in negative direction at the low velocity, and stops at the first motor Z

signal.

€ Homing mode 34: The motor runs in positive direction at the low velocity, and stops at the first motor Z

signal.

«

‘%(? ddadaada dadaada
L

Motor Z signal

15) 6098h=35

-]

L

—34—

Homing mode 35: The current position is the home. After the homing signal is triggered (6040 control
word: 0xOF>0x1F), the current position 6064 = 607C.

8. Appendix

Appendix B: CiA402 Common Data Object
Cheat Sheet Supported by IS620N

| I
(:'ii))(Su(tl)-‘lEr;((?ex Name Access Size Unit Setting Range |Default Value| PDO Mapping
603F 00 Error code RO UINT16 - TPDO

This object gives the most recent error code or alarm code of the drive. The corresponding lowest 12 bits indicate the fault code. For the code
definitions, see the 1S620 guide. Use 200B:22 or 23 to view up to 10 latest fault log codes.

6040 [00 | control word | RW [UINT16 E lotoess3s | o [ReDO
Status guidance after servo power-up, instruction control in each servo mode

6041 [00 | status word RO [UINT16 E | | [TPDO
Indicate the servo drive running status.

605A ‘ 00 ‘ Quick stop option code ‘ RW ‘ INT8 ‘ ‘ Oto7 ‘ 2 ‘ -
Oto7

Select the drive quick stop mode

605D [00 | Halt option code | RW [INTS | [1t03 | 1 -
Select the drive halt mode

6060 [00 | Modes of operation | RW [INTS - [0t010 | 0 | RPDO

1 Profile Position (PP) mode

3 Profile Velocity (PV) mode

4 Profile Torque (PT) mode

6 Homing Mode (HM)

8 Cyclic Synchronous Position (CSP) mode
9 Cyclic Synchronous Velocity (CSV) mode
10 Cyclic Synchronous Torque (CST) mode

e - Sfervo operation mode RO INTS) TPDO
display
Actual operation mode
Refi
6062 00 Position reference RO INT32 u:ifrence TPDO

Position instruction value during each position loop period time, reference unit

6063 00 Position feedback RO INT32 Encoder unit TPDO

The current position of the motor as fed back from the motor encoder

Ref
6064 00 Position feedback RO INT32 uiifre”ce TPDO
Position feedback value after inverse gear ratio calculation 6063 = 6064 x Gear ratio

Ref
6065 00 Following error window | RW UINT32 u:ifrence 0to0232-1 3145728 | RPDO

When the position deviation 60F4 is greater than 6065, the drive reports an excessive position deviation (Er.B00) error. If bit 13 of 6041 is 1 in PP
mode, this fault can be reset.

Ref
6067 00 Position window RW UINT32 uiifre"ce 0to 65535 7 RPDO

When the position deviation 60F4 is less than this value, and the time reaches 6068, the servo drive considers that the position is reached, and sets
status word 6041 bit 10 = 1. When either condition is not met, the position window is invalid.

6068 00 Position window time RW UINT16 ms 0to 65535 0 RPDO

When the position deviation 60F4 is less than this value, and the time reaches 6068, the servo drive considers that the position is reached, and sets
status word 6041 bit 10 = 1. When either condition is not met, the position window is invalid.

Ref
606C 00 Actual velocity RO INT32 uiif/r:”ce TPDO

The object indicates the position feedback per second (reference unit).

606D [00 | Velocity window | RW | UINT32 [rpm lotoess3s | 10 [ReDO

When the difference between the motor velocity feedback and the velocity instruction is within 606D, and the time reaches 606E, the servo drive
considers that the velocity is reached, and sets status word 6041 bit 10 = 1. When either condition is not met, the velocity window is invalid.

606E [00 | Velocity window time | RW [UINT16 [ms [otoess3s | 0 | RPDO

When the difference between the velocity feedback and the velocity instruction is within 606D, and the time reaches 606E, the servo drive

considers that the velocity is reached, and sets status word 6041 bit 10 = 1. When either condition is not met, the velocity window is invalid.

-335-

-336-

8. Appendix

Ind Sub-ind
(:'Ei))(u(H;()ex Name Access Size Unit Setting Range |Default Value| PDO Mapping
6071 00 Target torque RW INT16 0.1% -5000 to 5000 0 RPDO
Target torque setting in torque mode
6072 [00 | Max. torque | RW [UINT16 [0.19% [00 5000 | 0 | RPDO
Maximum torque limit
6074 [00 | Torque reference RO [INT16 [0.1% [-5000t0 5000 | 0 [TPDO
Torque output instruction after internal calculation of the drive
6077 [00 | Actual torque RO [INT16 [0.19% [-5000 to 5000 | 0 | TPDO
Feedback torque value acquired by the drive
Refi
607A 00 Target position RW INT32 uiifre"ce -231-(231-1) 0 RPDO
Servo target position in profile position mode and cyclic synchronous position mode
Refi

607C 00 Home offset RW INT32 uiifre”ce -231-(231-1) 0 RPDO
Position of the mechanical home offset from the mechanical zero

Software absolute position limit

High -i
00 ighest sub-index RO UINTS i 5) .
supported

607D U iti

01 Min. position limit RW INT32 qutr POSION | 531-(231-1) 231 |RPDO

02 Max. position limit RW INT32 S:ftr position | 531 (231-1) 231-1 | RPDO

limit will stop when the limit is reached.

