

Preface

Preface
Introduction

This guide covers medium-sized programmable logic controllers (PLCs) of Inovance, including the AM,
AC, and AP series. This guide introduces network configuration, programming environment,
programming languages, program diagnosis, and other information for programming the medium-
sized PLCs in InoProShop.

More Documents
Data Code Doc Name Description

19012378
Medium-Sized PLC
Programming Guide (Motion
Control)

Describes the composition of the PLC motion control system,
mechanism of the motion control program, MC instructions,
and simulation and debugging related operations.

19012377 Medium-Sized PLC
Instruction Guide

Describes basic instructions of medium-sized PLCs.

Revision History

Date Version Description

December 2023 B06

Addition:

● Added “ Project Safety Management” on page 60.
● Added “ Adding an Object Through Application” on page 63.
Modification:

Updated “9.8.8 Axis Diagnosis Code” on page 518.

December 2023 B05

Addition:

● Added “3.8 Project Version Upgrade” on page 58.
● Added “4.2.6 I/O Mapping Parameters” on page 127.
● Added “ Expansion Card Configuration” on page 131.
● Added the "Disabling a GL20-series I/O module" section in
“4.4.10 I/O Module” on page 186.
● Added “ CAN Free Protocol” on page 288.
● Added the "EIP configuration of global variable list" section in
“4.11.5 Configuration of PLC as the EtherNet/IP Slave” on page
324.
● Added “5.5.2 Variable Definition” on page 370.
● Added “5.5.4 Persistent Rules” on page 373.
● Added the "Batch update block calls" and "Update block
calls" sections in “6.3.6 LD Menu Commands” on page 416.
● Added “ SVN Function” on page 524.
Modification:

● Added configuration of modules of the GL20 series in “4.2.4 I/
O Module Configuration” on page 81.
● Updated “4.2.5 High-Speed I/O Configuration” on page 109.
● Optimized the sections "Display the project differences" and
"Check whether the device alias takes effect after a scanned
device is copied" sections in “4.4.2 Common Functions” on
page 131.
● Updated “7.3 Fault Diagnosis” on page 440.
● Updated “9.8.7 EtherCAT Diagnosis Code” on page 515.

August 2023 B04
● Added guidance on upgrading the user program.
● Optimized description of some functions.

‑1‑

Preface

Date Version Description

September 2022 B03
● Added the functions of online diagnosis and axis diagnosis.
● Added axis diagnosis codes.
● Updated EtherCAT diagnosis codes.

January 2022 B02
● Added functions related to ST programming and compiling.
● Optimized EIP and variable definition functions.

November 2020 B01
● Added the HMC_Reset and HMC_TouchProbe instructions in
section 6.6.
● Corrected details of the earlier version.

October 2020 B00

● Added the section "3.9 EtherNET Communication".
● Added the "Appendix I Synchronizing the Project
Information".
● Added the "Appendix J Solutions to PLC Running Errors".
● Corrected details of the earlier version.

April 2018 A00 First release

Access to the Guide

This guide is not delivered with the product. You can obtain the PDF version in the following way:

● Visit www.inovance.com, go to "Support" > "Download", search by keyword, and then download
the PDF file.

● Scan the QR code on the product with your smart phone.

Warranty

For faults and damage incurred during normal use in the warranty period, Inovance provides free
repair service. (For details of the warranty period, see the purchase order.) A maintenance fee will be
charged out of the warranty period.

Even in the warranty period, a maintenance fee will be charged for repair of the following damage:

● Damage caused by operations not following the instructions in the guide
● Damage caused by fire, flood, or abnormal voltage
● Damage caused by unintended use of the product
● Damage caused by use beyond the specified scope of application of the product
● Damage or secondary damage caused by force majeure (natural disaster, earthquake, and lightning

strike)

The maintenance fee will be charged according to the latest Price List of Inovance if not otherwise
agreed upon.

For details, see the Product Warranty Card.

‑2‑

www.inovance.com

‑3‑

TTaabbllee ooff CCoonntteennttss
Preface.. 1

1 Product Information .. 11

1.1 Overview .11
1.1.1 Product Information. 11

1.1.2 Product Configuration and Module Description . 16

1.1.3 System Application Process . 21

1.2 Overview of InoProShop .22
1.2.1 Brief Introduction . 22

1.2.2 Connection Between InoProShop and Hardware . 22

1.2.3 Acquisition and Installation of the Software. 23

1.2.4 Installation Procedure. 24

1.2.5 Uninstallation of InoProShop. 28

2 Quick Start. 29

2.1 Programming Environment Launching. .29

2.2 Typical Procedure for Writing a User Program. .31
2.2.1 Overview . 31

2.2.2 User System Configuration Operations . 32

2.2.3 User Program Writing Operations . 32

2.2.4 Linkage Configuration Between User Program Variables and Ports . 34

2.2.5 Configuration of Execution Mode and Operation Cycle of User Program . 34

2.2.6 Compiling, Login, and Download of User Program . 34

2.3 Writing a Marquee Sample Project with InoProShop .37

2.4 How to Log in to the Main Module .41
2.4.1 Prerequisites and Operations of Main Module Login. 41

2.4.2 Scanning Medium-Sized PLC in InoProShop. 42

2.4.3 Solution to Device Scanning Failure . 44

3 Basic Functions .. 46

3.1 Page Navigation .46

3.2 Compiling a Command .46

3.3 Resources List .47
3.3.1 Overview . 47

3.3.2 Features . 47

3.4 Symbol Configuration. .51

3.5 Cross References .56

Table of Contents

‑4‑

3.6 Watch List .57

3.7 Going to a Lower Level. .57

3.8 Project Version Upgrade .58

3.9 Project Safety Management .60
3.9.1 Project File Encryption . 60

3.9.2 Project User Authorization Management . 60

3.10 Adding an Object Through Application .63

4 Network Configuration .. 66

4.1 Device Configuration. .66
4.1.1 Device Configuration . 66

4.1.2 Network Configuration . 66

4.1.3 Hardware Configuration. 73

4.1.4 Device Tree Operations. 75

4.1.5 Configuration Compiling Error Locating . 76

4.2 CPU Configuration .76
4.2.1 Overview . 76

4.2.2 General CPU Configuration Procedure . 76

4.2.3 CPU Parameter Configuration . 77

4.2.4 I/O Module Configuration . 81

4.2.5 High-Speed I/O Configuration . 109

4.2.6 I/O Mapping Parameters . 127

4.3 Expansion Card Configuration . 131

4.4 EtherCAT Configuration. 131
4.4.1 Overview . 131

4.4.2 Common Functions . 131

4.4.3 EtherCAT Master. 142

4.4.4 EtherCAT Slave . 151

4.4.5 CiA402 Axis . 168

4.4.6 Virtual Axis . 178

4.4.7 GR10-4PME Positioning Module . 179

4.4.8 GR10-2HCE counter module . 181

4.4.9 Splitter . 184

4.4.10 I/O Module . 186

4.4.11 Library (Implicit Variables) . 189

4.5 Modbus Device Editor. 202
4.5.1 Serial Hardware Port . 202

Table of Contents

‑5‑

4.5.2 Network Configuration . 204

4.5.3 Modbus Master Configuration . 209

4.5.4 Modbus Master Communication Configuration. 210

4.5.5 Modbus Master Broadcast Configuration . 214

4.5.6 Modbus Slave Configuration . 215

4.5.7 Modbus Device Diagnosis . 217

4.5.8 Common Errors of Modbus . 217

4.5.9 Modbus Variable Addressing . 217

4.5.10 Modbus Communication Frame Format. 219

4.6 Application of Free Protocols on Serial Ports . 223
4.6.1 Overview . 223

4.6.2 Serial Port Configuration . 223

4.6.3 Communication Configuration . 226

4.6.4 Registers for Data Sending and Receiving . 226

4.6.5 Communication Tests Through the Serial Port Commissioning Assistant 228

4.7 Modbus TCP Device Editor . 229
4.7.1 Overview . 229

4.7.2 Modbus TCP Master Configuration . 229

4.7.3 Modbus TCP Master Communication Configuration . 230

4.7.4 Modbus TCP Slave Configuration. 233

4.7.5 Modbus TCP Device Diagnosis. 234

4.7.6 Common Errors of Modbus TCP . 235

4.7.7 Modbus TCP Communication Frame Format . 236

4.8 CANopen Network. 240
4.8.1 Overview of CANopen Communication . 240

4.8.2 CANopen Master Configuration. 245

4.8.3 CANopen Slave Configuration . 250

4.8.4 CANopen Module . 264

4.8.5 CANopen Parameter Configuration. 265

4.8.6 Programming Interface. 268

4.9 CANlink 3.0 Configuration Editor. 268
4.9.1 Overview . 268

4.9.2 CANlink3_en.0 网络组成 . 269

4.9.3 General Process of Using CANlink . 270

4.9.4 CANlink Network Configuration . 271

4.9.5 Network Management. 274

4.9.6 Send Configuration. 276

4.9.7 Receive Configuration . 281

Table of Contents

‑6‑

4.9.8 Synchronous Write by the Master . 281

4.9.9 Local Slave Configuration . 283

4.9.10 设备接入CANlink3_en.0 网络 . 283

4.10 CAN Free Protocol . 288
4.10.1 Overview . 288

4.10.2 Network Configuration . 289

4.10.3 CAN Free Protocol Configuration. 291

4.10.4 CANBus Library . 294

4.10.4.1 Enumeration Types of CANBus Library. 294

4.10.4.2 Structure Types of CANBus Library . 297

4.10.4.3 CANBus Function Blocks . 298

4.10.4.4 Error Codes of CANBus Function Blocks . 305

4.10.4.5 Example of Using CANBus Function Blocks . 309

4.11 EtherNet/IP Communication. 311
4.11.1 Overview of the Protocol . 311

4.11.2 EtherNet/IP Communication Specifications . 312

4.11.3 Configuration of PLC as the EtherNet/IP Master . 313

4.11.4 Programming Example for Configuration of PLC as the EtherNet/IP Master 318

4.11.5 Configuration of PLC as the EtherNet/IP Slave . 324

4.11.6 Programming Example for Configuration of PLC as the EtherNet/IP Slave 331

4.11.7 Diagnosis of EtherNet/IP Communication State . 333

4.12 PROFIBUS-DP Bus. 336
4.12.1 Overview . 336

4.12.2 General Process of Using PROFIBUS-DP. 337

4.12.3 PROFIBUS-DP Master Configuration. 338

4.12.4 PROFIBUS-DP Slave Configuration . 339

4.12.5 PROFIBUS-DP Module . 341

4.13 HMI Communication Configuration . 341
4.13.1 Communication Configuration . 341

4.13.2 Communication Example . 343

4.13.3 Common Faults . 344

5 Programming Basics.. 346

5.1 Overview . 346

5.2 Direct Address . 346
5.2.1 Syntax . 346

5.2.2 PLC Direct Address Storage Area . 347

5.3 Variable . 348

Table of Contents

‑7‑

5.3.1 Overview . 348

5.3.2 Variable Definition. 348

5.3.3 Variable Type. 361

5.3.4 Variable Import and Export. 367

5.4 Constants . 368

5.5 Persistent Variable . 369
5.5.1 Overview . 369

5.5.2 Variable Definition. 370

5.5.3 Persistent Variable Table . 372

5.5.4 Persistent Rules . 373

5.5.5 Persistent Mode . 374

5.5.6 Address Assignment . 376

5.5.7 Recipe Operations. 379

5.5.8 Description . 384

6 Programming Languages .. 386

6.1 Programming Languages Supported by InoProShop . 386

6.2 Structured Text (ST). 386
6.2.1 Overview . 386

6.2.2 Expressions. 386

6.2.3 ST Instruction . 387

6.2.4 ST Editor . 394

6.2.4.1 ST Tool Kit . 394

6.2.4.2 Intelligent Input . 395

6.2.4.3 Folding and Indenting Functions. 395

6.2.4.4 Page Colors of IEC Text Editor. 396

6.3 Ladder Diagram (LD) . 399
6.3.1 Overview . 399

6.3.2 LD Elements . 400

6.3.3 LD Editor Options . 404

6.3.4 Element Selection . 408

6.3.5 Standard Edit Commands . 411

6.3.6 LD Menu Commands . 416

6.3.7 Single-Key Command . 427

6.3.8 Line Drawing Function . 427

6.3.9 Drag and Drop. 430

6.3.10 Graphic Display Tool . 431

6.3.11 LD Debugging . 433

Table of Contents

‑8‑

6.3.12 LD Data Update . 436

7 Diagnosis.. 438

7.1 Overview . 438

7.2 Configuration Diagnosis . 438
7.2.1 Overview . 438

7.2.2 Network Configuration Diagnosis . 438

7.2.3 Hardware Configuration Diagnosis . 439

7.3 Fault Diagnosis . 440

7.4 Online Diagnosis . 444
7.4.1 Overview . 444

7.4.2 Diagnosis Procedure . 444

7.4.3 Scanning Devices. 445

7.4.4 Logging in to PLC. 446

7.5 List of Device Self-Diagnosis Information . 447
7.5.1 CPU Diagnosis . 447

7.5.2 EtherCAT Diagnosis. 447

7.5.3 I/O Diagnosis . 448

7.5.4 PROFIBUS-DP Diagnosis . 448

7.5.5 Modbus RTU Diagnosis . 452

7.5.6 Modbus TCP Diagnosis . 453

7.5.7 CANlink Diagnosis . 453

7.6 Diagnosis Programming Interface . 453
7.6.1 Overview . 453

7.6.2 Overview . 454

7.6.3 CPU Diagnosis Programming Interface . 455

7.6.4 CANopen Diagnosis Programming Interface . 457

7.6.5 PROFIBUS-DP Diagnosis Programming Interface . 457

7.6.6 CANlink Diagnosis Programming Interface . 459

7.6.7 Modbus Diagnosis Programming Interface . 460

7.6.8 Modbus TCP Diagnosis Programming Interface . 462

7.6.9 EtherCAT Diagnosis Programming Interface . 464

7.6.10 CPU Stop Control . 465

7.6.11 Axis Diagnosis . 465

8 FAQ... 468

8.1 CPU Utilization Too High . 468
8.1.1 CPU Usage Definition. 468

8.1.2 Analysis Procedure . 468

Table of Contents

‑9‑

8.1.3 Common Optimization Methods . 469

8.2 Abnormal PLC Running . 469
8.2.1 Overview . 469

8.2.2 Symptoms. 470

8.2.3 Cause Analysis and Solutions. 470

8.3 Failure to Obtain Folders . 475

9 Appendix .. 477

9.1 Communication Protocols for Communication Ports. 477
9.1.1 Overview . 477

9.1.2 Mini-USB Port and Built-in Communication Protocol. 477

9.1.3 COM Communication Ports and Built-in Protocols . 477

9.1.4 CANopen Communication Protocol . 478

9.1.5 CANlink Communication Protocol . 478

9.1.6 Ethernet Ports and Communication Protocols . 479

9.1.7 EtherCAT Port and Communication Protocol . 479

9.1.8 High-Speed I/O Interface . 479

9.1.9 Mini-SD Card Slot. 479

9.1.10 Local Bus Expansion Interface . 479

9.1.11 PROFIBUS-DP Port . 480

9.2 Soft Elements. 480

9.3 Cheat Sheet of Basic Instructions. 481

9.4 PLC Programming Software Upgrade . 485
9.4.1 Version . 485

9.4.2 Upgrade Method . 486

9.4.3 FAQs. 489

9.5 PLC User Program Upgrade . 496
9.5.1 Upgrade Using the InoProShop . 496

9.5.2 Upgrade Using an SD Card . 496

9.6 AM400 or AM600 High-Speed I/O Wiring. 497

9.7 High-Speed I/O Compatibility . 502
9.7.1 Introduction to Earlier and Latest UIs . 502

9.7.2 High-Speed I/O Diagnosis . 504

9.8 Diagnosis Code and Diagnosis Information . 509
9.8.1 Overview . 509

9.8.2 CPU Diagnosis Code . 509

9.8.3 I/O Module Diagnosis Code. 512

Table of Contents

‑10‑

9.8.4 PROFIBUS-DP Diagnosis Code. 513

9.8.5 CANlink Diagnosis Code . 513

9.8.6 Modbus Diagnosis Code . 514

9.8.7 EtherCAT Diagnosis Code. 515

9.8.8 Axis Diagnosis Code . 518

9.9 Synchronizing the Project Information. 522
9.9.1 Overview . 522

9.9.2 Synchronizing the Downloaded Project Information Automatically . 523

9.9.3 Synchronizing the Downloaded Project Information Manually . 524

9.9.4 Special Notes on Synchronizing the Project Information . 524

9.10 SVN Function . 524
9.10.1 Overview . 524

9.10.2 Creation of an SVN Server and SVN Library. 525

9.10.3 Installation of the CodeMeter Runtime Environment and SVN Plug-in . 525

9.10.4 Acquisition of the Authorization Code and Offline Authorization . 527

9.10.5 SVN Operator Guidance . 532

9.10.6 Uninstallation of the SVN Plug-in. 535

Table of Contents

Product Information

‑11‑

1 Product Information

1.1 Overview

1.1.1 Product Information

Inovance medium-sized programmable logic controllers ("medium-sized PLCs"), including the AM, AC,
and AP series, provide intelligent automation solutions for users. These PLCs use the IEC61131-3
programming language and support programming languages of the PLCopen standard.

● The AM400 and AM600 series are installed on racks, with each rack supporting 16 local expansion
modules and also remote expansion modules through multiple industrial field buses such as
PROFIBUS-DP, EtherCAT, and CANopen. The AM600 local expansion modules, that is, I/O modules,
are connected through the internal bus protocol, including digital input (DI), digital output (DO),
analog input (AI), analog output (AO), and temperature modules. The AM600 provides the following
functions: high-performance motion control function through the EtherCAT bus; single-axis
acceleration/deceleration control, electronic gear, electronic cam, and basic single-axis positioning
with the maximum frequency of 200 kHz through the high-speed I/O; and communication functions
through the RS485, Ethernet, and USB ports.

● The AM300 and AM500 series are Inovance standard medium-sized PLCs of the new generation.
They support multiple communication protocols, including EtherCAT (supported by AM500 only),
EtherNet/IP, OPC UA, Modbus TCP (supporting two IP addresses in the same network segment),
TCP/IP, RS485 (extensible to 3 ports at most), and CAN bus.

● The AC series adopt the booksize structure and support multiple communication protocols such as
EtherCAT, EtherNet/IP, OPC UA, Modbus TCP/RTU, UDP, and Socket, meeting various application
requirements of users. Among the AC series, the AC700 supports motion control of up to 32 axes in
1 ms, while the AC800 supports motion control of up to 256 axes in 4 ms. The AP700 series
intelligent mechanical controller, developed on the Intel Atom processor hardware platform, is a
high-performance multi-axis motion controller in compliance with the PLCopen specifications. With
the high-speed EtherCAT bus, it can implement multi-axis servo control. Its 15-inch industrial-class
TFT touchscreen facilitates input of control instructions and operation control programs and
display of internal data. These features make the AP700 suitable for control of high-speed
production equipment and large equipment in advanced manufacturing, especially intelligent
equipment like machine tools.