607E 00 Polarity RW UINT8 = 0to 255 ‘ 0 RPDO

Bit 7 - Position reference polarity: 0: Keep original polarity; 1: Reverse polarity
Bit 6 - Velocity reference polarity: 0: Keep original polarity; 1: Reverse polarity

Bit 5 - Torque reference polarity: 0: Keep original polarity; 1: Reverse polarity

Ref
607F 00 Maximum velocity RW UINT32 uiif/r:”ce 0t0232-1 104857600 | RPDO

Maximum velocity limit
Setting:

607F = Maximum allowable motor velocity (rpm) x Encoder resolution/60

6081 00 Profile velocity RW UINT32 Hzftr velodlty | 6452321 0 RPDO
Setting of the uniform motor running velocity for the displacement in profile position mode
6083 00 Profile acceleration RW UINT32 Eiff/r:;ce 1t0232-1 1747626667 | RPDO

Acceleration in PP, CSV, or PV mode
Default value: 1747626667; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.

6084 00 Profile deceleration RW UINT32 EET:;:;CQ 1t0232-1 1747626667 | RPDO

Deceleration in PP, CSV, or PV mode

Default value: 1747626667; Reference unit: /s2, indicating that the motor decelerates from 1000 rpm to 0 rpm in 10 ms.

. User
6085 00 Deceleration rate for RW UINT32 acceleration | 1to232-1 1747626667 | RPDO
quick stop unit

Acceleration of deceleration section if 605A = 2 when a quick stop command (bit 2 of 6040 = 0) is issued by the host controller.

Default value: 1747626667; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.

6086 ‘ 00 ‘ Motion profile type ‘ RW ‘ INT16 ‘ - ‘ 0 ‘ 0 ‘ RPDO

Set the motor running curve in profile position mode.

Currently, only linear motion is supported.

6087 [00 | Torque slope | RW | UINT32 [0.19%/s o | OXFFFFFFFF | RPDO

Set the torque command increment per second in profile torque mode.

After homing is complete, set the minimum and maximum position limits for running by combining with 607C. Position commands exceeding the

8. Appendix

Ind Sub-ind
(:Ei))(u(Hg()ex Name Access Size Unit Setting Range |Default Value| PDO Mapping
Gear ratio
00 Highest sub-index RO UINTS 5 5
6091 supported
01 Motor revolutions RW UINT32 - 0to232-1 1 RPDO
02 Shaft revolutions RW UINT32 - 1-232-1 1 RPDO
Establish the proportionality between the encoder unit and the reference unit.
6098 00 Homing method RW INT8 - 0-35 0 RPDO
Support 35 homing methods specified by DS402 protocol.
High velocity value
: Reference
01 of searching for the RW UINT32 il 0to232-1 1747626 | RPDO
6099 deceleration point signal
02 Low speed during search | o\, UINT32 Reference 109351 174762 |RPDO
for zero unit/s
609A 00 Homing acceleration RW UINT32 Si:f;:;ce 1t0232-1 1747 RPDO
Acceleration in variable velocity section in homing mode.
Default value: 1747; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.
Refi
60B0h 00 Position offset RW INT32 u:iterence -231-(231-1) 0 RPDO
Ref
60B1h 00 Velocity offset RW INT32 uiif/r:nce 231-(231-1) 0 RPDO
60B2h 00 Torque offset RW INT32 0.1% -5000 to 5000 0 RPDO
60B8h 00 Touch probe function RW UINT16 - 0 to 65535 0 RPDO
60B9h 00 Probe status RW UINT16 - 0to 65535 0 RPDO
Ref
60BAh 00 Touch probe 1 rising edge | RW INT32 u:ifrence -231-(231-1) 0 RPDO
Touch 1 falli Refi
60BBh 00 ouch probe 1 falling RW INT32 clerence | 31-231-1) 0 RPDO
edge unit
Ref
60BCh 00 Touch probe 2 rising edge | RW INT32 uiifrence 231-(231-1) 0 RPDO
Touch 2 falli Ref
60BDh 00 ouch probe 2 falling RW INT32 clerence | 31-(231-1) 0 RPDO
edge unit
60EOh 00 Positive torque limit RW UINT16 0.1% 0 to 5000 2000 RPDO
60E1h 00 Negative torque limit RW UINT16 0.1% 0 to 5000 2000 RPDO
60E3h 00 Supported homing RW UINT16 - - - -
method
60E6h 00 Position calculation RW UINT16 . Otol 0 -
method
Refi
60F4h 00 Position deviation RO INT32 uiifrence 231-(231-1) 0 TPDO
Position deviation, reference unit
60FC 00 Position reference RO INT32 Encoder unit |-231-(231-1) 0 TPDO
Position reference, encoder unit
60FDh 00 DI status RO UINT32 - 0to232-1 0 RPDO
60FEh 00 DO status RO UINT32 - 0to0232-1 0 RPDO
Refi
60FFh 00 Target velocity RW INT32 u:if/r:”ce 231-(231-1) 0 RPDO
Velocity reference setting in Synchronous Cyclic Velocity mode
6502 00 Supported drive modes RO UINT32 ‘0000 03ADhex| TPDO

Display the modes supported by the drive.

-337-

-338-

8. Appendix

Ind Sub-ind
(:Ei))(u(Hg()ex Name Access Size Unit Setting Range |Default Value| PDO Mapping
Gear ratio
00 Highest sub-index RO UINTS 5 5
6091 supported
01 Motor revolutions RW UINT32 - 0to232-1 1 RPDO
02 Shaft revolutions RW UINT32 - 1-232-1 1 RPDO
Establish the proportionality between the encoder unit and the reference unit.
6098 00 Homing method RW INT8 - 0-35 0 RPDO
Support 35 homing methods specified by DS402 protocol.
High velocity value
: Reference
01 of searching for the RW UINT32 il 0to232-1 1747626 | RPDO
6099 deceleration point signal
02 Low speed during search | o\, UINT32 Reference 109351 174762 |RPDO
for zero unit/s
609A 00 Homing acceleration RW UINT32 Si:f;:;ce 1t0232-1 1747 RPDO
Acceleration in variable velocity section in homing mode.
Default value: 1747; Reference unit: /s2, indicating that the motor accelerates from 0 rpm to 1000 rpm in 10 ms.
Refi
60B0h 00 Position offset RW INT32 u:iterence -231-(231-1) 0 RPDO
Ref
60B1h 00 Velocity offset RW INT32 uiif/r:nce 231-(231-1) 0 RPDO
60B2h 00 Torque offset RW INT32 0.1% -5000 to 5000 0 RPDO
60B8h 00 Touch probe function RW UINT16 - 0 to 65535 0 RPDO
60B9h 00 Probe status RW UINT16 - 0to 65535 0 RPDO
Ref
60BAh 00 Touch probe 1 rising edge | RW INT32 u:ifrence -231-(231-1) 0 RPDO
Touch 1 falli Refi
60BBh 00 ouch probe 1 falling RW INT32 clerence | 31-231-1) 0 RPDO
edge unit
Ref
60BCh 00 Touch probe 2 rising edge | RW INT32 uiifrence 231-(231-1) 0 RPDO
Touch 2 falli Ref
60BDh 00 ouch probe 2 falling RW INT32 clerence | 31-231-1) 0 RPDO
edge unit
60EOh 00 Positive torque limit RW UINT16 0.1% 0 to 5000 2000 RPDO
60E1h 00 Negative torque limit RW UINT16 0.1% 0 to 5000 2000 RPDO
60E3h 00 Supported homing RW UINT16 - - - -
method
60E6h 00 Position calculation RW UINT16 . Otol 0 -
method
Refi
60F4h 00 Position deviation RO INT32 uiifrence 231-(231-1) 0 TPDO
Position deviation, reference unit
60FC 00 Position reference RO INT32 Encoder unit |-231-(231-1) 0 TPDO
Position reference, encoder unit
60FDh 00 DI status RO UINT32 - 0to232-1 0 RPDO
60FEh 00 DO status RO UINT32 - 0to0232-1 0 RPDO
Refi
60FFh 00 Target velocity RW INT32 u:if/r:”ce 231-(231-1) 0 RPDO
Velocity reference setting in Synchronous Cyclic Velocity mode
6502 00 Supported drive modes RO UINT32 ‘0000 03ADhex| TPDO

Display the modes supported by the drive.

8. Appendix

Appendix C Error Codes

SMC_ERROR: Records the error ID returned by the motion control function block.