● The AM780-N is a medium-sized PLC with wide-temperature characteristics. It has a small size and
compact structure. It is convenient to disassemble, wire, and extend, highly resistant to vibration
and interference, quick in I/O control and refreshing, and highly reliable. It is widely used in wind
power, metallurgy, outdoor power station, and mine industries.

The medium-sized PLCs have the following features:

● Multiple motion control functions: bus motion control and pulse motion control
● Abundant I/O channels, up to ten thousand channels
● Large program capacity and data storage
● Fast instruction execution speed
● Various high-end field buses including EtherCAT, CANopen, EtherNet/IP, and PROFIBUS-DP
● Easy-to-use software, meeting various application requirements of users

Product Information

‑12‑

● Online debugging mode
● Online editing mode

The following table lists the CPU module types and their function differences of medium-sized PLCs.

Table 1–1 Functional characteristics of different CPU module types

Product Model[Note 1]

Number

of Local

Expan

sion

Modules

Program

Storage

Space

Data

Storage

Space

Data Stored

at Power

Failure

Motion Control Axes High-Speed I/O
Soft

Element

Output

Type

AM401-CPU1608TP 8 10 MB 20 MB 480 KB
4 servo axes, 4

positioning axes
16 inputs and 8

outputs
✓ Source

AM402-CPU1608TP 8 10 MB 20 MB 480 KB
8 servo axes, 4

positioning axes
16 inputs and 8

outputs
✓ Source

AM401-CPU1608TN 8 10 MB 20 MB 480 KB
4 servo axes, 4

positioning axes
16 inputs and 8

outputs
✓

SINK

output

AM402-CPU1608TN 8 10 MB 20 MB 480 KB
8 servo axes, 4

positioning axes
16 inputs and 8

outputs
✓

SINK

output

AM403-CPU1608TN 16 10 MB 20 MB 480 KB
16 servo axes, 4

positioning axes
16 inputs and 8

outputs
✓

SINK

output

AM600-CPU1608TP 16 10 MB 20 MB 480 KB
Max. 32 (recommended:

no more than 20)

16 inputs and 8

outputs
✓ Source

AM600-CPU1608TN 16 10 MB 20 MB 480 KB
Max. 32 (recommended:

no more than 20)

16 inputs and 8

outputs
✓

SINK

output

AM610-CPU1608TP 16 10 MB 20 MB 480 KB x
16 inputs and 8

outputs
✓ Source

AC801-0221-U0R0 x 128 MB 128 MB

5 MB

(external UPS

required)
48 x x x

AC802-0222-U0R0 x 128 MB 128 MB

5 MB

(external UPS

required)
128 x x x

AC810-0122-U0R0 x 128 MB 128 MB

5 MB

(external UPS

required)
256 x x x

AC812-0322-U0R0 x 128 MB 128 MB

5 MB

(external UPS

required)
256 x x x

AP702-0221-U0R0 x 128 MB 128 MB

5 MB

(external UPS

required)
48 x x x

AP703-0221-U0R0 x 128 MB 128 MB

5 MB

(external UPS

required)
48 x x x

Product Information

‑13‑

Product Model[Note 1]

Number

of Local

Expan

sion

Modules

Program

Storage

Space

Data

Storage

Space

Data Stored

at Power

Failure

Motion Control Axes High-Speed I/O
Soft

Element

Output

Type

AP705-LM[Note 2] x 128 MB 128 MB

5 MB

(external UPS

required)
48 x x x

AC703 x 128 MB 128 MB

5 MB,

retentive at

power failure,

no external

UPS required

32
8 inputs and 4

outputs
x SINK

AC702 x 128 MB 128 MB

5 MB,

retentive at

power failure,

no external

UPS required

16
8 inputs and 4

outputs
x SINK

AM320-0808TN 16 10 MB 20 MB 512 KB x
8 inputs and 8

outputs
x SINK

AM521-0808TN 16 10 MB 20 MB 512 KB 8
8 inputs and 8

outputs
x SINK

AM522-0808TN 16 10 MB 20 MB 512 KB 16
8 inputs and 8

outputs
x SINK

AM523-0808TN 16 10 MB 20 MB 512 KB 32
8 inputs and 8

outputs
x SINK

AM780-N 32 128 MB 128 MB

5 MB,

retentive at

power failure,

no external

UPS required

32 x ✓ x

Table 1–2 Communication characteristics of the CPU module

Product Model[Note 1]

Communication

EtherCAT PROFIBUS-DP
CANopen/

CANlink
Modbus TCP

Modbus (Serial

Port)
Ethernet/IP

AM401-CPU1608TP
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1 (each supports

up to 63 slaves)

1

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM402-CPU1608TP
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1 (each supports

up to 63 slaves)

1

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM401-CPU1608TN
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1 (each supports

up to 63 slaves)

1

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

Product Information

‑14‑

Product Model[Note 1]

Communication

EtherCAT PROFIBUS-DP
CANopen/

CANlink
Modbus TCP

Modbus (Serial

Port)
Ethernet/IP

AM402-CPU1608TN
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1 (each supports

up to 63 slaves)

1

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM403-CPU1608TN
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1

(each supports

up to 63 slaves)

2 (each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM600-CPU1608TP
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1 (each supports

up to 63 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM600-CPU1608TN
1 (each supports up to

128 slaves)
x

1 (each

supports up to

63 slaves)

1 (each supports

up to 63 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM610-CPU1608TP x

1 (each

supports up

to 124 slaves)
x

1 (each supports

up to 63 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AC801-0221-U0R0
1 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AC802-0222-U0R0
2 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AC810-0122-U0R0
2 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AC812-0322-U0R0
2 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AP702-0221-U0R0
1 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AP703-0221-U0R0
1 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AP705-LM[Note 2]
1 (each supports up to

128 slaves)
x x

2 (each supports

up to 128 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AC703
1 (each supports up to

128 slaves)
x x

2 (each supports

up to 63 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

Product Information

‑15‑

Product Model[Note 1]

Communication

EtherCAT PROFIBUS-DP
CANopen/

CANlink
Modbus TCP

Modbus (Serial

Port)
Ethernet/IP

AC702
1 (each supports up to

128 slaves)
x x

2 (each supports

up to 63 slaves)

2

(each supports up

to 31 slaves)

1 (each supports up

to 64 slaves)

AM320-0808TN x x

1 (each

supports up to

30 slaves)

2 (when serving

as the master,

each supports up

to 63 slaves;

when serving as

the slave, each

supports up to

16 masters)

Up to 3 channels (1

onboard and 2

expansion cards)

(each supports up

to 31 slaves)

2 (when serving as

the master, each

supports up to 16

slaves; when serving

as the slave, each

supports up to 16

masters)

AM521-0808TN
1 (each supports up to

127 slaves)
x

1 (each

supports up to

30 slaves)

2 (when serving

as the master,

each supports up

to 63 slaves;

when serving as

the slave, each

supports up to

16 masters)

Up to 3 channels (1

onboard and 2

expansion cards)

(each supports up

to 31 slaves)

2 (when serving as

the master, each

supports up to 16

slaves; when serving

as the slave, each

supports up to 16

masters)

AM522-0808TN
1 (each supports up to

127 slaves)
x

1 (each

supports up to

30 slaves)

2 (when serving

as the master,

each supports up

to 63 slaves;

when serving as

the slave, each

supports up to

16 masters)

Up to 3 channels (1

onboard and 2

expansion cards)

(each supports up

to 31 slaves)

2 (when serving as

the master, each

supports up to 16

slaves; when serving

as the slave, each

supports up to 16

masters)

AM523-0808TN
1 (each supports up to

127 slaves)
x

1 (each

supports up to

30 slaves)

2 (when serving

as the master,

each supports up

to 63 slaves;

when serving as

the slave, each

supports up to

16 masters)

Up to 3 channels (1

onboard and 2

expansion cards)

(each supports up

to 31 slaves)

2 (when serving as

the master, each

supports up to 16

slaves; when serving

as the slave, each

supports up to 16

masters)

AM780-N
1 (each supports up to

128 slaves)
x

1 (each

supports up to

8 slaves)

2 (when serving

as the master,

each supports up

to 63 slaves;

when serving as

the slave, each

supports up to

16 masters)

Up to 9 channels (1

onboard and 8

expansion cards (4

GL20-2S485-N

modules))

(each supports up

to 31 slaves)

2 (when serving as

the master, each

supports up to 32

slaves; when serving

as the slave, each

supports up to 64

masters)

Product Information

‑16‑

Note
● [Note 1]: 1) The number of the power module and stopper plate are not included. 2) The AM610-CPU1608TP is no

longer maintained.
● [Note 2]: The AP705-LM is used for generic machine tools.

1.1.2 Product Configuration and Module Description

Inovance provides a rich range of medium-sized PLCs for users to select the required product
configuration according to the applications. Take the AM600 series PLC as an example. The AM600
includes two structures: AM600-CPU1608TP (EtherCAT+CANopen) and AM610-CPU1608TP (PROFIBUS-
DP). The following are the typical system integration diagrams of the two structures.

Product Information

‑17‑

Figure 1-1 AM600-CPU1608TP typical system integration diagram

Product Information

‑18‑

Figure 1-2 AM610-CPU1608TP typical system integration diagram

Note
The AM610-CPU1608TP and AM600-RTU-DP modules are no longer maintained.

The AM600 modules are classified into the power module, CPU module, remote communication
modules, and local expansion modules based on functions, as described in the following table.

Ordering Code Model [Note] Category Description

01440010 AM600-PS2 Power module 220 V voltage input, 24 V/2 A output

01440028 AM401-CPU1608TP CPU module

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

4-axis motion control, EtherCAT

Built-in 16 high-speed inputs and 8 high-speed
outputs

Source output

01440029 AM402-CPU1608TP CPU module

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

8-axis motion control, EtherCAT

Built-in 16 high-speed inputs and 8 high-speed
outputs

Source output

Product Information

‑19‑

Ordering Code Model [Note] Category Description

01440032 AM401-CPU1608TN CPU module

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

4-axis motion control, EtherCAT

Built-in 16 high-speed inputs and 8 high-speed
outputs SINK output

01440031 AM402-CPU1608TN

CPU module

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

8-axis motion control, EtherCAT

Built-in 16 high-speed inputs and 8 high-speed
outputs

SINK output

01440126 AM403-CPU1608TN

2 x RS485, 1 x CANopen/CANlink, 1 x LAN

16-axis motion control, EtherCAT

Built-in 16 high-speed inputs and 8 high-speed
outputs

SINK output

01440014 AM600-CPU1608TP

2 x RS485, 1 x CANopen/CANlink, 1 x LAN

Basic motion control, EtherCAT

Built-in 16 high-speed inputs and 8 high-speed
outputs

Source output

01440016 AM610-CPU1608TP

2 x RS485, 1 x LAN

Basic motion control, PROFIBUS-DP

Built-in 16 high-speed inputs and 8 high-speed
outputs

Source output
01440143 AC812-0322-U0R0

Booksize controller

2 x USB2.0, 2 x USB3.0

1 x RS485/RS232, 4 x LAN

Motion control of up to 256 axes, EtherCAT

Multifunctional expansion slot, built-in Mini-PCIE
expansion slot

01440038 AC810-0122-U0R0

01440101 AC802-0222-U0R0

2 x USB2.0, 2 x USB3.0

1 x RS485/RS232, 4 x LAN

Motion control of up to 128 axes, EtherCAT

Multifunctional expansion slot, built-in Mini-PCIE
expansion slot

01440103 AC801-0221-U0R0

2 x USB2.0, 2 x USB3.0

1 x RS485/RS232, Ethernet

Motion control of up to 48 axes, EtherCAT

Built-in Mini-PCIE expansion slot

01440066 GL10-1600END DI module 16-point DI module, 24 VDC input (source/SINK)

01440081 GL10-0016ER

DO module

16-point DO module, relay output

01440069 GL10-0016ETP 16-point DO module, transistor output (source)

01440067 GL10-0016ETN 16-point DO module, transistor output (SINK)

01440080 GL10-4AD AI module
4-channel AD module, voltage/current analog
input

Product Information

‑20‑

Ordering Code Model [Note] Category Description

01440071 GL10-4DA AO module
4-channel DA module, voltage/current analog
output

01440082 GL10-0032ETN DO module 32-point DO module, transistor output (SINK)

01440066 GL10-3200END DI module 32-point DI module, 24 VDC input (source/SINK)

01440121 GL10-2PH
Differential output
pulse module

2-channel high-speed differential output pulse
positioning module, output frequency 1 MHz, 8-
channel general inputs

01440129 GL10-4PM
Local pulse
positioning module

4-channel pulse positioning output

01440075 GL10-4PT Temperature module
4-channel thermal resistor temperature collection,
supporting a variety of thermal resistors

01440078 GL10-4TC Temperature module
4-channel thermocouple temperature collection,
supporting a variety of thermocouples

01440070 GL10-8TC Temperature module
8-channel thermocouple temperature collection,
supporting a variety of thermocouples

01440074 GL10-PS2 Power module 220 V voltage input, 24 V/2 A output

01440077 GR10-0808ETNE EtherCAT slave I/O
module

8-point DOs, transistor output (SINK); 8 DIs
(source)

01440255 GR10-1616ETNE EtherCAT slave I/O
module

16-point DOs, transistor output (SINK); 16 DIs
(source)

01440252 GR10-4PME
EtherCAT slave
positioning module

4-channel positioning module of EtherCAT slave

01440279 GR10-2HCE EtherCAT slave
counter module

2-channel counter module of EtherCAT slave

01440058 GR10-4ADE AI module 4-channel AI module of EtherCAT slave
01440060 GR10-4DAE AO module 4-channel AO module of EtherCAT slave

01440123
GR10-4TCS-PID (out
of production)

Temperature control
module

4-channel thermocouple (TC) temperature
detection module

01440059 GR10-8TCE
Temperature
detection module

8-channel thermocouple temperature collection,
supporting a variety of thermocouples

01440127 GR10-8PBE EtherCAT slave probe
module

8-channel EtherCAT slave probe module of the
GR10 series

01440256 GR10-2PHE
Differential output
pulse module

2-channel high-speed differential output pulses,
supporting 8 inputs

01440135 GR10-EC-6SW 6-channel EtherCAT
branch module

1 x EtherCAT input, 5 x EtherCAT outputs

01440177 GR10-1616ERE-BD Expansion board
GR10 series programmable controller 16-channel
input and 16-channel output EtherCAT slave board

01440012 AM600-RTU-DP
DP communication
module

PROFIBUS-DP protocol communication interface
module

01440073 GL10-RTU-ECTA
EtherCAT
communication
module

EtherCAT protocol communication interface
module

01440013 AM600-RTU-ECTA
EtherCAT
communication
module

EtherCAT protocol communication interface
module

01440083 GL10-RTU-COP
CANopen
communication
module

CANopen protocol communication interface
module

Product Information

‑21‑

Note
The expansion module of the AM600 series has been upgraded to the expansion module of the GL10/GR10 series,
and the modules are compatible with each other. The AM610-CPU1608TP and AM600-RTU-DP modules are no longer
maintained.

1.1.3 System Application Process

The system application process of medium-sized PLCs is shown in the following figure. For module
installation and wiring, see the AM600 Series PLC Hardware Guide and AC810 Series PLC Hardware
Guide.

Figure 1-3 Basic application flowchart of medium-sized PLCs

Product Information

‑22‑

1.2 Overview of InoProShop

1.2.1 Brief Introduction

InoProShop is a programming configuration software for medium-sized PLCs. Developed based on
CODESYS V3 (shorted as "CODESYS"), InoProShop provides a complete configuration, programming,
debugging, and monitoring environment for medium-sized PLCs with flexible processing on IEC
languages.

InoProShop is used to manage projects and devices, and supports the following configurations on
medium-sized PLCs:

● CPU configuration
● I/O module configuration
● EtherCAT bus
● PROFIBUS-DP bus
● CANopen/CANlink bus
● Modbus/Modbus TCP bus
● EtherNet/IP bus
● High-speed I/O

Besides programming, downloading, and debugging, this software also provides the following
functions:

● Standard programming (IEC 61131-3 compliant)
The software supports multiple programming languages, including structured text (ST), ladder
diagram (LD), sequential function chart (SFC), and continuous function chart (CFC) of IEC61131-3
extended programming language.

● Flexible function block (FB) library
The software supports full FB library and user-defined library.

● Offline simulation
Users can complete program debugging simulation without connecting the PLC hardware.

● Intelligent error locating
The software quickly locates errors during pre-programming and programming and provides
diagnostics and logs.

● Sampling tracking
The software can establish the timing diagram of process variables.

1.2.2 Connection Between InoProShop and Hardware

Connect the programming device to the PLC through Ethernet (such as a hub or switch) or USB, write a
user program in the InoProShop, and download the program to the PLC to monitor the program and
control the PLC.

Product Information

‑23‑

Figure 1-4 Connection between InoProShop and hardware

1.2.3 Acquisition and Installation of the Software

Software Acquisition

Inovance InoProShop is available for free. You can obtain the installation file and related reference
using the following methods:

● Obtain a CD copy of the installation files from any Inovance distributor.
● Download the software installation package for free on the "Service" and "Support > Downloads"

page at www.inovance.com.

As Inovance constantly improves its products and documentation, it is recommended that you update
your software versions and consult the latest reference materials when needed to facilitate your
application design.

Installation Environment Requirements

Prepare a desktop or portable PC meeting the following requirements:

● OS: Windows 7 or 10, 64-bit recommended
● Memory: 4 GB or above
● Space: an idle hard drive space of 5 GB or above

Connect the PC and the medium-sized PLC in the following way:

Connection Mode Cables Required Description

LAN network cable
(recommended)

An idle LAN network port in the
local network and a network
cable

Long distance connection between the PC and
the medium-sized PLC is supported. For
example, you can program a medium-sized PLC
which is operating in the workshop in your
office, and the communication rate is faster.

USB cable

One USB cable, of which the end
connecting the medium-sized
PLC must be a Mini-USB
connector.

Currently, the AM400 and AM600 series support
this connection mode.

Product Information

‑24‑

1.2.4 Installation Procedure

Preparation Before Installation

If you install InoProShop for the first time, ensure that there is at least 5 GB free space on the target
hard disk. In this case, you can directly install the software.

If you are upgrading InoProShop, back up your files, uninstall the old version of InoProShop, restart the
computer, and then install the new version.

Installing InoProShop

Go to the Windows System Resource Manager, open the directory where the installation files are
located, and double-click the InoProShop (V*.*.*.*).exe file (V*.*.*.* is the version of InoProShop. Make
sure you have the latest version).

The installation wizard appears and the system prepares for the installation.

Click "Next" to start the installation.

Select the installation path and click "Next".