52:; Generation Source Variable Error Cause
0 |Al SMC_NO_ERROR No error
1 | Driveinterface E:;ARC(SE_GENERAL_COMMUMCATION_ Communication error (such as a broken Sercos ring)
Drive interface SMC_DI_AXIS_ERROR Axis error
Drive interface SMC_DI_FIELDBUS_LOST_SYNCRONICITY Loss of bus DC synchronization
Software limit switch is activated
10 | Drive interface SMC_DI_SWLIMITS_EXCEEDED /:itl(;:::gb'\:;:ﬁ]"able is enabled, the current position of the
the range of fSWLimitPositive and fSWLimitNegative range
11 | Drive interface SMC_DI_HWLIMITS_EXCEEDED Hardware limit switch is activated
13 | Drive interface itﬂgggk:EADLT‘OR‘QUlCKSTOP‘NOT‘ Drive status stopped or quick stop is not supported
14 | Drive interface SMC_DI_VOLTAGE_DISABLED Drive is not enabled
15 | Drive interface SMC_DI_IRREGULAR_ACTPOSITION S;’;:i”ﬁ;:g; currently given by drive is incorrect. Check
16 | Drive interface SMC_DI_POSITIONLAGERROR Position lag error. Set and current positions exceed limit
17 | Drive interface SMC_DI_HOMING_ERROR Drive homing error
20 ﬁ;?;’:gfjt:;ated by SMC_REGULATOR_OR_START_NOT_SET Controller is not enabled or brake is closed
21 | Axisin wrong control mode | SMC_WRONG_CONTROLLER_MODE Axis is not in correct control mode
30 | Driveinterface SMC_FB_WASNT_CALLED_DURING_MOTION g:jz:e;;;e:;ed by motion control are not called until the
31 | All modules SMC_AXIS_IS_NO_AXIS_REF The given AXIS_REF variable is not of the AXIS_REF type
3 Axis is in incorrect control SMC_AXIS_REF_CHANGED_DURING_ Return value of the AXIS_REF variable is processed before the
mode OPERATION module is activated
33 | Drive interface SMC_FB_ACTIVE_AXIS_ DIABLED Axis is not activated during movement (MC_Power.
bRegulatorOn)
34 ;:1“01?;): E(l)enst::leated by SMC_AXIS_NOT_READY_FOR_MOTION ?;::ucsannot process the current instruction in the current
35 ﬁL:?;): il)erft:jated by SMC_AXIS_ERROR_DURING_MOTION Axis error during motion
40 | Virtual drive SMC_VD_MAX_VELOCITY_EXCEEDED Maximum velocity (fMaxVelocity) reached
41 | Virtual drive SMC_VD_MAX_ACCELERATION_EXCEEDED Maximum acceleration (fMaxAcceleration) reached
42 | Virtual drive SMC_VD_MAX_DECELERATION_EXCEEDED Maximum deceleration (fMaxDeceleration) reached
50 | SMC_Homing SMC_3SH_INVALID_VELACC_VALUES Invalid velocity or acceleration value
51 | SMC_Homing SMC_3SH_MODE_NEEDS_HWLIMIT End limit switch required for module (safety use)
70 | SMC_SetControllerMode SMC_SCM_NOT_SUPPORTED Mode is not supported
71 | SMC_SetControllerMode SMC_SCM_AXIS_IN_WRONG_STATE Control mode used in current mode is not supported
75 | SMC_SetTorque SMC_ST_WRONG_CONTROLLER_MODE ﬁ:ﬁ;l::ﬂgg?ﬁgiﬁ:jEigé“°d&thmf””C“O”wak”eeds
80 | SMC_ResetAxisGroup SMC_RAG_ERROR_DURING_STARTUP Error during axis group startup
90 | SMC_ChangeGearingRatio SMC_CGR_ZERO_VALUES Incorrect variable
91 | SMC_ChangeGearingRatio SMC_CGR_DRIVE_POWERED Transmission ratio cannot be changed in drive control mode
92 | SMC_ChangeGearingRatio SMC_CGR_INVALID_POSPERIOD Incorrect position period (<=0)
110 | MC_Power SMC_P_FTASKCYCLE_EMPTY G?:Siocr;t;g‘i g)o information during the scan period
120 | MC_Reset SMC_R_NO_ERROR_TO_RESET Axis has no error reset
121 | MC_Reset SMC_R_DRIVE_DOESNT_ANSWER Axis did not perform an error reset
122 | MC_Reset SMC_R_ERROR_NOT_RESETTABLE Error cannot be reset
123 | MC_Reset SMC_R_DRIVE_DOESNT_ANSWER_IN_TIME No response to communication with the axis
130 '\R/';—dRBes:lPPeraaTgZ: MC_ | smc_Rp_PARAM_UNKNOWN Parameter number position

-339-

8. Appendix

Error

code Generation Source Variable Error Cause

MC_ReadParameter, MC_ An error occurred during the parameter transfer to drive. See

131 SMC_RP_REQUESTING_ERROR error in function block example ReadDriveParameter (SM_
ReadBoolParameter DriveBasic.lib)

MC_WriteParameter, MC_ L. . L
140 ; SMC_WP_PARAM_INVALID Parameter number position or write operation is not allowed
WriteBoolParameter

141 mﬁ;rg:;:g:eei? MC_ SMC_WP_SENDING_ERROR Zz:ii.rlrig; in module example WriteDriveParameter (Drive_

170 | MC_Home SMC_H_AXIS_WASNT_STANDSTILL Axis not in standard state

171 | MC_Home SMC_H_AXIS_DIDNT_START_HOMING An error occurred during homing execution

172 | MC_Home SMC_H_AXIS_DIDNT_ANSWER Communication error

173 | MC_Home SMC_H_ERROR_WHEN_STOPPING il-siczr;ing stopped due to an error. Check whether deceleration

180 | MC_Stop SMC_MS_UNKNOWN_STOPPING_ERROR An unknown error occurred during stopping

181 | MC_Stop SMC_MS_INVALID_ACCDEC_VALUES Invalid velocity or acceleration values

182 | MC_Stop SMC_MS_DIRECTION_NOT_APPLICABLE Direction = shortest unavailable

183 | MC_Stop SMC_MS_AXIS_IN_ERRORSTOP Axis in stopping error status. Stopping cannot be processed.