Product Information

‑25‑

Select components that you want to install and click "Next".

.
Click "Next".

Click "Next".

Product Information

‑26‑

Wait until the "InstallShield Wizard Complete" page appears, and click "Finish" to complete the
installation.

Product Information

‑27‑

Language Setting

The default page language of InoProShop is Simplified Chinese. If you need to change the language,
choose "Options" > "International Settings" on the main page of the software to select the desired
language.

Confirming Whether Selected Controller Is Correct

If multiple AM600s are connected to one LAN, after you log in to a controller, you need to confirm
whether the selected controller is your desired one.

Product Information

‑28‑

For this purpose, on the "Device" tab page of InoProShop, click "System Setting", and then click
"Identify Device".

① Double-click "Device".

② The "System Setting" page is displayed.

③ Click "Identify Device". PLCs selected on the "Communication Settings" page are displayed on the
LEDs alternately.

1.2.5 Uninstallation of InoProShop

In the Windows system, you can uninstall InoProShop directly from the Control Panel as follows:

1. Quit InoProShop and ensure that Gateway is closed.
2. If the CODESYS icon exists on the task bar, right-click the icon and choose "Exit" to close Gateway.
3. Choose "Start" > "Settings" > "Control Panel".
4. Double-click "Add or Remove Programs".
5. Select InoProShop in the list.
6. Right-click it, and then click "Remove". In the confirmation dialog box, click "Confirm".

Quick Start

‑29‑

2 Quick Start

2.1 Programming Environment Launching

1. Double-click the programming software icon on the desktop to launch the InoProShop
programming environment. The launch page is as follows:

2. Click on the top left corner of the menu bar or choose "File" > "New Project" to create a project.
Select "Standard project" and the programming language, and specify the project file name as well
as storage path, as shown in the following figure:

Quick Start

‑30‑

No. Description

① Select "Standard project".

② Select the main module.
③ Select the programming language.

④ Enter a name for the project.

⑤ Select the storage path.

3. Click "OK". The system configuration and programming page is displayed. The following figure
shows common buttons and window distribution of this page.

Quick Start

‑31‑

No. Description

① Network configuration

② Local bus configuration

③ User program management unit

④ Task execution method and period configuration

⑤ Compiling, login, and debugging

⑥ Device information window

2.2 Typical Procedure for Writing a User Program

2.2.1 Overview

If this is the first time you use Inovance medium-sized PLCs, note that five steps are required to write
and debug a complete user program.

1. Configure the hardware system based on the hardware connection structure of the medium-sized
PLC application system.

● If only the CPU main module and I/O expansion module are used, you only need to configure the
hardware as follows: Place the "elements" of selected module type and model and installation
order into the "rack" on the InoProShop hardware configuration page.

● If the expansion racks are used, configure the bus first. Then, add a certain number of network
expansion modules according to the number of expansion racks, and add expansion modules
into each rack.

Quick Start

‑32‑

2. Write the user program according to the control procedure of the application system. During
programming, the variables are customized based on the data storage width and use scope, which
may be independent of hardware configuration.

3. Link the input port variable (I), output status (Q), or value (M) of each hardware port in the system
structure with the variables in the user program.

4. Configure the synchronization period of network communication (for example, the EtherCAT bus).
Configure the execution periods of user program units according to the instantaneity requirements
of tasks.

5. Log in to the medium-sized PLC in the InoProShop programming environment. Download the user
program, perform simulated debugging, and rectify faults until the program runs normally.

2.2.2 User System Configuration Operations

On the InoProShop main page, double-click "LocalBus Config" in the left device tree. The "Hardware
Configuration" page of the PLC main rack is displayed:

① Double-click here to open the local expansion module configuration page.

② Element library of the expansion module.

③ Click on the right side of the CPU unit in the installation slot. Double-click the required I/O module
in the expansion module element library. Place the modules in turn. Double-click the required modules
in turn in the right expansion module library according to the required module models and installation
order, and drag the modules to the rack. To delete a module, select it and press Del.

Take AM600 for example. A maximum of 16 expansion modules can be mounted to the main rack.

2.2.3 User ProgramWriting Operations

Double-click "PLC_PRG(PRG)" in the left device tree. The user programming page is displayed, on
which the programming language is ST (selected in projection creation), as shown in the following
figure. Similar to the C language, every variable can be used only after declaration. After a program
statement is written, when you press Enter, the programming environment automatically displays a

Quick Start

‑33‑

declaration prompt. When you click "OK", the variable declaration window automatically adds this
statement. This simplifies the program procedure.

A programming example: Assign the value of the second variable to the first variable and progressively
increase the value.

Quick Start

‑34‑

2.2.4 Linkage Configuration Between User Program Variables and Ports

On the "LocalBus Config" page, link the hardware ports with variables in the user program. As shown in
the following figure, link the "test_display" variable with the output port of the first DO module. The
configuration procedure is as follows:

2.2.5 Configuration of Execution Mode and Operation Cycle of User Program

In the previous example, the sub-program is executed once every 20 ms by default. If you need to
change the execution mode, for example, change it to repeated execution, scheduled execution, or
execution at a specified interval, perform the following operations:

2.2.6 Compiling, Login, and Download of User Program

After programming, the program needs to be complied. Verify the compiling operation, locate errors
based on the compiling information, and then repeat the operation until no error is reported.

The compiling information is displayed in the following compiling information box:

Quick Start

‑35‑

After confirming that no compiling error exists, click the "Online" and "Login" buttons, as shown in the
following figure.

The following dialog box is displayed. Choose whether to create a project and continue to download
the program.

Click "Yes" to connect the host controller to the device and retain the connection. The initial status is
"Stop", as shown in the following figure.

Quick Start

‑36‑

Choose "Debug" > "Start". The device enters the running state and starts to run the user program.

The following figure shows the monitoring interface of a running user program.

Quick Start

‑37‑

Check the first DO module behind AM600. The output status indicator cyclically counts in a binary
mode.

2.3 Writing a Marquee Sample Project with InoProShop

Launching the InoPro Programming Environment

Create a project:

Click on the top left corner of the menu bar or choose "File" > "New Project" to create a project.
Select "Standard project", device type (model of the main module), and the programming language,
and specify the project file name as well as storage path, as shown in the following figure:

Quick Start

‑38‑

System Configuration and Programming Page

Quick Start

‑39‑

Compiling a Marquee Sample Project with the ST Language

Double-click to open the "PLC_PRG" program organization unit.

Linked PLC Output I/O

Left shift the "in_byte" variable and eight output port links (bit 0 to bit 7) of the PLC. Observe the
output indicator status change.

Quick Start

‑40‑

Simulation Debugging

Click "Simulation" to enable the simulation function. You can view the I/O shifting status without
linking to the PLC.

Downloading Program in Simulation Mode

Click "Login" to download the program in the simulation mode.

Quick Start

‑41‑

Run the PLC After Downloading

Monitoring I/O Change

2.4 How to Log in to the Main Module

2.4.1 Prerequisites and Operations of Main Module Login

Main Module Login means that InoProShop running on the PC communicates with the medium-sized
PLC main module, so that the user program can be run, downloaded, started/stopped, and monitored.
In addition, you can check and modify program parameters.

● You can log in to a medium-sized PLC through a LAN or a USB.
● The PC can be connected to the medium-sized PLC through a network cable in peer-to-peer mode,

or connected to multiple medium-sized PLCs through a router or hub. Multiple PCs can also access
the same medium-sized PLC.

● A PC can log in to the medium-sized PLC only when their IP addresses are in the same network
segment; otherwise, InoProShop cannot detect the medium-sized PLC. For example, the default IP
address of AM600 is 192.168.1.88. If a PC's IP address is 192.168.1.xxx (xxx ranges from 1 to 254, but
is different from that in the IP address of AM600), InoProShop can detect AM600 and exchange data
with it. Then, you can download and monitor the user program. If the IP address of AM600 has been
changed to another network segment, the PC and AM600 cannot communicate with each other. In
this situation, restore the default IP address 192.168.1.88 of AM600, and change the PC's IP address
to 192.168.1.xxx. When a peer-to-peer connection is created, change the IP address of AM600 to the
desired one.

● To log in to the PLC through a USB, connect the Mini-USB port. Wait for 2s to 60s until the device
can be detected.

Quick Start

‑42‑

Precautions of USB connection:

1. The USB drive is automatically installed during software installation. If not, you can find the file in
the Common folder under the installation directory.
Then update the drive in the Windows Device Manager. The drive is installed from the installation
directory. After the USB connection is successfully set up, the Windows Device Manager displays the
drive program installed.

2. If both USB connection and network connection are available, the network connection is used by
default because its network scanning speed is faster.

2.4.2 Scanning Medium-Sized PLC in InoProShop

The PC can log in to the medium-sized PLC through LAN. Taking AM600 for example, the connection is
as follows:

In InoProShop, double-click "Device (AM600-CPU-1608TP/TN)". The following page is displayed.

Click "Scan network...". The following page is displayed. In the left part of the window, click AM600-
CPU. Its brief information is displayed in the right part of the window.

Quick Start

‑43‑

The previous figure shows two controllers, which are displayed in two rows:

● 9527[0003.6CAC.A0DF]: It is in the network segment and named 9527. The last two digits "DF" in
brackets is the fourth bits in the IP address of AM600. "DF" is in hexadecimal format, and its decimal
notation is 223.

● AM600CPU-V01B02D01WJZ01[0003.6CAC.A057]: It is another device in the network segment and
named AM600CPU-V01B02D01WJZ01. After login, you can modify the device name so that you can
easily identify the devices when there are multiple controllers.

Then, the two-digit LEDs on the AM600 or AM610 to which you logged in will display the character "0"
alternately, as shown in the following figure.

3940

2 1

C
N
5

CANERR
CANRUN
BF

SF
ERR
RUN 0 1 2 3 7654

2 765410 3

4 5 6 73210
I

II

RUN/STOP

RST

The LEDs stop flicking after you click "OK" in the window displayed in InoProShop, and the original
information is displayed.

Quick Start

‑44‑

Double-click the selected device, or select a device and click "OK". The host computer is connected to
the device.

If the controller ID recorded in the project is different from the selected controller ID, the following
information may be displayed. To connect to the network, click "Yes".

2.4.3 Solution to Device Scanning Failure

If InoProShop cannot detect AM600, the possible causes and solutions are as follows:

1. The CODESYS gateway is not started.
Solution: Restart the gateway and run scanning again.

2. The IP addresses of the PC and AM600 are in different network segments.
Solution: Set the IP address of the PC in the same network segment of the IP address of the AM600. If
you forget the IP address of the AM600, restore it to the default IP address, and then set the IP
address of the PC to the network segment 192.168.1.xxx. Then, the device can be scanned.

a. Access the "Resource Manager" on the PC. Click "Local Connection" to check and modify the IP
address settings.

b. Restore the default IP address 192.168.1.88 of the AM600. After AM600 is powered on, slide the
RUN/STOP switch to STOP. Hold down the MFK button and then release it until the IP address is
displayed on the LEDs. To restore the IP address, a countdown starting from 10 is displayed on the
LEDs. Before the restoration, there are countdown reminder of numbers "10" to "0". During the
countdown, you can press MKF again to cancel the restoration.

Quick Start

‑45‑

The modified IP address takes effect immediately no matter whether you restore the default IP address
of AM600 or change the IP address using InoProShop.

Once the scanning and network connection are successful, the following network status information is
displayed on the "DeviceScan" page:

Basic Functions

‑46‑

3 Basic Functions

3.1 Page Navigation

The left and right arrows are used to the previous editing position and the next editing position. You
can click the relevant icon to quickly locate the part of the user program you want to modify.

3.2 Compiling a Command

The "Build" menu of the software provides functions such as "Build" and "Clear". The following figure
shows the difference between functions of different versions.

Version 1.5.2 Version 1.6.0

Version 1.5.2 Version 1.6.0
Build Check Application

Generate Code Build
Rebuild Rebuild
Generate runtime system files... Generate runtime system files...

Clean Clean
Clean all Clean all
Pack user program Pack user program

● "Check Application": Check whether the user program is compiled correctly.
● "Build": Compile and link all code into code that the PLC can execute.
● "Rebuild": Clear the information from the last compilation and re-compile and name the program.
● "Generate runtime system files": Used for R&D and test purposes. Not described in details here.
● "Clean": Clean the information of the last compilation and download operation.
● "Clean all": Clean the compilation information, download information, and reference information.

The data compilation information of all libraries and projects will be refreshed.
● "Pack user program": This function will be described in another section.

Basic Functions

‑47‑

After "Generate Code" is updated to "Build", to use the file generation function required for symbol

configuration in label communication, click "Build" or the shortcut .

3.3 Resources List

3.3.1 Overview

The resources list provides the following functions:

● Display the address occupation in the I/Q/M area, including occupied addresses, conflicting
addresses, and unoccupied addresses.

● Display the occupied size, available size, and utilization of the program area, data area, retention at
power supply area.

3.3.2 Features

After a project is created, you can double-click "Resources List" on the "Device" tree.

The following page is displayed.

Basic Functions

‑48‑

No. Item Description

① Data refresh
section

Click "Generate Code". Based on the generated data, the system extracts the information
required by this page and then refreshes the page. Or, you can choose "Build" > "Generate
Code" to refresh the page.

[Note] This page can be refreshed only after the code is generated.

②

Area
utilization
information
section

This section displays basic information of the program area, data area, persistent area,
and I/Q/M area, including the total capacity, occupied size, available size, and utilization
of each area.

[Note] The persistent area is divided into the original persistent area allocated by the
system in the traditional mode, and the overlapped M area (covering the whole M area at
most. The range of the M area can be adjusted) in the standard mode.

③

Display area
of the
utilization
details of
the I/M/Q
area and the
program
block
information

It displays the address utilization of the I/M/Q area, including variables associated with an
address, address conflicting, and information of unoccupied addresses. Information of
program blocks includes the type and size of function blocks called by the program. Other
functions are provided here, including finding an address, address range setting, and page
locating.

The following figure shows a page of information display area.

Basic Functions

‑49‑

This page contains four display options: %M area, %I area, %Q area, and program block size, which
display the utilization information of each area respectively.

Menu Options

The following menu options are provided on this page: the "Display" option, the "Find" option, display
range, the "Application" button, and the paging option.

No. Item Description
1 "Display"

option
In the %M, %I, and %Q areas, options are "All", "Used", "Conflict", and "Idle". On the
program block size display page, options are "All", "Struct", and "Function Block".

2 "Find"
option

This function allows you to make fuzzy search by address, POU, variable, or address
range. When search conditions change, the displayed table will be refreshed accordingly.

3 Range
setting

You can set an address range within the allowed range. The set address range takes
effect only after the "Application" button is clicked. This function is not available on the
program block size page.

4 "Applica-
tion"
option

After this button is clicked, the system filters the data according to the display
conditions, search criteria, and display range, and those that meet the requirements are
displayed in the table.

5 Paging
option

To ensure the refresh efficiency, up to 1,000 address segment units can be added to the
table, and extra addresses will be displayed in other pages. You can click the paging up
or down icon or specify a page, and then the system jumps to the specific page.

Basic Functions

‑50‑

Table

The table displays the utilization information of address segments meeting the selection conditions.

No. Item Description
1 Address The system displays the address ranges in ascending order, with the smallest unit being

byte. When the addresses occupied by a variable are not conflicting, the addresses will
be displayed in the form of address range (such as "%MB0-%MB3"). One address can be
associated with one or more variables. When multiple variables are associated with one
address, sub-nodes will be displayed under this address in the "Variable" column.

2 POU The POU name of the variable is displayed.

3 Variable The variable associated with this address range is displayed.

4 Type This column displays the variable type.
5 Address

Range
This column displays the address range of the variable.

6 State This column displays the state of the address range. When an address is occupied, the

icon is . When an address conflicts with another address, the icon is . When an
address is not occupied, no icon is displayed. When an address is occupied by the

system, is displayed. Address ranges (%MB491520 to %MB524287) occupied by the
system are displayed in the M area of the AM600 and AM400 series. When a variable is

associated with such an address range, no error is reported and the icon is displayed
on this page. Addresses occupied by the system are not displayed in the %M area of the
AM800 and AM700 series.

Note:

● Address conflicting is detected by bytes. When different variables use
different bits of the same address, address conflicting is marked.
● When a user-defined variable conflicts with an I/O address allocated by the
system, it means that this address is also occupied by other variables. In this
case, you can judge the problem based on whether a function actually
occupies this address.

PLC Direct Address Storage Area

The direct address storage area varies with PLCs. PLC data is not retained upon power failure for the %
I and %Q areas, but is retained for the %M area. The AM600, AM610, AM401, and AM402 programming
systems provide the 128-KB (byte) input area (I area), 128-KB (byte) output area (Q area), and 512-KB
storage area (M area). The first 480 KB of the storage area can be used directly, whereas the last 32 KB
are used by the system, mainly as soft elements, and cannot be used directly by users. During
programming, users can directly access addresses or define a variable, map the variable to an address,
and then access the address. The following table lists storage areas and the address ranges they use.

Area Use Size Address Range

I area (%I) 128 KB For users 64kWords %IW0 to %IW65535

Q area (%Q) 128 KB For users 64kWords %QW0 to %QW65535

M area (%M) 512 KB

For users 240kWords %MW0 to %MW245759
For SD elements 10000Words %MW245760 to %MW255759
For SM elements 10000BytesWords %MB511520 to %MB521519

Reserved 2768Bytes %MB521520 to %MB524287

The AC800-series programming system provides a 128-KB input area (I area), a 128-KB output area (Q
area), and a 5-MB storage area (M area). The AC800 series does not support SD and SM soft elements

Basic Functions

‑51‑

and addresses in the %M can be used without restriction. The following table lists storage areas and
the address ranges they use.

Area Use Size Address Range

I area (%I) 128 KB For users 64kWords %IW0 to %IW65535

Q area (%Q) 128 KB For users 64kWords %QW0 to %QW65535

M area (%M) 5 MB For users 2.5MWords %MW0 to %MW2321439

3.4 Symbol Configuration

The symbol configuration function allows you to define symbols of specific access permissions for
project variables. Then you can use these symbols to access variables from an external device such as
an OPC server. When the code of a project is generated, a symbol configuration file named in the
format of suffixed by <project name><device name<application name.xml is also generated under the
project directory, and the file contains symbol description. For example, you can import the file to an
HMI for label communication or variable access.

Adding Symbol Configuration

Note
The symbol configuration is generated only when no compile error exists.

On the project tree, right-click "Application", and then choose "Add Object" > "Symbol Configuration".

Basic Functions

‑52‑

The following window is displayed.

Basic Functions

‑53‑

Option Description

Include comments in XML When this option is checked, the exported XML file contains variable
comments.

Support OPC UA features When this option is checked, OPC UA can access symbol variables.

Compatibility Layout It is consistent with the type member definition offset size. If the type
member does not fully support symbol access, the offset size is based
on the actual compiled offset, with a gap between members.

Optimized Layout The offset is calculated based on the selected type member. If this
option is not checked, the offset is not calculated.

Symbol Configuration Page

The following figure shows a symbol configuration page.

The following figure shows the options of the "Show" menu.

Basic Functions

‑54‑

Name Description

Unconfigured from Project All variables of the project are displayed.

Unconfigured from Libraries All variables of the referenced library are displayed.

Symbols exported via Attribute Variables exported based on attribute settings ({attribute
'symbol' := read}) are displayed.

The following figure shows the "Settings" menu.

● Configure comments and attributes

Data downloaded to the PLC is displayed in the upper left part, while the data format of the
exported XML file is displayed in the upper right part.

Symbol: It generally indicates a variable. The symbol attribute indicates the variable feature
(Attribute information.)

Basic Functions

‑55‑

Comment format: It indicates the format of comments for downloading or display.

Attribute filtering: It indicates which attributes are contained when the XML file is exported or
downloaded to the PLC. Filter rules are "Include all attributes", "Match simple identifiers", "Include
attributes starting with", and "Filter Attributes with regular expression".

● Configure synchronisation with IEC tasks

This function indicates whether a symbol variable accessed by other interface is synchronized with
IEC tasks. When an IEC task is being executed, do not access the symbol variable; otherwise, the
variable cannot be synchronized with the IEC task.

● Options of "Tools"

You can export the XML data model which can be referenced when a third party parses offline
symbols.

Symbol Configuration Example

Create global variables A_0, A_1, and A_2, and apply at least one variable to the user program, as
shown in the following figure.

Note
If no variable in a global variable list is applied to the user program, this variable table is not available on the "Sym-
bol Configuration" page.

Basic Functions

‑56‑

Choose "Application" > "Add Object" > "Symbol Configuration". On the page displayed, check "Include
comments in XML". In the upper toolbar, select "Check Application". The variable table and variables
are displayed on the symbol configuration page. Check variable tables you want to configure, and

allocate access permissions (options are read-only , write-only , and read-write). In the
upper toolbar, select "Compile (Generate Code)".

You can locate the .xml file generated under the directory of the project and import the file to IT7000
for label communication.

3.5 Cross References

The "Cross References" function allows you to quickly locate the call position of the target object.

1. Locate the target object, right-click the object to call out "Cross References".

2. In the "Cross Reference List" under the project, view the call information of the target object in the
project. Double-click an item in the cross reference list. The system displays the specific call position
of the object in the project.

Basic Functions

‑57‑

3.6 Watch List

The watch list function allows you to monitor variables and addresses. When a program is running, you
can view the data type and current value of monitored variables through the watch list or input a value
for variables.

1. In the toolbar, choose "View" > "Monitoring", and then add a monitoring view.
2. Under a project, add a variable or address you want to monitor.

3.7 Going to a Lower Level

User-Defined Function Block

1. Locate the target function block, right-click the block, and then click "Go to lower level".

2. The information of the function block is displayed.

Creating an "Action" Under a Program Organization Unit

1. Locate the target "action", right-click the action, and then click "Go to lower level".
2. The "action" information is displayed.

Creating a "Method" Under a Program Organization Unit

1. Locate the target "METH", right-click "METH", and then click "Go to lower level".
2. The "METH" information is displayed.

Basic Functions

‑58‑

3.8 Project Version Upgrade

This function is supported by InoProShop V1.8.0.0 and later versions.

Procedure

1. Open the dialog box for project version upgrade.

● In InoProShop V1.8.0.0 and later versions, open a project of an earlier version. If an upgradeable
item is available, the "Project Environment" dialog box is automatically displayed.

● In the toolbar, choose "Project" > "Project Environment". The "Project Environment" dialog box is
displayed.

● In the status bar, double-click . The "Project Environment" dialog box is displayed.

2. (Optional) To specify the target version of the Softmotion library or EtherCAT library, select the
target version from the drop-down list of "Newest". The system upgrades the project to the latest
version by default.

3. Click "Upgrade". All upgradeable items are upgraded to their latest version (if a specific version is
specified, the Softmotion library or EtherCAT library is upgraded to the specified version), and the
old project information is backed up to the directory of the original project.

4. (Optional) To view the upgrade details, click "Details".

Upgrade description

● Compiler
You may retain the compiler at its original version or upgrade it. After upgrade, the project compiler
version automatically matches the Omron library version according to the following mapping
relationships. The match is a prerequisite for successful project compilation.

Version of HC_OmronUtils Library Compiler Version

1.1.0.0 (initial version) ● 3.5.11.10
● 3.5.11.11

1.2.0.0 or later 3.5.11.70 or later

Note
On the "Compile Options" page, the upgrade option for the compiler version is disabled. To access the "Compile Op-
tions" page, choose "Project" > "Project Settings", and then click "Compile Options".

● LD/FBD programming language
You may retain the LD/FBD programming language at its original version or upgrade it to the latest
version. Projects created in InoProShop 1.5.2 and later versions are of the latest version by default.

● SoftMotion library
Open a project and view the version of the SoftMotion library.

Basic Functions

‑59‑

Original SoftMotion Version SoftMotion Version After a Project Opened

1.0.0.0 to 1.3.0.3 Upgraded to the latest version by default

Initial version Initial version retained
1.4.0.0 or later Original version retained

The library will be upgraded to the latest version.

● EtherNet/IP library
Open a project and view the version of the EtherNet/IP library.

Original EtherNet/IP Version EtherNet/IP Version After a Project Opened

Initial version ● Open a project that is created in a version
earlier than InoProShop V1.7.3 SP5 and the
project is not saved in InoProShop V1.7.3 SP5/
SP6: the project is automatically upgraded to
the latest version by default.
● Open a project that is saved in InoProShop
V1.7.3 SP5/SP6: the original version is retained.

1.0.0.0 or later Original version retained

The library will be upgraded to the latest version.

● EtherCAT library
You may retain the EtherCAT library at its original version or upgrade it to the latest version.

● Omron library (HC_OmronUtils)
Open a project and view the version of the Omron library.

Original Omron Library Omron Version After a Project Opened

Initial version Original version retained

1.0.2.0 or later If the project directly references the Omron library
and the Omron library in the third-party library, the
original version is retained.

If the project is upgraded or a new project is created, the Omron library directly referenced by the
project is upgraded to the latest version, and the Omron library in the third-party library retains the
original version. To upgrade the Omron library in the third-party library, upgrade the project by the
source code of the corresponding library.

If you create a project or upgrade a project in InoProShop V1.8.0.0, the version of the directly
referenced Omron library must be consistent with the version of the Omron library indicated in the
project version information. If the version of the Omron library modified in the library manager is
inconsistent with that indicated in the project version information, a compilation error will be
reported. You are not recommended to manage the Omron library version through the library
manager.

You are not recommended to use the Omron placeholder library in a third-party library, because
the version of the placeholder library changes with the position of the placeholder in the project.
The embedded library is recommended.

■ The following figure shows a placeholder library with symbols.

■ The following figure shows an embedded library with a comma.

Basic Functions

‑60‑

● Local high-speed I/O library
You may retain the local high-speed I/O library at its original version or upgrade it to the latest
version.

● Configuration
For projects created in InoProShop 1.5.2 and later versions, the network configuration, hardware
configuration, and device diagnosis functions are upgraded to the latest version by default.

● Device version
You may retain the device at its original version or upgrade it to the latest version.

3.9 Project Safety Management

3.9.1 Project File Encryption

Project files can be protected by password to prevent unauthorized use. After a password is set for a
project file, you need to input the correct password before opening the project again and using the
project files normally.

Do memorize the password for the project file. If lost, this password cannot be retrieved and the project file will be
permanently lost.

Procedure

1. In the toolbar, choose "Project" > "Project Settings". The "Project Settings" dialog box is displayed.
2. Click "Security". Check "Enable project file encryption", input the current password and a new

password, input the new password again, and then click "OK". The project file is encrypted.

Note
When you set a password for a project file for the first time, you do not need to input the current password.

Subsequent Operation

1. When the project is opened again, the "Password" dialog box is displayed.
2. Input the project file password and click "OK".

3.9.2 Project User Authorization Management

This function allows you to configure user authorization on the current project, such as modifying,
browsing, adding, deleting, and removing sub-items of the project.

Basic Functions

‑61‑

The project user authorization can be managed by users and groups. The system provides two groups
(Everyone and Owner) and one user (Owner) by default. A user can be a member of a group, and a
group can be a member of another group. The Everyone and Owner groups can only be renamed but
cannot be deleted. All new users will be automatically added to the Everyone group. The Owner user
cannot be deleted, but its name and password can be changed. Its initial password is empty. It is
recommended to change the initial password of Owner; otherwise, any user can log in to the system
through the Owner account, making the authorization allocation exist in name only.

After adding a user and a group, you need to allocate authorization by group (to the group Everyone)
for node functions on the device tree. The default authorization is "Authorize". You can manage the
project based on the allocated authorization after login.

1. In the toolbar, choose "Project" > "Project Settings". The "Project Settings" dialog box is displayed.
2. Click "Users and Groups". The "Users and Groups" page is displayed.

Adding a user

1. On the "Users and Groups" page, click "User". On the tab page displayed, click "Add", fill in the user
information, and then click "OK".

Note
● New users are added to the group "Everyone" by default. To add a new user to another group, check the specific

group.
● To edit a user, on the "Users and Groups" page, click "User". On the tab page displayed, select the user, and click

"Edit". In the dialog box displayed, modify the user information, and then click "OK".
● To delete a user, on the "Users and Groups" page, click "User". On the tab page displayed, select the user, and

click "Delete".

2. (Optional) Input "Owner" in the "User Name" field (the initial password is empty), and then click
"login".

Note
If this is the first time you add or delete a user to or from a project or edit a user of a project, you need the user au-
thorization of the group "Owner" (the user Owner is created by default).

Exporting/Importing user information

● To export information of a user, on the "Users and Groups" page, click "User". On the tab page
displayed, click "Output/Input", and then select "Output Users and Groups". On the page displayed,
select a local path to save the user information, and then click "Save".

● To import information of a user, on the "Users and Groups" page, click "User". On the tab page
displayed, click "Output/Input", and then select "Output Users and Groups". On the page displayed,
select the user file saved in a local path, and then click "Open".

Adding a group

1. On the "Users and Groups" page, click "Group". The group management page is displayed.
2. Click "Add", fill in the group information, and then click "OK".

Basic Functions

‑62‑

Note
● The system provides two groups "Everyone" and "Owner" by default. One group can be a member of another

group.
● To edit a group, on the "Users and Groups" page, click "Group". On the tab page displayed, select the group, and

click "Edit". In the dialog box displayed, modify the group information, and then click "OK".
● To delete a group, on the "Users and Groups" page, click "Group". On the tab page displayed, select the group,

and then click "Delete".

3. (Optional) Input "Owner" in the "User Name" field (the initial password is empty), and then click
"login".

Note
If this is the first time you add or delete a group to or from a project or edit a group of a project, you need the user
authorization of the group "Owner" (the user Owner is created by default).

Exporting/Importing a group

● To export information of a group, on the "Users and Groups" page, click "Group". On the tab page
displayed, click "Output/Input", and then select "Output Users and Groups". On the page displayed,
select a local path to save the group information, and then click "Save".

● To import information of a group, on the "Users and Groups" page, click "Group". On the tab page
displayed, click "Output/Input", and then select "Output Users and Groups". On the page displayed,
select the group file saved in a local path, and then click "Open".

Settings

1. On the "Users and Groups" page, click "Settings". The "Settings" page is displayed.
2. Set relevant items and click "OK".

Parameter Description Value

Maximum number of licenses It specifies the maximum number
of attempts that you can log in to a
user account by password. If this
number is exceeded, this user
account will be deactivated.

Set as needed

Default: 3

Auto logout after no action If no operation is made by the
mouse or keypad within the time
(in minutes) specified here, the user
account is automatically logged
out.

Set as needed

Default: 10

3. (Optional) Input "Owner" in the "User Name" field (the initial password is empty), and then click
"login".

Note
If this is the first time you open the project management and settings page, you need the user authorization of the
group "Owner" (the user Owner is created by default).

Basic Functions

‑63‑

Allocating authorization

1. In the left device tree, right-click the target node (the "Application" node is used in this example),
and select "Attribute". The "Attribute" dialog box is displayed.

2. Click "Access Control". On the tab page displayed, select the group to which you want to allocate
authorization, click the "+" in the corresponding action column, select the option "Authorize",
"Reject", or "Clear", and then click "OK".

Project login/logout

After you add a user and a group and allocate authorization for them, you can log in to the project and
use functions of relevant nodes.

You can log in to or out of a project in the following ways:

● Using the menu bar

■ Logging in to the project through a user account

1. In the menu bar, choose "Project" > "User Management" > "User Logout". The "Login" dialog
box is displayed.

2. Enter the user name and password, and click "OK". The user logs in to the project.

■ Logging out of a project
In the menu bar, choose "Project" > "User Management" > "User Logout". The user logs out of
the project.

● Through the status bar

■ Logging in to the project through a user account

1. In the status bar, double-click "Current user: xx". The "login" dialog box is displayed.
2. Enter the user name and password, and click "OK". The user logs in to the project.

■ Logging out of a project
In the status bar, double-click "Current user: xx" and then click "Logout". The user logs out of
the project.

3.10 Adding an Object Through Application

The function "Application" allows you to add an object function. Only the functions listed below are
supported.

● CAM table
● DUT
● Program organization unit
● Persistent variable
● Symbol configuration
● Trace
● Interface
● Global variable list
● Application

Basic Functions

‑64‑

● POU for implicit checking

In the left device tree, right-click "Application", and then choose "Add Object" > "Cam table" (for
example).

CAM Table

For details of the CAM table, see the "CODESYS Programming System > SoftMotion > Object Editor >
CAM Editor" section of Online Help.

DUT

For details of DUT, see the "CODESYS Programming System > CODESYS Development System >
References > User Interfaces > Objects > DUT" section of Online Help.

Program Organization Unit

For details of the program organization unit, see the "CODESYS Programming System > CODESYS
Development System > References > User Interfaces > Objects > POU" section of Online Help.

Persistent Variable

For details about the persistent variable, see “ Persistent Variable” on page 369.

Symbol Configuration

For details of symbol configuration, see "CODESYS Programming System > CODESYS Development
System > References > User Interfaces > Objects > Symbol Configuration" section of Online Help.

Trace

For details of the trace, see the "CODESYS Programming System > CODESYS Development System >
References > User Interfaces > Objects > Trace" section of Online Help.

Interface

For details of the interface, see the "CODESYS Programming System > CODESYS Development System >
References > User Interfaces > Objects > POU > Interface" section of Online Help.

Global Variable List

For details of the global variable list, see the "CODESYS Programming System > CODESYS Development
System > References > User Interfaces > Objects > GVL - Global Variable List" section of Online Help.

Application

For details of the application, see the "CODESYS Programming System > CODESYS Development
System > References > User Interfaces > Objects > Application" section of Online Help.

Basic Functions

‑65‑

POU for Implicit Checking

For details of the POU for implicit checking, see the "CODESYS Programming System > CODESYS
Development System > References > User Interfaces > Objects > POU for Implicit Checking" section of
Online Help.

Network Configuration

‑66‑

4 Network Configuration

4.1 Device Configuration

4.1.1 Device Configuration

Device configuration is the first step of PLC programming. It involves two functions: network
configuration and hardware configuration. You can use the two functions to deploy the device.

● Network configuration
It is designed from the perspective of bus-type network topology, and is the entrance of device
configuration.

● Hardware configuration
It is used to add the expansion I/O modules of medium-sized PLC.

4.1.2 Network Configuration

After creating an InoProShop project, double-click the "Network Configuration" node in the left device
tree, as shown in the following figure.

Figure 4-1 Network Configuration node

Double-click this node to open the "Network Configuration" page and "Network Devices List" (as
shown in “ Configuring a PLC as a Master or a Slave” on page 67). The "Network Configuration" page

Network Configuration

‑67‑

displays the PLC currently used by the user program, and the "Network Devices List" displays all the
devices supported by the PLC.

Figure 4-2 "Network Configuration" page

Configuring a PLC as a Master or a Slave

When you click a PLC on the "Network Configuration" page, the masters/slaves supported by the PLC
are displayed, as shown in the following figure. Click the target checkbox to enable the master/slave
supported by the CPU.

Network Configuration

‑68‑

When a master (except the CANlink master) function is enabled for the CPU, the bus-type topology is
displayed. For example, the following figure shows the enabled EtherCAT master.

● Add a slave
After a master in the CPU is enabled, you can add the slave under the corresponding bus. The slave
can be added by three methods (taking the EtherCAT bus for example).

1. Enable the EtherCAT master function, and then select a slave node under the EtherCAT port node
in the network device list. Drag the node to the network configuration page.

2. Enable the EtherCAT master function, and double-click a slave node under the EtherCAT port
node in the network device list as shown in “ Configuring a PLC as a Master or a Slave” on page 67.

3. Double-click a slave node under the EtherCAT port node in the network device list. If you use this
method, the internal master function of the CPU will be enabled first.

4. For details about how to add an EtherCAT splitter, see “ Adding a Splitter and Adding Slaves to
the Splitter” on page 185.To add I/O modules for an added slave (slave for the AM600), double-
click the device to open the "Hardware Configuration" page.

Network Configuration

‑69‑

● View basic device information.
Click a device on the "Network Configuration" page, and you can see the basic device information
in "Config Device Information Output" > "DeviceDefaultInfoList".

Network Configuration

‑70‑

● Open the device configuration page
Right-click the EtherCAT slave in network configuration, and select "Open Editor Page" from the
shortcut menu, as shown in the following figure.

Network Configuration

‑71‑

● Insert the EtherCAT slave
Right-click the EtherCAT slave in network configuration, and select "Insert EtherCAT Device" from
the shortcut menu, as shown in the following figure.

Network Configuration

‑72‑

● Configuration devices can be copied, deleted, and added. For details, see the section
"Configuration Device Common Operations".

● Edit configuration
If the network configuration includes repeated Modbus slave addresses or ModubsTCP slave IP
addresses, the repeat information is displayed in the output box during project compiling. For
details, see the section "Configuration Compiling Error Locating".

Device Information List

To open the device information list, choose "View" > "Configuration Device Info View". The
configuration device basic information is displayed, including the slot number, device name, and
description. The information is minimized at the bottom of the page by default. You need to click the
list to open it.

Figure 4-3 Device Information List

Network Configuration

‑73‑

● Slot number
The slot numbers match the slot numbers in "Hardware Configuration". The numbers of the slots
on the main rack and on the communication slave both start from 1. Slot –1 matches the AM600
power module, and slot 0 matches the CPU.

● Device name
The device names are the same as the device names in the left device view.

● Description
The basic description of devices, including operating indicators and functions.

To locate a device on the configuration page, click a row in the device list. To open the configuration
page of a device, double-click a row.