201 | MC_MoveAbsolute SMC_MA_INVALID_VELACC_VALUES Invalid velocity or acceleration values

202 | MC_MoveAbsolute SMC_MA_INVALID_DIRECTION Direction error

226 | MC_MoveRelative SMC_MR_INVALID_VELACC_VALUES Invalid velocity or acceleration values

227 | MC_MoveRelative SMC_MR_INVALID_DIRECTION Direction error

251 | MC_MoveAdditive SMC_MAD_INVALID_VELACC_VALUES Invalid velocity or acceleration values

252 | MC_MoveAdditive SMC_MAD_INVALID_DIRECTION Direction error

276 | MC_MoveSuperlmposed SMC_MSI_INVALID_VELACC_VALUES Invalid velocity or acceleration values

277 | MC_MoveSuperimposed SMC_MSI_INVALID_DIRECTION Direction error

301 | MC_MoveVelocity SMC_MV_INVALID_ACCDEC_VALUES Invalid velocity or acceleration values

302 | MC_MoveVelocity SMC_MV_DIRECTION_NOT_APPLICABLE Direction=shortest/fastest not supported

325 | MC_PositionProfile SMC_PP_ARRAYSIZE Wrong alignment size

326 | MC_PositionProfile SMC_PP_STEPOMS Step time = t#0s

350 | MC_VelocityProfile SMC_VP_ARRAYSIZE Wrong alighment size

351 | MC_VelocityProfile SMC_VP_STEPOMS Step time = t#0s

375 | MC_AccelerationProfile SMC_AP_ARRAYSIZE Wrong alignment size

376 | MC_AccelerationProfile SMC_AP_STEPOMS Step time = t#0s

400 | MC_TouchProbe SMC_TP_TRIGGEROCCUPIED Trigger condition has been activated

401 | MC_TouchProbe SMC_TP_COULDNT_SET_WINDOW Window function is not supported by the drive interface

402 | MC_TouchProbe SMC_TP_COMM_ERROR Communication error

410 | MC_AbortTrigger SMC_AT_TRIGGERNOTOCCUPIED Trigger condition has been terminated

426 i/ll\i\(/:gContinuousRelative SMC_MCR_INVALID_VELACC_VALUES Invalid velocity or acceleration values

427 SMC_) . SMC_MCR_INVALID_DIRECTION Direction error
MoveContinuousRelative

451 SMC_ . SMC_MCA_INVALID_VELACC_VALUES Invalid velocity or acceleration values
MoveContinuousAbsolute

452 SMC_ X SMC_MCA_INVALID_DIRECTION Direction error
MoveContinuousAbsolute

453 SMC_ . SMC_MCA_DIRECTION_NOT_APPLICABLE Direction= fastest unavailable
MoveContinuousAbsolute

600 | SMC_CamRegister SMC_CR_NO_TAPPETS_IN_CAM Cam does not contain any tappet

601 | SMC_CamRegister SMC_CR_TOO_MANY_TAPPETS Tappet group ID reaches MAX_NUM_TAPPETS

602 | SMC_CamRegister SMC_CR_MORE_THAN_32_ACCESSES More than 32 interfaces in a CAM_REF

625 | MC_CamIN SMC_CI_NO_CAM_SELECTED No cam is selected

626 | MC_CamIN SMC_CI_MASTER_OUT_OF_SCALE Master axis out of range

627 | MC_CamiN SMC_CI_RAMPIN_ NEEDS. VELACC. VALUES Velocit'y and a.cceleration must be precisely specified for

ramp_in function block
628 | MC_CamIN SMC_CI_SCALING_INCORRECT Incorrect scale variables fEditor/TableMasterMin/Max

-340-

8. Appendix

(I-icr)r;er Generation Source Variable Error Cause

640 (Sjgil_af)ﬁl\::;)f;:ss’ SMC_ SMC_CB_NOT_IMPLEMENTED Function block given in cam format is not supported

675 | MC_Gearln SMC_GI_RATIO_DENOM RatioDenominator =0

676 | MC_Gearln SMC_GI_INVALID_ACC Invalid acceleration

677 | MC_Gearln SMC_GI_INVALID_DEC Invalid acceleration

725 | MC_Phase SMC_PH_INVALID_VELACCDEC Invalid velocity/acceleration/deceleration

726 | MC_Phase SMC_PH_ROTARYAXIS_PERIODO Rotary axis fPositionPeriod = 0

750 gggaosdis:jtusmg MC_CAM_ SMC_NO_CAM_REF_TYPE The given cam is not of type MC_CAM_REF

751 | MC CamTableSelect SMC_CAM_TABLE_DOES_NOT_COVER_ If the data retrieved from CamTable is not the master axis area

- MASTER_SCALE (xStart and xEnd) obtained by data transformation

775 | MC_GearInPos SMC_GIP_MASTER_DIRECTION. CHANGE The rTTaster axis changes its rotational direction during slave
coupling.