Configuration Device Common Operations

The common operations of configuration devices include copying, pasting, canceling, restoring,
deleting, importing EDS, GSD, and ECT files, zooming in, and zooming out.

Note
● The copying, pasting, deleting, canceling, and restoring operations only apply to I/O modules on the "Hardware

Configuration" page and to slaves on the "Network Configuration" page.
● If you perform copying, pasting, or deleting operation on the slave on the "Network Configuration" page, the

same operation is also performed on its modules.

● Import EDS files: The network device list contains some CANopen devices by default. If you need to
add other CANopen devices or EtherNet/IP devices, import the corresponding standard EDS file.
After the file is imported, the device is added to the network device list. If the imported device is
from Inovance, it will be displayed under the Inovance node; otherwise, it is displayed under the
third-party vendor node.

● Import GSD files: The network device list contains some DP devices by default. If you need to add
other DP devices, import the corresponding standard GSD file. After the file is imported, the device
is added to the DP port node in the network device list. If the imported device is from Inovance, it
will be displayed under the Inovance node; otherwise, it is displayed under the third-party vendor
node.

● Import ECT files: The network device list contains some EtherCAT devices by default. If you need to
add other EtherCAT devices, import the corresponding standard EtherCAT xml (*.xml) file. After the
file is imported, the device is added to the EtherCAT port node in the network device list. If the
imported device is from Inovance, it will be displayed under the Inovance node; otherwise, it is
displayed under the third-party vendor node.

4.1.3 Hardware Configuration

The hardware configuration uses the rack and slot used in device configuration to simulate the field
device modular configuration. Hardware configuration applies to the I/O modules of medium-sized
PLCs.

Network Configuration

‑74‑

From the aspect of configuration procedure, to add a remote I/O module, you need to configure the
communication module in network configuration first, and then configure the I/O module in hardware
configuration. To add a local I/O module, directly open the "Hardware Configuration" page to perform
operations. Hardware configuration supports multi-bus I/O configuration, depending on the used CPU
model.

Accessing the Hardware Configuration Page

Except Modbus and Modbus TCP devices, other bus-type devices should have matching "Hardware
Configuration" pages.

You can access the "Hardware Configuration" page in two ways:

1. Double-click a device on the "Network Configuration" page.
2. Double-click a bus node under the "Network Configuration" node in the left device tree, as shown in

the following figure.

By default, the "LocalBus Config", namely, local bus configuration node, is available. Double-click it
to perform the local module configuration.

In addition, the "Input/Output Module List" is displayed on the right.

Switching Bus

You can switch the bus of hardware configuration in two ways:

● Double-click a bus node under the "Network Configuration" node in the left device tree.
● Select another bus type on the current "Hardware Configuration" page, as shown in the following

figure.

Adding a Module

You can add I/O modules in three ways:

Network Configuration

‑75‑

1. Double-click an idle slot on the rack. In the module list displayed, double-click a module to add it.
2. Select a node from the right module list, and drag it to an idle slot.
3. Select a rack (blue part in the figure) or device, and double-click a device in the right module list.

Then you can add the devices to the idle slots in order. If you click an idle slot, the selected device is
added to this slot.

Dragging a Module

Select a module and drag it to the target slot. By using the dragging function, you can exchange the
locations of two modules or move a module to an idle slot. However, the modules in the main rack and
expansion rack cannot be interchanged.

4.1.4 Device Tree Operations

After adding a bus device, you can select a device in the device tree and use the shortcut menu or
shortcut keys to copy and paste, delete, cut, or drag the device. The following figures show the menu
options.

These function operations match the basic standard operations.

Network Configuration

‑76‑

Note
• The copy-paste and cut-paste functions only apply to local masters, local slaves, and individual axis devices.

4.1.5 Configuration Compiling Error Locating

The configuration device defines configuration rules and error detection mechanism, for example,
repeated station addresses of Modbus devices or IP addresses of TCP devices in network configuration.
If the slave in the expansion rack of hardware configuration is not connected to the I/O module, a
configuration compiling error will be reported.

If a configuration error occurs during project compiling, the InoProShop message box will display the
error. Double-click the error list to go to the corresponding configuration page and the red rectangular
box blinks three times.

4.2 CPU Configuration

4.2.1 Overview

The CPU module is the main module of a medium-sized PLC. The CPU is configured based on the
control system requirements of the PLC hardware, to complete the configurations of the PLC and its
control system. Medium-sized PLCs support EtherCAT bus, PROFIBUS DP, Modbus RTU, CAN bus, and
Modbus TCP, and also support high-speed I/O modules. Therefore, to complete all CPU configurations,
you need to set the bus parameters according to the PLC hardware network configuration.

For example, the CPU module of the AM600 has built-in high-speed I/O modules, and local I/O modules
can be configured. In addition, on the CPU configuration page, you can set the CPU system parameters
and CPU firmware upgrade.

4.2.2 General CPU Configuration Procedure

1. Design the entire CPU hardware network structure.
2. Activate the corresponding bus in network configuration and add the slaves corresponding to the

bus. Currently, the CPU supports EtherCAT bus, DP bus, CANopen, CANlink, Modbus RTU, and
Modbus TCP.

3. For an EtherCAT AM600 slave, CANopen AM600 slave, or DP AM600 slave, add I/ O modules to
hardware configuration.

4. Configure the master, slave, and module configuration parameters corresponding to the bus.

By default, the AM600 CPU module has the high-speed I/O function. Each CPU can be configured with
up to 16 local I/O modules. In addition, you need to configure the CPU system parameters, PLC I/O
update, PLC bus task, PLC user management, log, upgrade, and tasks according to the actual
requirements.

Network Configuration

‑77‑

To know the parameter settings of buses and their slaves, see the chapters of the buses. For the built-
in functions of CodeSys, such as PLC I/O update, PLC bus task, PLC user management, log, and tasks,
see the CodeSys software help. In this guide, the CPU configuration mainly involves the functions of
medium-sized PLCs: CPU parameter configuration, I/O module configuration, and high-speed I/O
configuration.

4.2.3 CPU Parameter Configuration

System Settings

System settings include the configurations of downtime caused by CPU fault, location retaining at
power failure, network address, and system time, as shown in the following figure.

Figure 4-4 System settings dialog box

Operating mode in fault

● Stopped On Configuration Failure: Whether the CPU stops running when configurations are
inconsistent, for example, when the configured I/O module mounted to the CPU does not match
the physically connected I/O module.

Network Configuration

‑78‑

● Stopped On System Failure: Whether the CPU stops running when a system error occurs, for
example, when an interrupt error or stack overflow occurs.

● Stopped on Flash Failure: Whether the CPU stops running when a Flash error occurs. This function
is unavailable currently.

● Stopped on SD Card Failure: Whether the CPU stops running when an SD card error occurs, for
example, when the SD card memory is used up or the SD card is lost. This function is unavailable
currently.

Power-down Save

● Saved Location: Sets the data saving location upon power failure, including the local memory and
SD card.

Note
When you set the saved location as SD card, ensure that an SD card is available; otherwise, data will be lost upon
power failure.

Network

● LAN0: Indicates the network interface name used by the PLC for Ethernet communication. The
AM600 and AM400 series have only one EtherNET interface, and the AC800 series has two EtherNET
interfaces. The network names vary with PLCs. You can configure differentiated network
information according to network interface configurations.

● Use the following IP: The IP address of the PLC can be manually modified or automatically
obtained. This configuration is used to manually modify the PLC network information.

● Obtain IP address automatically: The IP address of the PLC is assigned by a router or switch. Note:
This function is available only for the AC800.

● IP Address: Indicates the IP address of the PLC.
● Subnet Mask: Indicates the subnet mask of the PLC.
● Gateway: Sets the gateway for the PLC. Note: This function is available only for the AC800.
● Read: Reads the IP address and subnet mask of the PLC, which are displayed in the IP address and

subnet mask edit boxes.
● Write: Writes the IP address and subnet mask in the edit boxes into the PLC. If you have logged in

and connected to the network, you will be logged out. In this case, you need to re-log in to the
network. If the USB connection is used, you do not need to re-connect the device.

Note
● Do not set IP addresses in the same network segment for the two network interfaces of the AI800-series and

AC800-series PLCs; otherwise, connection will be affected.
● When the IP address needs to be read and written, select the PLC to be read and written on the "Communication

Settings" tab. In addition, the IP address and subnet mask to be written must comply with the related standards.

● Identify Device: Identifies the PLC to be connected. After you configure PLC scanning on the
"Communication Settings" tab, multiple PLCs may be detected. After selecting one PLC, click this
button. Then the two digits of the LED on the PLC panel will alternately display 0, as shown in the
following figure.

Network Configuration

‑79‑

Figure 4-5 PLC LED in identifying state

Moreover, the software tool InoProShop displays the dialog box as shown in the following figure. Close
the dialog box to complete the identification, and then the LED restores the default state.

RTC Configuration

● PLC Time: Displays the current PLC time.
● Read: Reads the PLC time.
● Write: Writes the current date and time set on the PLC. The current date and time are displayed in

the left edit boxes.
● Sync To Local Date/Time: Writes the current date and time from the PC to the PLC.

Note
When the system writes the PLC time or synchronizes the local date/time to the PLC, the PLC may be affected, for
example, the bus synchronization may be affected. Therefore, before writing the PLC time, ensure that the PLC is in
the "Stop" state. It is recommended to hot reset the PLC after the time is written.

Time Zone

● Time Zone: Reads the PLC time zone. For example, the time zone of Beijing is UTC+8.
● Read: Reads the time zone of the PLC.
● Write: Writes the time zone selected for the PLC.

Upgrade

The upgrade page is used for the upgrade of PLC firmware, as shown in “Figure 4–6 Upgrade dialog
box” on page 80. The PLC firmware upgrade package provides the software data for upgrade, which
may include UBOOT, Device Tree, kernel, and system program. Generally, the upgrade package
includes only the system program.

Network Configuration

‑80‑

Note
The upgrade function is unavailable. Use the InoProShop tool to perform an upgrade.

Figure 4-6 Upgrade dialog box

PLC Information

● PLC Model: The model of the current PLC, such as AM600 or AM610.
● Firmware Version: The firmware version of the PLC, for example, 1.2.3.0.
● Detailed Version: The detailed version information about the PLC, which may include UBOOT,

Device Tree, kernel, and system program, as shown in Figure 4-8. If the PLC firmware has not been
upgraded, the version information may not be included.

● Get PLC Information: Gets the PLC model and firmware information. If the PLC firmware has not
been upgraded, the PLC information may not be obtained.

Firmware Upgrade

● Firmware packet: Sets the firmware upgrade package, with the file name expansion ".upgrade".
● Compatible Device: Displays the devices compatible with the firmware upgrade package. The

upgrade can be performed only when the device is compatible with the PLC model.
● Firmware Version: Displays the firmware version of the upgrade package.
● Firmware In Details: Gets detailed information about the firmware upgrade package.
● Upgrade: After this button is clicked, the firmware upgrade starts. Before performing the upgrade,

the system checks the device type and upgrade firmware file version. If the upgrade firmware
version is later than the PLC firmware version, the upgrade is performed. If the versions are the
same, the upgrade is not performed. If the upgrade firmware version is earlier than the PLC
firmware version, the upgrade is performed only after confirmation.

Network Configuration

‑81‑

Note
● Before the upgrade, scan the device to be upgraded on the "Communication Settings" page and select the PLC

to be upgraded.
● Do not power off the device during the upgrade; otherwise, unrecoverable system faults may occur.
● The upgrade will last about two minutes. After the upgrade, the device automatically restarts.
● After restart (upgrade completed), the LED displays 00 or dynamically changing digits.
● After the upgrade, the PLC device name may be changed. Scan the device again.

After the upgrade, the system displays and verifies that the PLC information and detailed version
information are consistent with the firmware version and detailed information.

Information

The PLC basic information is displayed, including Name, Vendor, Categories, Type, ID, Version, Order
Number, Description, and Image, as shown in the following figure. After login, the "Information" page
displays the PCB software version of the CPU and logic software version. The PCB software version is
the CPU system program version, and the logic software version is the FPGA software version within
the CPU.

Figure 4-7 CPU information page

4.2.4 I/O Module Configuration

Overview

The following table lists the I/O modules of the GL10 series and GL20 series.

Network Configuration

‑82‑

Series Module Type

GL10 series

Digital input (DI)

Digital output (DO)

Relay output (ER type)

NPN output (ETN type)

PNP output (ETP type)

Analog input (AD)

Analog output (DA)

Temperature detection module

4TC (4-channel temperature detection module,
supporting thermocouple)

8TC (8-channel temperature detection module,
supporting thermocouple)

4PT (4-channel temperature detection module,
supporting resistance temperature detector)

GL20 series

Digital Input (DI)

Digital Output (DO)

Relay output (ER type)

NPN output (ETN type)

PNP output (ETP type)

Digital input/output (DI/DO)

Analog input (AD)

Analog output (DA)

Temperature detection module

4PT (4-channel temperature detection module,
supporting resistance temperature detector)

4TC (4-channel temperature detection module,
supporting thermocouple)

Communication module

2CAN (2-channel CAN communication module)

2S485 (2-channel RS485 expansion module)

2SCOM (2-channel serial port module)

1DNM (1-channel DeviceNet main module)

Process module 2SSI (2-channel SSI communication)

DI Modules of the GL10 Series

There is no module parameter configuration for DI modules. Only the "I/O Mapping", "Status", and
"Information" pages are available. You only need to map the I/O variables on the "I/O Mapping" page
to obtain the DI values. The 16-channel DI module is used as an example here.

1. DI16 I/O mapping
DI16 is a 16-bit digital input module. As shown in the following figure, on the "I/O Mapping" page,
each bit or every eight bits can be mapped to one variable to obtain the input value. For details, click
the "I/O Mapping" link.

Network Configuration

‑83‑

2. Information
The DI16 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Order Number, Description, and Image, as shown in the following figure. After login, the
"Information" page displays the DI module logic software version, which is the FPGA software
version within the DI module.

DO Modules of the GL10 Series

There is no module parameter configuration for DO modules. Only the "I/O Mapping", "Status", and
"Information" pages are available. You only need to map the I/O variables on the "I/O Mapping" page
and output the mapped variable values to the DO module. DO modules include 16-channel modules

Network Configuration

‑84‑

and 32-channel modules. They have similar "I/O Mapping" pages. The 16-channel DO module is used
as an example here.

1. DO16 I/O mapping
DO16 is a 16-bit digital output module. As shown in the following figure, on the "I/O Mapping" page,
each bit or every eight bits can be mapped to one variable to obtain the output value. For details,
click the "I/O Mapping" link.

2. Information
The DO16 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Model Number, Description, Order Number, and Image, as shown in the following figure.
After login, the "Information" page displays the DO module logic software version, which is the FPGA
software version within the DO module.

Network Configuration

‑85‑

AI Modules of the GL10 Series

1. General settings
An AI module has four channels, each of which has independent parameter settings and I/O mapping
register (16-bit) settings. The following is the description of one channel in each module.

● Module diagnosis upwards reported: Specifies whether to report the module faults to the parent
device (such as the CPU and remote module slave). If this function is checked and the parent
device is configured with "Stopped On Failure", the parent device will stop the running of this
device.

● Enable access: Specifies whether to activate the channel. The channel is available only after it is
activated.

● Channel diagnosis upwards reported: Specifies whether to report the channel faults to the parent
device (such as the CPU and remote module slave). If this function is checked and the parent
device is configured with "Stopped On Failure", the parent device will stop the running of this
device.

● AD Conversion Mode: Specifies the conversion mode of the analog input. This setting specifies the
channel input conversion type, conversion value range, and the mappings between conversion
types and digital values. The following table lists mappings between analog values of analog
input and digital values.

Network Configuration

‑86‑

- Rated Input Range Rated Digital Value Input Limit Range Digital Value Limit

Analog voltage input

–10 V to +10 V –20000 to +20000 –11 V to +11 V –22000 to +22000
0 V to 10 V 0 to 20000 –0.5 V to +10.5 V –1000 to +21000
–5 V to +5 V –20000 to +20000 –5.5 V to +5.5 V –22000 to +22000
0 V to 5 V 0 to 20000 –0.25 V to +5.25 V –1000 to +21000
1 V to 5 V 0 to 20000 0.8 V to 5.2 V –1000 to +21000

Analog current input
–20 mA to +20 mA –20000 to +20000 –22 mA to +22 mA –22000 to +22000
0 mA to 20 mA 0 to 20000 –1 mA to +21 mA –1000 to +21000
4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA –1000 to +21000

● Filter Parameter: Indicates the filter time of the analog input channel, ranging from 1 ms to 255
ms.

● Offline Sign: Specifies whether to detect the offline state of the AI channel. The system cannot
distinguish the input value 0 and offline state of the AI module, so all values in the conversion
mode range, including 0, cannot activate the offline sign.

● Overflow Sign: Specifies whether to detect overflow of the AI channel.
● Peak Value Keeping: Specified whether to keep the peak value input of the AI channel.

2. AI4 I/O mapping
AI4 is 4-channel analog input. Each channel matches a 16-digit integer. For the mappings between
analog values and digital values, see general settings of analog input. On this page, each 16-digit
integer can be mapped to a variable to obtain the digital value matching an analog value of the
input channel. For details, click "I/O Mapping".

3. Information
The AI4 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Model Number, Description, Order Number, and Image.

Network Configuration

‑87‑

After login, the "Information" page displays the PCB software version and logic software version of
the AI4 module. The PCB software version is the embedded software version of AI4 and the logic
software version is the FPGA software version within the AI4 module.

AO Modules of the GL10 Series

1. General settings
An AO module has four channels, each of which has independent parameter settings and I/O
mapping register (16-bit) settings. The following is the description of one channel in each module.

Network Configuration

‑88‑

● Module diagnosis upwards reported: Specifies whether to report the module faults to the parent
device (such as the CPU and remote module slave). If this function is checked and the parent
device is configured with "Stopped On Failure", the parent device will stop the running of this
device.

● Enable access: Specifies whether to activate the channel. The channel is available only after it is
activated.

● Channel diagnosis upwards reported: Specifies whether to report the channel faults to the parent
device (such as the CPU and remote module slave). If this function is checked and the parent
device is configured with "Stopped On Failure", the parent device will stop the running of this
device.

● AD Conversion Mode: Specifies the conversion mode of the analog output. This setting specifies
the channel output conversion type, conversion value range, and the mappings between
conversion types and digital values. The following table lists mappings between analog values of
analog output and digital values.

Network Configuration

‑89‑

-
Rated Output

Range
Rated Digital Value Output Limit Range Digital Value Limit

Analog voltage
output

–10 V to +10 V –20000 to +20000 –11 V to +11 V –22000 to +22000
0 V to 10 V 0 to 20000 –0.5 V to +10.5 V –1000 to +21000
–5 V to +5 V –20000 to +20000 –5.5 V to +5.5 V –22000 to +22000
0 V to 5 V 0 to 20000 –0.25 V to +5.25 V –1000 to +21000
1 V to 5 V 0 to 20000 0.8 V to 5.2 V –1000 to +21000

Analog current
output

0 mA to 20 mA 0 to 20000 0 mA to 21 mA 0 to 21000
4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA –1000 to +21000

● Output After Stop/Offline: Sets the output retaining value after the module stops running.
● Output zero: Always outputs 0 after the module stops running.
● Output last value: Always outputs the last value after the module stops running.
● Output preset value: Always outputs the preset value after the module stops running. The preset

value can be an analog value or a digital value. The analog values and digital values have the
mapping relationship. If the analog or digital value is changed, its corresponding digital or analog
value is also changed. The preset value range depends on the conversion mode. For details, see
the description of conversion mode.

2. AO4 I/O mapping
AO4 is 4-channel analog output. Each channel matches a 16-digit integer. For the mappings between
analog values and digital values, see general settings of analog output. The following figure shows
the mapping page. On this page, each 16-bit integer can be mapped to a variable, and this variable is
output to the current channel. Then the AO module converts the variable into the analog value for
output. For details, click "I/O Mapping".

3. Information
The AO4 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Model Number, Description, Order Number, and Image.

After login, the "Information" page reads and displays the PCB software version and logic software
version of the AO4 module. The PCB software version is the embedded software version of AO4 and
the logic software version is the FPGA software version within the AO4 module.

Network Configuration

‑90‑

Temperature Detection Module of the GL10 Series

Temperature detection modules include 4TC modules (4-channel, supporting thermocouple), 8TC
modules (8-channel, supporting thermocouple), and 4PT modules (4-channel, supporting resistance
temperature detector). All the modules have their respective general settings and channel settings.

General settings include the unit type and sample cycle of the temperature detection module. Channel
settings include the sensor type, filter time, overflow, and temperature offset of each channel.

1. General settings
The temperature detection module settings vary with the module type. The 4TC and 8TC modules
support the cold junction compensation function, but the 4PT module does not. In addition, the 8TC
module supports external cold junction compensation, but the 4TC module does not. The following
figure shows the configuration page of the 8TC module.

Network Configuration

‑91‑

● Module diagnosis upwards reported: Specifies whether to report the module faults to the parent
device (such as the CPU and remote module slave). If this function is checked and the parent
device is configured with "Stopped On Failure", the parent device will stop the running of this
device.

● Cold junction compensation: Selects the cold junction compensation mode. Only the 8TC module
supports external cold junction compensation, and the 8TC module uses channel 7 (the last
channel) for the input of external cold junction compensation.

● Temperature Unit: Sets the input unit used by the temperature detection module, including
Centigrade degree and Fahrenheit degree.

● Sample cycle: Sets the sample cycle used by the temperature detection module, including 250
ms, 500 ms, and 1000 ms.

2. Channel settings
Different types of modules support different numbers of channels. The 4TC and 4PT modules
support 4 channels, and the 8TC module supports 8 channels. The channels have similar parameter
settings. The following is the description for one channel. The following figure shows the channel
setting interface of the 8TC module.

● Enable access: Specifies whether to activate the channel. The channel is available only after it is
activated.

● Channel diagnosis upwards reported: Specifies whether to report the channel faults to the parent
device (such as the CPU and remote module slave). If this function is checked and the parent

Network Configuration

‑92‑

device is configured with "Stopped On Failure", the parent device will stop the running of this
device.

● Default: Restores the default settings of the channel.
● Sensor Type: The sensor type and specifications of the 8TC and 4TC modules are listed in the

following table. By default, the K sensor is used.

Item Sensor Name Temperature Range (°C) Temperature Range (°F)

Thermocouple

B 250°C to 1800°C 482°F to 3272°F
E –270°C to +1000°C –454°F to +1832°F
N –200°C to +1300°C –328°F to +2372°F
J –210°C to +1200°C –346°F to +2192°F
K –270°C to +1372°C –454°F to +2502°F
R –50°C to +1768°C –58°F to +3214°F
S –50°C to +1768°C –58°F to +3214°F
T –270°C to +400°C –454°F to +752°F

Item Sensor Name Temperature Range (°C) Temperature Range (°F)

Resistance
temperature
detector

Pt100 –200°C to +850°C –328°F to +1562°F
Pt500 –200°C to +850°C –328°F to +1562°F
Pt1000 –200°C to +850°C –328°F to +1562°F
Cu100 –50°C to +150°C –58°F to +302°F

● Filter Time: Specified the filter time of the temperature detection module when this channel is
used, ranging from 0s to 100s. The default value is 5s.

● Overflow Detect: Enables overflow detection for the channel. If the temperature is beyond the
specified range, an overflow fault is reported. For the temperature range, see the preceding table.

● Enable Offset: Sets the offset compensation for the temperature detection module, ranging from
–204.8 to +204.7.

● Sensor Offline Detect: Enables offset alarming of the sensor.

3. I/O mapping
The numbers of supported channels and I/O mappings vary with the temperature detection module
type. The following figure shows the I/O mapping page of the 4PT module. The parameter value of
each channel is the temperature value. For details, click "I/O Mapping".

4. Information
The basic information of the temperature detection module is displayed, including Name, Vendor,
Categories, Type, ID, Version, Model Number, Description, Order Number, and Image.

After login, the "Information" page displays the PCB software version and logic software version of
the temperature detection module. The PCB software version is the embedded software version of
the temperature detection module and the logic software version is the FPGA software version
within the temperature detection module.

Network Configuration

‑93‑

DI Modules of the GL20 Series

DI modules have the "Channel Settings", "Device Diagnosis", "I/O Mapping", "Status", and
"Information" pages. You only need to map the I/O variables on the "I/O Mapping" page to obtain the
DI values. DI modules include 8-channel, 16-channel, and 32-channel modules, with similar pages. The
following takes the 16-channel DI module as an example.

1. Channel Settings
The following figure shows the "Channel Settings" page, on which you can set a filter time for each
channel.

2. Device Diagnosis
The following figure shows the "Device Diagnosis" page, on which you can view the error information
of a module.

Network Configuration

‑94‑

3. I/O Mapping
The following figure shows the "I/O Mapping" page. Each bit or every eight bits can be mapped to
one variable to obtain the input value. For details, see “4.2.6 I/O Mapping Parameters” on page 127.

4. Information
The module basic information is displayed, including Name, Vendor, Categories, Type, ID, Version,
Order Number, Description, and Image, as shown in the following figure. After login, the
"Information" page displays the module logic software version, which is the FPGA software version
within the module.

Network Configuration

‑95‑

DO Modules of the GL20 Series

DO modules have the "Channel Settings", "Device Diagnosis", "I/O Mapping", "Status", and
"Information" pages. You only need to map the I/O variables on the "I/O Mapping" page to obtain the
DO values. DO modules include 8-channel, 16-channel, and 32-channel modules, with similar pages.
The following takes the 16-channel DO module as an example.

1. Channel Settings
The following figure shows the "Channel Settings" page, on which you can set the output status of
each channel after the channel stops or is disconnected. Options are "Output last value", "Output
preset value", and "Bitwise setting".

2. Device Diagnosis
The following figure shows the "Device Diagnosis" page, on which you can view the error information
of a module.

3. I/O Mapping
The following figure shows the "I/O Mapping" page. Each bit or every eight bits can be mapped to
one variable to obtain the output value. For details, see “4.2.6 I/O Mapping Parameters” on page 127.

Network Configuration

‑96‑

4. Information
The DO16 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Model Number, Description, Order Number, and Image, as shown in the following figure.
After login, the "Information" page displays the DO module logic software version, which is the FPGA
software version within the DO module.

DI/DO Modules of the GL20 Series

DI/DO modules have the "Channel Settings", "Device Diagnosis", "I/O Mapping", "Status", and
"Information" pages. The following takes the 8-channel DI module as an example.

1. Channel Settings
The following figure shows the "Channel Settings" page, on which you can set the filter time for each
channel and the output status of each channel after the channel stops or is disconnected. Options
are "Output last value", "Output preset value", and "Bitwise setting".

Network Configuration

‑97‑

2. Device Diagnosis
The following figure shows the "Device Diagnosis" page, on which you can view the error information
of a module.

3. I/O Mapping
The following figure shows the "I/O Mapping" page. Each bit or every eight bits can be mapped to
one variable to obtain the input value. For details, see “4.2.6 I/O Mapping Parameters” on page 127.

4. Information
The module basic information is displayed, including Name, Vendor, Categories, Type, ID, Version,
Order Number, Description, and Image, as shown in the following figure. After login, the

Network Configuration

‑98‑

"Information" page displays the DI/DO module logic software version, which is the FPGA software
version within the DI/DO module.

AI Modules of the GL20 Series

AI modules include 4AD modules (4-channel AI), 8ADI modules (8-channel AI, supporting current input),
and 8ADV modules (8-channel AI, supporting voltage input). The "Channel Settings", "Device
Diagnosis", "I/O Mapping", "Status", and "Information" pages are available for these modules. The
following takes the 4AD AI module as an example.

1. Channel Settings
An AI module has four channels, each of which has independent parameter settings and I/O mapping
register (16-bit) settings. The following is the description of one channel in each module.

Network Configuration

‑99‑

● Enable access: Specifies whether to activate the channel. The channel is available only after it is
activated.

● Digital output range: Sets the analog output range, which determines the range of the values
output by this channel for conversion.

● AD Conversion Mode: Specifies the conversion mode of the analog input. This setting specifies the
channel input conversion type, conversion value range, and the mappings between conversion
types and digital values. The following table lists mappings between analog values of analog
input and digital values.

Network Configuration

‑100‑

- Rated Input Range Rated Digital Value Input Limit Range Digital Value Limit

Analog voltage
input

–10 V to +10 V –20000 to +20000

–32000 to +32000

–27648 to +27648

–10.24 V to +10.24 V –20400 to +20400

–32640 to +32640

–28200 to +28200
0 V to 10 V 0 to 20000

0 to 32000

0 to 27648

–0.5 V to +10.24 V –1000 to +20400

–1600 to +32640

–1382 to +28200
–5 V to +5 V –20000 to +20000

–32000 to +32000

–27648 to +27648

–5.12 V to +5.12 V –20400 to +20400

–32640 to +32640

–28200 to +28200
0 V to 5 V 0 to 20000

0 to 32000

0 to 27648

–0.25 V to +5.12 V –1000 to +20400

–1600 to +32640

–1382 to +28200
1 V to 5 V 0 to 20000

0 to 32000

0 to 27648

0.8 V to 5.12 V –1000 to +20400

–1600 to +32640

–1382 to +28200

Analog current
input

–20 mA to +20 mA –20000 to +20000

–32000 to +32000

–27648 to +27648

–20.56 mA to
+20.56 mA

–20400 to +20400

–32640 to +32640

–28200 to +28200
0 mA to 20 mA 0 to 20000

0 to 32000

0 to 27648

–1 mA to 20.56 mA –1000 to +20400

–1600 to +32640

–1382 to +28200
4 mA to 20 mA 0 to 20000

0 to 32000

0 to 27648

3.2 mA to 20.56 mA –1000 to +20400

–1600 to +32640

–1382 to +28200

● Filter Parameter: Indicates the filter time of the analog input channel, ranging from 1 ms to 255
ms.

● Offline Sign: Specifies whether to detect the offline state of the AI channel. The system cannot
distinguish the input value 0 and offline state of the AI module, so all values in the conversion
mode range, including 0, cannot activate the offline sign.

● Overflow Sign: Specifies whether to detect overflow of the AI channel.
● Peak Value Keeping: Specified whether to keep the peak value input of the AI channel.

2. Device Diagnosis
The following figure shows the "Device Diagnosis" page, on which you can view the error information
of a module.

Network Configuration

‑101‑

3. I/O Mapping
AI4 is 4-channel analog input. Each channel matches a 16-digit integer. For the mappings between
analog values and digital values, see the section "Channel Settings". On this page, each 16-digit
integer can be mapped to a variable to obtain the digital value matching an analog value of the
input channel. For details, see “4.2.6 I/O Mapping Parameters” on page 127.

4. Information
The module basic information is displayed, including Name, Vendor, Categories, Type, ID, Version,
Model Number, Description, Order Number, and Image. After login, the "Information" page displays
the PCB software version and logic software version of the AI4 module. The PCB software version is
the embedded software version of AI4 and the logic software version is the FPGA software version
within the AI4 module.

Network Configuration

‑102‑

AO Modules of the GL20 Series

AO modules have the "Channel Settings", "Device Diagnosis", "I/O Mapping", "Status", and
"Information" pages.

1. Channel Settings
An AO module has four channels, each of which has independent parameter settings and I/O
mapping register (16-bit) settings. The following is the description of one channel in each module.

Network Configuration

‑103‑

● Enable access: Specifies whether to activate the channel. The channel is available only after it is
activated.

● Digital output range: Sets the analog output range, which determines the range of the values
output by this channel for conversion.

● AD Conversion Mode: Specifies the conversion mode of the analog output. This setting specifies
the channel output conversion type, conversion value range, and the mappings between
conversion types and digital values. The following table lists mappings between analog values of
analog output and digital values.

Network Configuration

‑104‑

- Rated Output
Range

Rated Digital Value Output Limit Range Digital Value Limit

Analog voltage
output

–10 V to +10 V –20000 to +20000

–32000 to +32000

–27648 to +27648

–10.24 V to +10.24 V –20400 to +20400

–32640 to +32640

–28200 to +28200
0 V to 10 V 0 to 20000

0 to 32000

0 to 27648

–0.5 V to +10.24 V –1000 to +20400

–1600 to +32640

–1382 to +28200
–5 V to +5 V –20000 to +20000

–32000 to +32000

–27648 to +27648

–5.12 V to +5.12 V –20400 to +20400

–32640 to +32640

–28200 to +28200
0 V to 5 V 0 to 20000

0 to 32000

0 to 27648

–0.25 V to +5.12 V –1000 to +20400

–1600 to +32640

–1382 to +28200
1 V to 5 V 0 to 20000

0 to 32000

0 to 27648

0.8 V to 5.12 V –1000 to +20400

–1600 to +32640

–1382 to +28200

Analog current
output

0 mA to 20 mA 0 to 20000

0 to 32000

0 to 27648

–1 mA to 20.56 mA –1000 to +20400

–1600 to +32640

–1382 to +28200
4 mA to 20 mA 0 to 20000

0 to 32000

0 to 27648

3.2 mA to 20.56 mA –1000 to +20400

–1600 to +32640

–1382 to +28200

● Output After Stop/Offline: Sets the output retaining value after the module stops running.
● Output zero: Always outputs 0 after the module stops running.
● Output last value: Always outputs the last value after the module stops running.
● Output preset value: Always outputs the preset value after the module stops running. The preset

value can be an analog value or a digital value. The analog values and digital values have the
mapping relationship. If the analog or digital value is changed, its corresponding digital or analog
value is also changed. The preset value range depends on the conversion mode. For details, see
the description of conversion mode.

2. Device Diagnosis
The following figure shows the "Device Diagnosis" page, on which you can view the error information
of a module.

Network Configuration

‑105‑

3. I/O Mapping
AO4 is 4-channel analog output. Each channel matches a 16-digit integer. For the mappings between
analog values and digital values, see the section "Channel Settings". The following figure shows the
"Channel Settings" page. On this page, each 16-bit integer can be mapped to a variable, and this
variable is output to the current channel. Then the AO module converts the variable into the analog
value for output. For details, see “4.2.6 I/O Mapping Parameters” on page 127.

4. Information
The module basic information is displayed, including Name, Vendor, Categories, Type, ID, Version,
Model Number, Description, Order Number, and Image. After login, the "Information" page reads and
displays the PCB software version and logic software version of the AO4 module. The PCB software
version is the embedded software version of AO4 and the logic software version is the FPGA software
version within the AO4 module.

Network Configuration

‑106‑

Temperature Detection Modules of the GL20 Series

Temperature detection modules include 4PT modules (4-channel, supporting resistance temperature
detector) and 4TC modules (4-channel, supporting thermocouple). All the modules have their
respective general settings and channel settings. General settings include the unit type and sample
cycle of the temperature detection module. Channel settings include the sensor type, filter time,
overflow, and temperature offset of each channel. The following takes the 4PT temperature detection
module as an example.

1. General settings

● Temperature Unit: Sets the input unit used by the temperature detection module, including
Centigrade degree and Fahrenheit degree.

● Sample cycle: Sets the sample cycle used by the temperature detection module, including 250
ms, 500 ms, and 1000 ms.

2. Channel Settings

Network Configuration

‑107‑

● Enable access: Specifies whether to activate the channel. The channel is available only after it is
activated.

● Default: Restores the default settings of the channel.
● Sensor Type: The sensor type and specifications of the 4PT module are listed in the following

table. By default, the K sensor is used.

Type Sensor Name Temperature Range (°C) Temperature Range (°F)

Resistance
temperature
detector

Pt100 –200°C to +850°C –328°F to +1562°F
Pt500 –200°C to +850°C –328°F to +1562°F
Pt1000 –200°C to +850°C –328°F to +1562°F
Cu100 –50°C to +150°C –58°F to +302°F
KTY84 –50°C to +150°C 32°F to 392°F
NTC5K (B value: 2000) –30°C to +200°C –22°F to +392°F

NTC5K (B value: 3950) –15°C to +100°C 5°F to 212°F

NTC5K (B value: 6000) 0°C to 100°C 32°F to 212°F

NTC10K (B value: 2000) –25.0°C to +200°C –13°F to +392°F

NTC10K (B value: 3950) 0°C to 150°C 32°F to 302°F

NTC10K (B value: 6000) –6°C to +100°C 42.8°F to 212°F

● Filter Time: Specified the filter time of the temperature detection module when this channel is
used, ranging from 0s to 100s. The default value is 5s.

● Overflow Detect: Enables overflow detection for the channel. If the temperature is beyond the
specified range, an overflow fault is reported.

● Enable Offset: Sets the offset compensation for the temperature detection module, ranging from
–204.8 to +204.7.

● Sensor Offline Detect: Enables offset alarming of the sensor.
● Overflow detection: Enables the overflow alarming function.

3. Device Diagnosis
The following figure shows the "Device Diagnosis" page, on which you can view the error information
of a module.

Network Configuration

‑108‑

4. I/O Mapping
The numbers of supported channels and I/O mappings vary with the temperature detection module
type. The following figure shows the "I/O Mapping" page of the 4PT module. The parameter value of
each channel is the temperature value. For details, see “4.2.6 I/O Mapping Parameters” on page 127.

5. Information
The basic information of the temperature detection module is displayed, including Name, Vendor,
Categories, Type, ID, Version, Model Number, Description, Order Number, and Image. After login, the
"Information" page displays the PCB software version and logic software version of the temperature
detection module. The PCB software version is the embedded software version of the temperature
detection module and the logic software version is the FPGA software version within the
temperature detection module.

Network Configuration

‑109‑

Communication Modules of the GL20 Series

The GL20 series has the communication modules 2CAN, 2S485, 2SCOM, and 1DNM. For configuration of
each module, see the user guide of the specific module.