800 SMC_ . SMC_BC_BL_TOO_BIG Excessive gear return ratio (fBacklash) (> position period/2)

BacklashCompensation

1000 Ellilr::clt;::n:}:(:k requinng SMC_NO_LICENSE Target has no CNC license

1001 | SMC_Interpolator SMC_INT_VEL_ZERO Path cannot be processed because velocity =0

1002 | SMC_Interpolator SMC_INT_NO_STOP_AT_END Previous path object Vel _End >0
Warning: GEOINFO list is processed in Dataln, but the list
module

1004 | SMC_Interpolator SMC_INT_VEL_NONZERO_AT_STOP Stop velocity >0

1005 | SMC_Interpolator SMC_INT_TOO_MANY_RECURSIONS Excessive use of SMC_Interpolator, SoftMotion call error

1006 | SMC_Interpolator SMC_INT_NO_CHECKVELOCITIES L:E:Elzize:iﬂuce_[é:t(j(l:i\llzlrl)(z:‘:it?(::d as a final processing

1007 | SMC_Interpolator SMC_INT_PATH_EXCEEDED Internal/Numeric error

1008 | SMC_lInterpolator SMC_INT_VEL_ACC_DEC_ZERO Velocity, acceleration or deceleration is empty or too low

1009 | SMC_lInterpolator SMC_INT_DWIPOTIME_ZERO FB call dwlpoTime =0

1050 | SMC_Interpolator2Dir SMC_INT2DIR_BUFFER_TOO_SMALL Data buffer too small

1051 | SMC_Interpolator2Dir SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE Path is not fully contained in the queue

1100 | SMC_CheckVelocities SMC_CV_ACC_DEC_VEL_NONPOSITIVE Z?rl:cct'itg;decelerat'on or acceleration valueis notin positive

1120 | SMC_Controlaxisbypos SMC_CA_INVALID_ACCDEC_VALUES Z?;’Isgie;;j:sZil:lZIZ/fGapAcceleI’atlon/ fGapDeceleration

1200 | SMC_NCDecoder SMC_DEC_ACC_TOO_LITTLE Acceleration value is not allowed

1201 | SMC_NCDecoder SMC_DEC_RET_TOO_LITTLE Deceleration value is not allowed

1202 | SMC_NCDecoder SMC_DEC_OUTQUEUE_RAN_EMPTY Data below Queue is read and is empty

1203 | sMC_NCDecoder SMC_DEC_JUMP_TO_UNKNOWN_LINE Theline nu'mberjumped cannot be executed because of an
unknown line number

1204 | SMC_NCDecoder SMC_DEC_INVALID_SYNTAX Syntax error

1205 | SMC_NCDecoder :BAFC,EBE(T:EEDMODE’OBJECT’NOT’ These objects do not support 3D mode

1300 | SMC_GCodeViewer SMC_GCV_BUFFER_TOO_SMALL Buffer too small

1301 | SMC_GCodeViewer SMC_GCV_BUFFER_WRONG_TYPE Buffer element type error

1302 | SMC_GCodeViewer SMC_GCV_UNKNOWN_IPO_LINE Current interpolation line cannot be found

1500 2:\;?_?;:33???% using SMC_NO_CNC_REF_TYPE The given CNC program is not of the SMC_CNC_REF type

1501 | Allfunction blocksusing | o1\ 6uTQUEUE_TYPE The given OutQueue is not of the SMC_OUTQUEUE type

SMC_OUTQUEUE

1600 | CNC function block SMC_3D_MODE_NOT_SUPPORTED This function block is only available in 2D path

2000 | SMC_ReadNCFile SMC_RNCF_FILE_DOESNT_EXIST File does not exist

2001 | SMC_ReadNCFile SMC_RNCF_NO_BUFFER No buffer allocation

2002 | SMC_ReadNCFile SMC_RNCF_BUFFER_TOO_SMALL Buffer too small

2003 | SMC_ReadNCFile SMC_RNCF_DATA_UNDERRUN Low buffer data in buffer area is read and is empty

2004 | SMC_ReadNCFile SMC_RNCF_VAR_COULDNT_BE_REPLACED Placeholder variable cannot be replaced

2005 | SMC_ReadNCFile SMC_RNCF_NOT_VARLIST Input pvl cannot point to SMC_VARLIST object

-341-

-342-

8. Appendix

(I-icr)r;er Generation Source Variable Error Cause

2050 | SMC_ReadNCQueue SMC_RNCQ_FILE_DOESNT_EXIST File cannot be opened

2051 | SMC_ReadNCQueue SMC_RNCQ_NO_BUFFER No buffer definition

2052 | SMC_ReadNCQueue SMC_RNCQ_BUFFER_TOO_SMALL Buffer too small

2053 | SMC_ReadNCQueue SMC_RNCQ_UNEXPECTED_EOF Unknown end of file

2100 | SMC_AxisDiagnosticLog SMC_ADL_FILE_CANNOT_BE_OPENED File cannot be opened

2101 | SMC_AxisDiagnosticLog SMC_ADL_BUFFER_OVERRUN Buffering out of range; WriteToFile must be called more often

2200 | SMC_ReadCAM SMC_RCAM_FILE_DOESNT_EXIST File cannot be opened

2201 | SMC_ReadCAM SMC_RCAM_TOO_MUCH_DATA Too much data saved to cam

2202 | SMC_ReadCAM SMC_RCAM_WRONG_COMPILE_TYPE Wrong compile mode

2203 | SMC_ReadCAM SMC_RCAM_WRONG_VERSION File version error

2204 | SMC_ReadCAM SMC_RCAM_UNEXPECTED_EOF Unknown end of file

3001 svl\ll’li(t:gDriveParamsToFile SMC_WDPF_CHANNEL_OCCUPIED SMC_WDPF_TIMEOUT_PREPARING_LIST

3002 SM.C_ . . SMC_WDPF_CANNOT_CREATE_FILE File cannot be created
WriteDriveParamsToFile

3003 SM.C‘ -) SMC_WDPF_ERROR_WHEN_READING_. Error in reading file parameters
WriteDriveParamsToFile PARAMS

3004 \i\ll\ll'li(t:e_DriveParamsToFile SMC_WDPF_TIMEOUT_PREPARING_LIST Time error in preparing parameter list

5000 | SMC_Encoder SMC_ENC_DENOM_ZERO rCeonI\’/:r:zieoir; 1;a.ctor (dwRatioTechUnitsDenom) of the decoder

5001 | SMC_Encoder SMC_ENC_AXISUSEDBYOTHERFB Other modules are handling the decoder axis.

5002 | Drive interface SMC_ENC_FILTER_DEPTH_INVALID Invalid filter

“ “H“HHH““N“H‘H“HH“H“‘ S

19012378A00

Shenzhen Inovance Technology CO., Ltd. Add.: Inovance Headquarters Tower, High-tech Industrial Park,
Guanlan Street, Longhua New District, Shenzhen

Wwww.inovance.com Tel: (0755) 2979 9595 Fax: (0755) 2961 9897

Suzhou Inovance Technology CO-' Ltd. Add.: No. 16 Youxiang Road, Yuexi Town,

Wuzhong District, Suzhou 215104, P.R. China
Wwww.inovance.com Tel: (0512) 6637 6666 Fax: (0512) 6285 6720

	Preface
	1. Overview of the PLCopen Specification
	2. Composition of the Motion Control Application System
	3. Composition of the Motion Control Program
	3.1 User Program Structure
	3.1.1 User Program Composition
	3.1.2 Task Type
	3.1.3 Benefits of a User Program Consisting of Multiple POUs
	3.1.4 How to Achieve Both Logic Control and Motion Control in User Program

	3.2 Writing and Commissioning a Simple User Program
	3.2.1 Creating a Project
	3.2.2 Writing POUs for Function Processing
	3.2.3 Setting Motor Parameters
	3.2.4 Writing Marquee Control Logic
	3.2.5 Associating a Variable with the Hardware Output Port
	3.2.6 Troubleshooting User Program Compilation
	3.2.7 Monitoring the Running of the User Program
	3.2.8 Summary of Typical Steps of Writing a Motion Control Project

	4. Execution Mechanism of the Motion Control Program
	4.1 Task and Configuration in the User Project
	4.2 Dataflow Analysis of the EtherCAT Bus Network
	4.3 Data Process for Communication with Servo Slaves
	4.3.1 Control Information Process
	4.3.2 CiA402 Data Object Dictionary and Common Objects for Servo Drives
	4.3.3 Configuration of Servo Axis Motor Parameters
	4.3.4 EtherCAT Network Status Initialization and Management
	4.3.5 Servo Axis and I/O Port Control Data Refresh

	4.4 Timing of MC Data Transmission
	4.5 Processing Mechanism for Executing MC Function Blocks
	4.5.1 Cyclic Synchronous Position Control Mode for Servo Motion Commands
	4.5.2 Data Structure of the Servo Axis
	4.5.3 Servo Axis Status and Transition Rules
	4.5.4 Execution Logic of the MC Function Block
	4.5.5 Data Interaction Between POUs of Tasks of Different Priorities

	5. Application Programming of User Program
	5.1. MC Programming For Single-axis MC Positioning
	5.1.1 Notes for MC Application Programming
	5.1.2 MC Function Blocks Commonly Used for Single-Axis Control
	5.1.3 MC Commands and PDO/SDO Configuration