Process Module of the GL20 Series

The GL20 series has a GL20-2SSI 2-channel encoder input module. For the module configuration, see
the GL20-2SSI 2-Channel Encoder Input Module User Guide.

4.2.5 High-Speed I/O Configuration

Overview

● The AM300, AM400, AM500, AM600, and AC700 series support the high-speed I/O function.
● Ports enabled with high-speed I/O can no longer serve as ordinary ports and their I/O status cannot be changed

through I/O mapping.

High-speed I/O provides the following functions:

● High-speed counter
● High-speed output
● PWM output
● High-speed input edge interrupt

Network Configuration

‑110‑

The following table lists the number of channels supported by high-speed I/O functions of different
PLC series.

Function AM400/600 AM300/500 AC700

High-speed counter 8 4 4

High-speed pulse 4 4 -

PWM output 8 4 2

High-speed input edge
interrupt

8 4 -

High-Speed I/O Configuration of AM300/AM500/AC700

1. For high-speed I/O wiring guide of the AM300/AM500/AC700 series, see the hardware guide or user
guide of the corresponding series.

2. In the left device tree, double-click "LocalHSIO". The "LocalHSIO" configuration page is displayed.

No. Function Configuration

① High-speed counter configuration

② High-speed pulse output configuration

③ High-speed input edge interrupt configuration

④ PWM output configuration

⑤ Terminal filter parameter configuration

⑥ Configuration of output status after PLC stop

High-speed counter configuration

High-speed counter function parameters include the counter mode (such as single-phase, A/B phase
single/double/quadruple frequency, pulse+direction, and CW/CCW), hardware reset, probe, preset, and
comparison output.

Taking "Counter 0" for example (counter numbers range from 0 to 3), the configuration procedure is as
follows.

1. On the "Basic Configuration" page, check "Counter 0". The item "Counter0 (High-speed Counter)" is
automatically inserted to the left device tree and counter 0 is enabled.

Network Configuration

‑111‑

2. Configure the counter mode and signal source.

a. Double-click "Counter0 (High-speed Counter)". The "Counter0" page is displayed.
b. On the "Basic Configuration" page, select a counter mode from the drop-down list of "Mode" and

select the hardware input terminal used from the drop-down list of "Single Source".

● Single-phase Count: Select "Single-phase Count" from the drop-down list of "Mode". Then, the
system receives the pulse signal of the external single-phase encoder and only one hardware
input pot is occupied. Or, you can select the pulse signal regularly generated in the software at
an interval of 1 μs/1 ms, and no hardware input port is occupied.

● A/B-phase counter: Select "Phase A/B single frequency" from the drop-down list of "Mode". The
system receives the pulse signal of the external A/B-phase encoder and double/quadruple
frequency can be configured for the A/B phase. In this case, two hardware input ports are
occupied.

● CW/CCW Count: Select "CW/CCW" from the drop-down list of "Mode". The system receives the
pulse signal of the external CW/CCW encoder and two hardware input ports are occupied.

Network Configuration

‑112‑

● Pulse+direction counter: Select "Pulse+Direction" from the drop-down list of "Mode". In this
mode, when the direction signal is ON, the high-speed counter counts up the pulse signals.
When the direction signal is OFF, the high-speed counter counts down the pulse signals.

3. Configure one hardware reset for each high-speed counter.

a. Check "Enable".
b. Set the input terminal and trigger mode as needed.

4. Configure one probe input for each high-speed counter.

a. Check "Probe 1".
b. Set the input terminal as needed.

Network Configuration

‑113‑

After configuration, the position latch of the counter can be realized through the HC_TouchProbe
function block, or the position latch of the specified axis can be realized through the HC_
VirtualTouchProbe function block.

5. Configure one preset input for each high-speed counter.

a. Check "Enable".
b. Set the input terminal as needed.

After configuration, the position preset of the counter can be realized through the HC_Preset
function block.

6. Enable one comparison output function for each high-speed counter.

a. Check "Enable".
b. Set the output terminal as needed.

After configuration, the position comparison output of the counter is realized through the function
blocks HC_Compare, HC_ArrayCompare, and HC_StepCompare.

7. Configure the encoder axis mode.

a. Double-click "Encoder". The "Encoder" page is displayed.

Network Configuration

‑114‑

b. Select the Modulo mode or linear mode as needed.

● Modulo mode: The high-speed counter operates cyclically in the interval of [0, rotation cycle).
Since the high-speed counter is a 32-bit counter, the rotation cycle must be within the 32-bit
integer range [–2147483648, +2147483647] after being converted to pulse units.

● Linear mode: The high-speed counter operates in the interval of [negative limit, positive limit].
When the direction is negative, the count value decreases in the negative direction. After the
negative limit is reached, the count value no longer decreases. When the direction is positive,
the count value increases in the positive direction. After the positive limit is reached, the count
value no longer increases. Since the high-speed counter is a 32-bit counter, the negative and
positive limits must be within the 32-bit integer range [–2147483648, +2147483647] after being
converted to pulse units.

c. Set the numerator and denominator of the scaling ratio.
High-speed counters use pulse units during counting, and use common measurement units for
motion control instructions such as millimeters, degrees, and inches, which are called user units
(Unit).

The calculation equation from user unit to pulse unit is as follows:

Example:

Scaling ratio numerator = 10000

Scaling ratio denominator = 1.0

When the number of pulses received by the high-speed counter is 10,000, the count value of the
high-speed counter increases by 1.

Configuring the high-speed pulse output function

High-speed pulse axis functions include output mode (such as pulse only, A/B phase, pulse+direction,
and CW/CCW), probe, home, positive limit, negative limit, and emergency stop.

The following takes "Pulse generator 0" (pulse generators 0 to 3 supported) as an example.

Network Configuration

‑115‑

1. On the "Basic Configuration" page, check "Pulse generator 0". The item "Pulser0 (High-speed pulse
generator)" is automatically inserted to the left device tree and pulse generator 0 is enabled.

2. Set the output mode and output terminal.

a. Double-click "Pulser0 (High-speed pulse generator)". The "Pulser0" page is displayed.

b. On the "Basic Configuration" page, select an output mode from the drop-down list of "Output
Mode" and select the hardware output terminal used from the drop-down list of "Output
Terminal".

● Pulse+direction: Select "Pulse+Direction" from the drop-down list of "Output Mode". The
system outputs the pulse+direction signal and two hardware output ports are occupied.

● CW/CCW: Select "CW/CCW" from the drop-down list of "Output Mode". The system outputs the
CW/CCW signal and two hardware output ports are occupied.

● A/B phase: Select "A/B Phase" from the drop-down list of "Output Mode". The system outputs
the A/B phase signal and two hardware output ports are occupied.

Network Configuration

‑116‑

● Pulse only: Select "Single Pulse" from the drop-down list of "Output Mode". The system
outputs the single phase pulse signal and only one hardware output port is occupied. Only Y0/
Y1 is supported.

3. Configure two probe inputs for each high-speed pulse generator.

a. Check "Probe 1" or "Probe 2".
b. Set the signal source as needed.

After configuration, the position latch of the pulse axis can be realized through the MC_
TouchProbe function block.

4. Set the homing function.

a. Check "Enable".
b. Set the signal source and level logic as needed.

After configuration, the homing function of the pulse axis can be realized through the MC_Home
function block. The 17 to 30 and 35 homing modes of the CiA 402 protocol are supported.

Network Configuration

‑117‑

5. Set the positive limit function.

a. Check "Enable".
b. Set the signal source and level logic as needed.

After configuration, the positive limit and homing functions of the pulse axis can be realized
through the MC_Home function block. The 17 to 30 and 35 homing modes of the CiA 402 protocol
are supported.

6. Set the negative limit function.

a. Check "Enable".
b. Set the signal source and level logic as needed.

After configuration, the negative limit and homing functions of the pulse axis can be realized
through the MC_Home function block. The 17 to 30 and 35 homing modes of the CiA 402 protocol
are supported.

7. Set the emergency stop function.

Network Configuration

‑118‑

a. Check "Enable".
b. Set the signal source and level logic as needed.

After configuration, the emergency stop function of the pulse axis is triggered by the level signal of
the external terminal.

8. Set the basic settings and homing parameters of the pulse axis. For details, see “4.4.5 CiA402 Axis” on
page 168.

Configuring High-Speed Input Interrupt

The external interrupt frequency cannot exceed 1 kHz; otherwise, interrupt loss will occur.

The following takes X0 interrupt as an example.

1. On the "Basic Configuration" page, check "X0" to enable X0 interrupt input and click the icon
(triggered upon rising edge, triggered upon falling edge, and triggered upon rising edge+ falling
edge) to configure edge interrupt for X0.

2. Configure the interrupt task.

a. In the left device tree, right-click "Task Configuration". In the shortcut menu displayed, choose
"Add Object" > "Task".

b. In the dialog box displayed, click "Open".

Network Configuration

‑119‑

c. On the "Task" page, select "External" from the drop-down list of "Type" and "X0InterruptEvent"
from "External event".

d. Call the external interrupt function block "HC_EnableInterrupt" in the main program to trigger the
program execution of the interrupt task. For details about HC_EnableInterrupt, see Medium-Sized
PLC Instruction Guide.

Configuring the PWM Output Function

The following takes the Y0 output terminal as an example.

On the "Basic Configuration" page, check "Y0" to enable the Y0 output terminal. Call the HC_PWM
function block in the program to realize the output of the PWM wave.

The following table lists the PWM output specifications of the AM300-/AM500-series and AC700-series
PLCs.

Network Configuration

‑120‑

Type AM300/500 AC700

Max. pulse period 10000000 μs 3355443 μs

Min. pulse period 0.5 μs 0.5 μs

Max. pulse width 10000000 μs 3355443 μs

Min. pulse width 0.2 μs 0.2 μs

Note
The AM300-/500-series PLCs support four PWM outputs (Y0/Y2/Y4/Y6), and the AC700-series PLC supports two PWM
outputs (Y0/Y2).

Configuring Terminal Filter Parameters

On the "Basic Configuration" page, set the general input and high-speed input filter parameters as
needed.

For terminals not configured in the high-speed counter signal source, general filter parameter settings
are active. For terminals configured in the high-speed counter signal source, high-speed filter
parameter settings are active.

The following table lists the filter parameter configuration settings of the AM300-/AM500-series and
AC700-series PLCs.

Difference AM300/500 AC700

Limit of general input value 2 ms to 1000 ms 1 ms to 1000 ms

Unit of high-speed input values 100 ns 200 ns

Limit of high-speed input value 2 to 1000 1 to 1000

Configuring Output Status After PLC Stop

After PLC stop is enabled, the level status of the Y output terminal can be set to "Output last value" and
"Output preset value".

● Output last value: The Y output terminal keeps the status upon stop after the PLC stops running.
● Output preset value: The Y output terminal keeps the preset status after the PLC stops running.

On the "Basic Configuration" page, select "Output last value" or "Output preset value" in the "PLC
Output After Stop/Offline" section.

Network Configuration

‑121‑

When "PLC Output After Stop/Offline" is set to "Output last value", you need to set "Behaviour for outputs in Stop"
to "Keep current values" on the "PLC settings" page.

Adding a High-Speed I/O Library

1. In the left device tree, double-click "Library Manager". The "Library Manager" page is displayed.

2. Click "Add Library". In the dialog box displayed, add "CmpHCHighSpeedIo" and "IoDrvHSIO".

Then the function blocks of the high-speed I/O library are displayed on the page.

Network Configuration

‑122‑

The AM300-/AM500-series and AC700-series PLCs share the same high-speed I/O library, but the AC700-series PLCs
do not support pulse output and interrupt (HC_EnableInterrupt) function blocks.

High-Speed I/O Configuration of AM400/AM600

1. For high-speed I/O wiring guide of AM400/AM600, see “9.6 AM400 or AM600 High-Speed I/O Wiring” on
page 497.

2. In the left device tree, double-click "HIGH_SPEED_IO (high-speed I/O module)". The "HIGH_SPEED_
IO" configuration page is displayed.

No. Function Configuration

① Terminal filter parameter configuration

② High-speed counter configuration

③ High-speed pulse output configuration

④ High-speed input edge interrupt configuration

⑤ PWM output configuration

Configuring High-Speed Counter Function

Network Configuration

‑123‑

1. High-speed counter parameters include the count mode, comparison consistence output, and
external triggering input. Count modes include single-phase counter, A/B phase, CW/CCW, and
internal clock. Taking the "Counter 0" (counter numbers range from 0 to 7) as an example, the
configuration procedure is as follows:

● Check "Counter 0".
● Set the high-speed counter mode:

Single-phase counter: The system receives pulse signals from external single-phase encoders.
Only the hardware port X0 is occupied.

+/-1 +/-1 +/-1 +/-1

A/B phase counter: The system receives pulse signals from external A/B phase encoders. The
quadruple frequency can be configured for the A/B phase. In this case, two hardware ports X0
and X1 are occupied.

B

A

B

A

CW/CCW counter: The system receives pulse signals from external CW/CCW encoders. Hardware
ports X0 and X1 are occupied.

Network Configuration

‑124‑

Internal clock: The system uses the pulse signals of the high-speed counter 0 regularly generated
in the software at an interval of 1 μs, 10 μs, 100 μs, or 1 ms.

● Coincident Output: When the counter of high-speed I/O reaches the specified value, the
corresponding hardware output port will output the matching level signals. When this function is
enabled, the HC_EnableInterrupt and HC_ SetCompare/HC_SetCompareM functions need to be
called.

● External Trigger: When the external trigger input pin is enabled, the high-speed counter value
latch and pulse width measurement functions are available. The counter latch function needs to
call HC_TouchProbe and the pulse width measurement function needs to call HC_
MeasurePulseWidth.

● Filter Time: Sets the filter time of the high-speed counter port. The default value is 2 μs.

2. Create an instance for the high-speed counter, with the data type COUNTER_REF. Take Counter 0 as
an example:
The default name of Counter 0 instance is HS_Counter0.

Counter mode:

● Linear counter: Count between the maximum and minimum values. The counter stops when the
count-up reaches the maximum or the count-down reaches the minimum, and the overflow sign
takes effect.

● Ring count: Used together with "HC_SetRing".
Count between the maximum and minimum values. When the count-up exceeds the maximum,
the value skips to the minimum. When the count-down exceeds the minimum, the value skips to
the maximum.

Max
vlaue

Min
value

0

3. Select the external trigger.

Network Configuration

‑125‑

When the input level of X8 is valid, you can set the counter function. For example, configure X8 as the
signal of disabling Counter 0. You can also disable the preset and counter latch functions of Counter
0.

Configuring the High-Speed Pulse Output Function

1. Configure the high-speed pulse output function, including the output pulse mode (pulse+direction,
CW/CCW, and A/B phase) and homing mode.
Take "Axis 0" as an example (axis numbers range from 0 to 3):

● Check "Axis 0".
● Configure the high-speed pulse output mode:

Pulse Reference
Form

Pulse+Direction
Forward rotation Reverse rotation

Positive logic

SIGN

PULSE

SIGN

PULSE

Negative logic

SIGN

PULSE

SIGN

PULSE

Network Configuration

‑126‑

Pulse Reference
Form

CW/CCW
Forward rotation Reverse rotation

Positive logic

CCW

CW

CCW

CW

Negative logic

CCW

CW

CCW

CW

Pulse Reference
Form

Phase A/B
Forward rotation Reverse rotation

Positive logic

Negative logic

● Homing mode
Methods 0 to 3 are supported. For details, see the homing diagram.

2. Create an instance of the axis, with data type HS_AXIS_REF. Take "Axis 0" as an example:

● The default name of the Axis 0 instance is HS_Axis0.
● Stroke Limit: soft limit
● Speed Limit: limits the maximum speed.
● Bias Speed: baseline speed when pulse is started
● Acc Method: trapezoid and S-curve

3. Configure the homing parameters, including the homing speed and creep speed.
This step must be used together with the function block "MC_Home_P".

4. Homing method diagram

Configuring High-Speed Input Interrupt

1. Check high-speed input interrupt X2.
Select X2 edge interrupt: raising edge, falling edge, and both raising and falling edges.

2. Configure the interrupt task.

Network Configuration

‑127‑

Launch the "HC_EnableInterrupt" function to add the X2 interrupt task. When the raising edge signal
of X2 takes effect, the program in the interrupt task starts to run.

Adding a High-Speed I/O Library

1. In the left device tree, double-click "Library Manager". The "Library Manager" page is displayed.
2. Click "Add Library". In the dialog box displayed, unfold "Misc", select "CmpHSIO", and click "OK".

The new high-speed I/O library is added.
3. In the library list, click the new high-speed I/O library, and unfold "HSIO". The function blocks of the

new high-speed I/O library are displayed.

High-Speed I/O Diagnosis

For details, see “9.7.2 High-Speed I/O Diagnosis” on page 504.

4.2.6 I/O Mapping Parameters

You can access the I/O mapping configuration page in two ways:

● In the left device tree, right-click a device. In the shortcut menu displayed, select "Edit IO mapping".
On the page displayed, the I/O mapping parameters of the current device and all its sub-devices are
displayed.

Network Configuration

‑128‑

● In the left device tree, double-click a communication interface module. On the page displayed, click
the "xx I/O mapping" tab. On the tab page displayed, the I/O mapping parameters of the current
device and all its sub-devices are displayed.

The following table lists parameters displayed on the page.

Parameter Description

Find Searches for the I/O mapping channels matching the keywords.

Filter Displays variables matching the filter rules.

Set
Continuous
Address

Re-allocates the I/O mapping addresses of the device as continuous addresses (available only in
the timing address allocation mode).

Variable ● Map the I/O mapping channel to the current variable: Double-click an item in the "Variable"
column, and then click "...". On the "Input Assistant" page displayed, select an existing variable
to be mapped and then click "OK". If the variable does not exist, a compiling error will be
reported.
● Map the I/O mapping channel to a new variable: Double-click an item in the "Variable" column,
input the name of the new variable in the text box, and then press "Enter". The name of the new
variable must meet the IEC programming specification; otherwise, a compiling error will be
report.

Mapping Click the icon to switch the mapping mode of the I/O mapping channel between "Create new
variable" and "Map to existing variable".

● : Indicates creating a new variable.

● : Indicates mapping to the existing variable.

Channel The name of the current I/O mapping channel.

Network Configuration

‑129‑

Parameter Description

Address The address allocated to the current I/O mapping variable. To specify a user-defined I/O address,
modify the address in the corresponding cell of "Address".

Address allocation modes include timing address allocation (default) and sequential address
allocation.

● Timing address allocation: Addresses for I/O mapping variables are allocated based on the
addition order of devices.
● Sequential address allocation: Addresses for I/O mapping variables are allocated based on the
position of devices in the device tree.
Set the address allocation mode: In the left device tree, double-click a PLC device such as
"Device(AC702)". On the page displayed, click "PLC settings". On the page displayed, set
"sequentially allocate I/O addresses" in the "Additional settings" section.