	5.2 Motion Control Programming for Multi-axis Cam Synchronization
	5.2.1 Main Function Blocks For Cam Running
	5.2.2 Master and Slave Axes in Relative Position Mode
	5.2.3 Master Axis in Absolute Position Mode and Slave Axis in Relative Position Mode
	5.2.4 Master Axis in Relative Position Mode and Slave Axis in Absolute Position Mode

	5.3 Cyclic Mode Characteristics of the Cam Table
	5.3.1 Offset for CamIn Operation
	5.3.2 Calculation of Master Axis Scaling During Cam Running
	5.3.3 Calculation of Slave Axis Scaling During Cam Running
	5.3.4 Characteristics of and Precautions for Using Offset and Scale in Cam Running
	5.3.5 MC_CamOut FB for Exiting Cam Running Status

	5.4 MC_Phasing FB for Cam Master Axis Phase Adjustment
	5.5 Cam Table Design and Its Data Structure
	5.5.1 Characteristics of the Cam Table
	5.5.2 Input Mode of the Cam Table
	5.5.3 Internal Data Structure and Arrays of the Cam Table

	6. Common MC Instructions
	6.1 Single-axis Instructions
	MC_AccelerationProfile
	MC_Halt
	MC_HaltSuperImposed
	MC_Home
	MC_MoveAbsolute
	MC_MoveAdditive
	MC_MoveRelative
	MC_MoveSuperImposed
	MC_MoveVelocity
	MC_MoveFeed
	MC_PositionProfile
	MC_Power
	MC_ReadActualPosition
	MC_ReadAxisError
	MC_ReadBoolParameter
	MC_ReadStatus
	MC_ReadParameter
	MC_Reset
	MC_Stop
	MC_VelocityProfile
	MC_WriteBoolParameter
	MC_WriteParameter
	MC_AbortTrigger
	MC_ReadActualTorque
	MC_ReadActualVelocity
	MC_SetPosition
	MC_TouchProbe
	SMC_MoveContinuousAbsolute
	SMC_MoveContinuousRelative
	MC_Jog
	SMC_Inch
	SMC3_PersistPosition
	SMC3_PersistPositionSingleturn
	SMC_CheckAxisCommunication
	SMC_FollowPosition
	SMC_FollowPositionVelocity
	SMC_FollowVelocity
	SMC_FollowSetValues
	SMC_SetControllerMode
	SMC_CheckLimits
	SMC_GetMaxSetAccDec
	SMC_GetMaxSetVelocity
	MC_GetTrackingError
	SMC_InPosition
	SMC_ReadSetPosition
	SMC_SetTorque
	SMC_BacklashCompensation
	SMC_ChangeGearingRatio
	SMC_ReadFBError
	SMC_ClearFBError
	SMC3_PersistPositionLogical
	SMC_Homing
	MC_TorqueControl
	MC_ImmediateStop
	MC_ResetFollowingError
	MC_SetTorqueLimit
	MC_ReadDigitalInput
	HMC_Reset
	SMC_SetSoftwareLimits

	6.2 Axis Group Instructions (Master/Slave Axis Instructions)
	SMC_CamRegister
	SMC_GetCamSlaveSetPosition
	SMC_GetTappetValue
	MC_CamTableSelect
	MC_CamOut
	MC_GearIn
	MC_GearOut
	MC_Phasing
	SMC_CAMBounds
	SMC_CAMBounds_Pos
	SMC_WriteCAM

	6.3 Other Functional Specifications
	6.3.1 Instruction Cache
	6.3.2 Hitting Limit
	6.3.3 Defaults of Motion Control Function Blocks
	6.3.4 Curve Reversal Prevention

	6.4 Axis Group Instructions
	6.4.1 MC_GroupEnableV2
	6.4.2 MC_GroupDisableV2
	6.4.3 MC_GroupHomeV2
	6.4.4 MC_GroupSetPositionV2
	6.4.5 MC_GroupReadActualPositionV2
	6.4.6 MC_GroupReadActualVelocityV2
	6.4.7 MC_GroupReadActualAccelerationV2
	6.4.8 MC_GroupStopV2
	6.4.9 MC_GroupHaltV2
	6.4.10 MC_GroupSetOverrideV2
	6.4.11 MC_MoveLinearRelativeV2
	6.4.12 MC_MoveLinearAbsoluteV2
	6.4.13 MC_MoveCircularRelativeV2
	6.4.14 MC_MoveCircularAbsoluteV2
	6.4.15 MC_GroupResetV2
	6.4.16 MC_GroupReadErrorV2
	6.4.17 MC_GroupReadStatusV2
	6.4.18 MC_GroupInterruptV2
	6.4.19 MC_GroupContinueV2
	6.4.20 Axis Group Error Codes
	5.5.4 Reference and Dynamic Switchover of the Cam Table

	7. Simulation and Commissioning
	7.1 Simulation Controller
	7.2 Simulation Servo Drive

	Appendix A Homing Modes Supported by IS620N
	A.1 Description of Homing Modes:

	Appendix B: CiA402 Common Data Object Cheat Sheet Supported by IS620N
	Appendix C Error Codes