● When this item is selected, the sequential address allocation mode is used.
● When this item is de-selected, the timing address allocation mode is used.

Type The data type of the current I/O mapping variable.

Unit The unit of the current I/O mapping variable.

Description The description of the current I/O mapping variable.

Default The default value of the current I/O mapping variable.

Note: The default value is displayed only when "Behaviour for outputs in Stop" on the "PLC
settings" is set to "Set all outputs to default".

Current Value The actual value of the current I/O mapping variable during program running.

Note: This parameter is displayed only when the project is in online state.

Prepared
Value

The value to be written to the current I/O mapping variable. Double-click a cell in the "Prepared
Value" column to edit the prepared value. Then, you can press "Ctrl+F7" or use the menu
command to write the prepared value to the I/O mapping variable.

Note: This parameter is displayed only when the project is in online state.

Reset All
Mapping Var

Set the value of all mapping variables in the current I/O mapping table to a null value.

Note: This operation only resets the values of mapping variables, but does not reset default
values and addresses of mapping variables.

Always update
variables

Set the task execution mode of the I/O mapping variable. [1]

● Use parent device setting: I/O mapping cycle is not performed during system running.
● Enabled 1 (use bus cycle task if not used in any task): Select tasks having used the address of
the current device first. If no such task exists, use the bus task of the current device.
● Enabled 2 (always in bus cycle task): Use the bus task of the current device.

[1]: Task execution mode example of the I/O mapping variable

The address "%QB2" is used in the POU "PLC_PRG" and allocated to a module under the GL20
communication interface module that is an EtherCat slave, as shown in the following figure.

Network Configuration

‑130‑

Two tasks are available under "Task Configuration": ETHERCAT_C and MainTask. The ETHERCAT_C
task executes the ETHERCAT bus cycle, while the MainTask task executes PLC_PRG.

● When "Always update variables" of the communication interface module is set to "Use parent
device setting", no POU with data refreshing will be generated and the I/O data remains unchanged
during project running.

● When "Always update variables" of the communication interface module is set to "Enabled 1 (use
bus cycle task if not used in any task)", a POU with data refreshing is generated and this POU is
executed in the MainTask task.

● When "Always update variables" of the communication interface module is set to "Enabled 2
(always in bus cycle task)", a POU with data refreshing is generated and this POU is executed in the
EtherCat_C task.

● If the address is not used in PLC_PRG, the POU with data refreshing generated based on the I/O
configuration (no matter it is set to "Enabled 1" or "Enabled 2") will be executed in the EtherCat_C
task.

● The task in which the I/O configuration is executed is not strongly related to the task name. Instead,
it is related to the task depended by the bus cycle of the current device.

Description

● Cross references: After the I/O mapping channel is associated with the variable, you can double-
click the variable cell, and then choose "Browse" > "Browse Cross References" to view the cross
references of the current variable in the program.

● Address allocation: After an address is allocated to a device, this address is a resource of the device,
no matter whether it is mapped to a variable. Therefore, do not use the address allocated to the
device in the POU. If you do need to use this address of the device, map the address to a variable to
implement relevant functions.

● Mode switchover: Switchover from sequential mode to timing mode does not change the device
address allocation. However, switchover from timing mode to sequential mode causes re-allocation
of addresses based on the position of devices in the device tree.

● Sequential mode: In this mode, manual addresses are prioritized over automatic addresses. When a
manual address conflicts with an automatic address, the automatic address is re-allocated first.

Network Configuration

‑131‑

● Timing mode: In this mode, manual addresses have the same priority as automatic addresses.
When a manual address conflicts with an automatic address, the system prompts the conflict and
does not support address allocation.

● When a single I/O mapping channel (Device Control) is allocated to a specified address, the address
of this I/O mapping channel can be manually allocated. Bit0 to Bit15 are sub-elements of the I/O
mapping channel. Addresses of sub-elements cannot be manually allocated and are determined by
the address of the I/O mapping channel.

4.3 Expansion Card Configuration

Only the AM300-/AM500-series PLCs support expansion card configuration. Skip this section for PLCs of other series.

For how to configure expansion cards for the AM300/AM500 series PLCs, see the user guide of the
corresponding expansion card.

4.4 EtherCAT Configuration

4.4.1 Overview

EtherCAT is an open industrial field technology over the Ethernet. It features short communication
update interval, low synchronization jitter, and low hardware cost. EtherCAT supports the linear, tree,
star, and hybrid topologies. EtherCAT slaves must use dedicated communication chipset (ESC), and
EtherCAT masters can use a standard Ethernet controller.

For details about EtherCAT principles and related technologies, see the book "Industrial Ethernet
Fieldbus EtherCAT Driver Design and Applications" or visit the official website of the EtherCAT
Technical Group at https://www.EtherCAT.org.cn.

4.4.2 Common Functions

Installing a Device

EtherCAT device installation is to import the device description XML file in compliance with EtherCAT
Technology Group (ETG) standards into the programming software InoProShop. After the software
parses and processes the file, it generates the EtherCAT configuration devices that can be added and
deleted by users. InoProShop integrates all EtherCAT slaves of Inovance, and you do not need to install
them. If you need to use third-party EtherCAT devices, install the device description files provided by
the third-party vendors.

Two installation methods are available: installation on the "Network Configuration" page and
installation by using the menu bar.

Network Configuration

‑132‑

● Installation on the "Network Configuration" page

1. On the "Network Configuration" page, click "Import ECT File".

2. In the dialog box displayed, select the device XML file, and then click "Open".

● Installation by using the menu bar

1. In the menu bar, choose "Tools" > "Device Repository".

2. In the dialog box displayed, click "Install (I)".
3. In the dialog box displayed, select "EtherCAT XML Device Description Configuration Files", locate

the description file of the slave saved in the local PC, and click "Open".

Scanning a Device

The scanning function is recommended. The procedure is hot reset > logout > device scanning.

Network Configuration

‑133‑

● Prerequisites

■ The PC is properly connected to the PLC through a gateway.

■ The PLC is networked with the EtherCAT slave.
■ The port configuration of the programming software configuration is consistent with that of the

physically connected port of the PLC.
To keep configuration consistency, download the port configuration information first before
using the scan function.

■ The PLC stops.

● Procedure

1. In the left device tree, right-click "EtherCAT_x (EtherCAT Master SoftMotion)". In the shortcut
menu displayed, select "Scan Devices". The "Scan Devices" dialog box is displayed.

Network Configuration

‑134‑

Note
Scan TimeOut: Indicates the maximum timeout time of one scan operation. When no device is detected, increase
the timeout time. The minimum value is 20s.

2. Click "Scan Devices". The scanned devices are displayed in the device list.

3. Click "Copy all to project" to add these devices to the device tree and configuration.

● Scanning operations

■ Allocate an alias address

1. In the "Write Alias Address" column, double-click the alias address you want to modify and
input a new alias address.

The new alias address is displayed in a color font.

Network Configuration

‑135‑

2. Click "Assign Address" to make the new alias address take effect.

If the modification is successful, the system displays the following prompt:

■ Display the project differences
Select "Show Differences". The differences between the configuration device and scanned
device are displayed, as shown in the following figure.

—— When the current configuration device has no alias address, the system compares the device
types only, but does not compare the alias addresses. If the device types are matching, the
device names are displayed in green.

—— When the current configuration device has an alias address, the system compares the device
types and alias addresses. When both the device types and alias addresses are consistent,
the system determines that the two devices are one device; otherwise, the device names are
displayed in red.

The following table lists each function in the preceding table and its operation.

Network Configuration

‑136‑

No. Function Operation

① CopyBefore

Select the scanned device on the left and the current device on the
right, and click . The scanned device is inserted in front of the
selected device on the right. This command can also be used between
modules.

② CopyAfter
Select the scanned device on the left and the current device on the
right, and click . The scanned device is inserted behind the selected
device on the right. This command can also be used between modules.

③ Replace
Select the scanned device on the left and the current device on the
right (the left device and the right device must be of the same type),

and select . The right device is replaced with the scanned device.

④ CopyAll Click . Then all the devices on the right are cleared, and all the
scanned devices on the left are copied to the right side.

⑤ Delete Select a device on the right, and then click to delete it. This
command can also be used on modules.

■ Check whether the device alias takes effect after a scanned device is copied
After "Copy all to project" is clicked, the system sets the alias device of the scanned device
based on the slave communication mode set on the EtherCAT overview page.

—— If the slave communication mode set on the EtherCAT overview page is "Classic mode" or
"Sequential model", the "sequential model" is applied to the scanned device and the device
generated based on the project configuration by default, and the alias address of the
scanned device is saved to the device data but does not take effect.
In the following figure, the slave communication mode on the EtherCAT is set to "Classic
mode", the type of the scanned device is the same as that of the configured device, but their
alias addresses are different.

After "Copy all to project" is clicked, the system creates a device object based on the type of
the scanned device and saves its alias address. However, the communication mode of this
device is still "Sequential model" and its alias address does not take effect.

After the communication mode is switched to "Alias mode", the device alias address is the
scanned one.

—— If the slave communication mode set on the EtherCAT overview page is "Alias mode", the
"Alias mode" is applied to the scanned device and the device generated based on the project
configuration by default, and the alias address of the scanned device is saved to the device
data and takes effect immediately.
In the following figure, the slave communication mode on the EtherCAT is set to "Alias
mode", the type of the scanned device is the same as that of the configured device, but their
alias addresses are different.

After "Copy all to project" is clicked, the system creates a device object based on the type of
the scanned device. The device communication mode is "Alias mode" and the alias address
of the generated new device object is the scanned alias address.

● Errors
When the port information in the programming software configuration is different from the
information of the port connected to the PLC, the following prompt is displayed.

Network Configuration

‑137‑

In this case, download the port information in the programming software again.

For example, the port configured in the programming software configuration is "EtherCAT_C", but
the actual MAC address is "EtherCAT_D", the device of port D is displayed while the device of port C
is scanned.

If you log out after the EtherCAT bus starts and perform the device scanning operation, the
scanning operation may fail or return an inaccurate result. The reason is that reading the slave
information (for example, object directory 0xF050) through SDO communication is timed out, so the
scanning result is affected. (SDO communication is asynchronous, so the CPU load, bus cycle
period, and user program execution time will affect the SDO communication.)

Updating a Device

If the master version does not match or needs to be upgraded, you can run the device update
command.

Procedure: Right-click the EtherCAT master. In the shortcut menu displayed, select "Update Device".
The following dialog box is displayed. Click "Display all versions (for experts only)", select the desired
version, and click "Update Device".

Network Configuration

‑138‑

Editing I/O Mappings

After you click "Edit IO mapping", the following page is displayed.

Network Configuration

‑139‑

In the "Filter" field, select a filter to filter out undesired items.

Bus Tasks

All IEC bus tasks of the PLC are scanned and executed cyclically strictly based on the same logical
sequence. The logical sequence includes four steps: input update (1), IEC task execution (2), output
update (3), bus cycle execution (4), as shown in the following figure.

Figure 4-8 Bus cycle tasks

Each step is described in the following table.

No. Step Color Description

1 Input update Green
Before the IEC task starts, data is read from the bus input buffer, and
copied to the task-related input variable.

2 IEC task
execution

Orange Scan and execute the POU under the bus task.

Network Configuration

‑140‑

No. Step Color Description

3 Output update Red
Before the IEC task is completed, the bus-related output variables in
the task are copied to the bus output buffer.

4 Bus cycle Blue

It is the bus communication execution program implemented by
bottom-layer I/O drive. It includes two functions: Transfer the data
from the bus output buffer to the data reception buffer of the remote
slave; and transfer the data in the sending buffer of the remote slave to
the bus input buffer.

● If an output variable is used by multiple tasks, the variable value is uncertain (the output variable value of this
task may be changed or overwritten by other tasks).

● If a task is interrupted by another task with a higher priority, the high-priority task reads data from the input
buffer, and synchronizes the data to the input variable of the current task. Therefore, the input variables within a
scan cycle may be different. To avoid this problem, copy the input variable value before the task starts so that
the task will call the copied input variable.

Special Bus Cycle Action of EtherCAT

The bus data in the last cycle is copied before IEC input.

Network Configuration

‑141‑

The "Enable each task message" option in EtherCAT master configuration is available. After this option
is activated, the additional information of each task will be sent to the device. In this situation, bus
communication can be executed under multiple tasks, to reduce the bus load.

The following figure shows an EtherCAT bus cycle table when the "Enable each task message" option is
activated.

Figure 4-9 EtherCAT bus cycle table

Note
● After the EtherCAT master is automatically inserted, the "EtherCAT_***" task is also inserted to the current task

configuration.
● The bus cycle task of the EtherCAT master must be executed in the same task as the EtherCAT_***.EtherCAT_

Task.
● The input and output of the EtherCAT master are executed in the same task as EtherCAT_***.EtherCAT_Task.

The corresponding EtherCAT task must be configured for the bus cycle task in I/O mappings of the EtherCAT
master. Therefore, it is recommended to execute the device control program (such as the PLCOpen axis control
command) under this task.

Network Configuration

‑142‑

4.4.3 EtherCAT Master

General settings

The EtherCAT master configuration dialog box provides main settings of the master.

Autoconfig Master/Slaves

If you select this option, the main settings of the master and slaves will be automatically completed. In
this case, all the editors of slaves will not display the FMMU/Sync tab.

Note
● The automatic settings are default settings, which are strongly recommended to standard applications.
● If this option is not selected, you must manually complete all settings of the master and slaves. Therefore, you

must have professional skills.

Network Configuration

‑143‑

EtherCAT NIC Setting

● Destination Address (MAC)
The MAC address of the EtherCAT network member that receives packages. If "Broadcast" is
selected, use a broadcast address (FF FF FF FF FF FF).

● Enable Redundancy
If a ring topology is selected, the redundancy option needs to be enabled. When this option is
enabled, if a single point failure occurs in network connection, the EtherCAT network can still work
normally. After this option is enabled, you also need to define the second EtherCAT NIC.

Figure 4-10 EtherCAT ring topology (redundancy)

● Source Address (MAC)
The MAC address of the PLC.

● Network Name
The NIC name, including the following options:

● Select network by MAC/Select network by Name
Each EtherCAT NIC has a unique MAC address. Therefore, if "Select network by MAC" is selected,
this project cannot be used on other devices.

If you need the project to be independent of devices, click "Select network by Name". In each
option, you can click "Browse..." to display the MAC addresses of available target devices and their
names, as shown in the following figure.

Network Configuration

‑144‑

● Redundant EtherCAT NIC Setting
If "Enable Redundancy" is selected, this setting is available. You can set the options of redundant
EtherCAT NIC.

Distributed Clock

● Cycle time [μs]
The execution cycle time of the EtherCAT master function. It must be the same as the cycle time of
the IEC task bound to the EtherCAT master. If the distributed clock function of the slave is enabled,
the cycle time is synchronized with the "Distributed Clock" settings in the slave editor.

● Sync Offset [%]
The ratio of the cycle time of the EtherCAT master's IEC task (PLC task) to the reference distributed
clock (generally, SYNC0 interrupt), ranging from –50% to +50%, with the default value 30%.

Sync offset [%] = (SYNC0 interrupt time – PLC task cycle start time)/PLC task cycle time

Network Configuration

‑145‑

Note
● By default, the PLC task cycle time is the same as the distributed clock cycle time of the slave.
● In actual settings, consider the clock jitter of the controller master (system instantaneity), PLC task execution

time, PLC task cycle time, and number of slaves.
● In InoProShop V1.5.0 and later versions, the EtherCAT master type of new projects is "EtherCAT Master

SoftMotion", which is different from the "EtherCAT Master" type in earlier versions. The default sync offset of the
master is 30s. Do not modify this value unless specially required; otherwise, an EtherCAT data synchronization
error may occur.

● Sync Window Monitoring
After this option is enabled, synchronization of the slave is monitored.

● Sync Window
The synchronization window monitoring time. If the synchronization information of all slaves is
included in this window, the xSyncInWindow (IoDrvEtherCAT) variable is set to TRUE; otherwise, set
it to FALSE.

● Diagnostic Info
In the online mode, the diagnosis information includes the information about EtherCAT master
startup and running.

Options

Network Configuration

‑146‑

● Use LRW instead of LWR/LRD
This option enables the slave-slave communication. EhterCAT master logical addressing will use the
combination of read/write command (LRW) to replace the read-only (LRD) and write-only (LWR)
commands.

● Enable messages per task
After this option is selected, the read and write commands of input and output information will be
completed by different tasks.

● Auto restart slaves
After this option is selected, the master will restart the slaves upon communication error.

Master Settings

The master settings can be completed only when the auto mode is disabled (see the following
description); otherwise, these settings are automatically completed and hidden in the dialog box.

● Image In Address: Inputs the first logical address of the first slave.
● Image Out Address: Outputs the first logical address of the first slave.

Function Code

Function codes refer to the vendor-specific parameters of Inovance servo products. By using the
master options, you can read/write, import, and export vendor-specific parameters of multiple
products, for debugging and maintenance.

● Select All: Selects all slaves, axes, and servo function codes under the axes.
● Cancel All: Cancels all selected options.
● Read the Parameter: Reads the servo function codes carrying the RO or RW attribute when the

servo is running.

Network Configuration

‑147‑

● Write the Parameter: Writes the servo function codes carrying the WO or RW attribute when the
servo is running.

● Export Function Code: Exports servo function codes of all slaves to an Excel file.
● Import Function Code: Imports function codes of all slaves from an Excel file. If the configuration is

inconsistent with that in the file, an error is reported.

Upgrade

● Select All: Selects all slaves.
● Cancel All: Cancels all selected slaves.
● Download EtherCAT XML file: Downloads the EtherCAT slave's XML file from InoProShop to the

EEPROM of the slave. To perform batch download, select multiple slaves.

Network Configuration

‑148‑

Sync Unit Assignment

● Sync Unit: Groups the slaves. If any slave in the group is lost, the entire group is lost, but other
groups are not affected.

● Add: Adds a group. Then you can select the slave group.

Overview

The "Overview" page displays the slave communication mode and communication state, as shown in
the following figure.

The following table lists the tabs on this page and their descriptions.

Parameter Description

UpdateData Refreshes the slave data once.

Auto Update Cyclically refreshes monitoring data

Network Configuration

‑149‑

Parameter Description
- ● Classic mode: Slave communication supports a

hybrid mode of alias addresses and sequential
addresses. The alias addresses are editable only
in the slave window, but are not editable in the
overview window.
● Sequential model: Device communication is
performed based on sequential addresses. The
alias addresses are editable in both the slave
window and overview window.
● Alias mode: All slaves communicate with each
other with their alias addresses. In this case, the
alias addresses are editable only in the overview
window, but are not editable in the slave window.

Export Exports the table from the page.

ResetErrorFrameCount Clears the error frame count and link lost count.
Reset Failed Slave Clears the fault information on the overview page.

The following table lists the parameters on this page and their descriptions.

Parameter Description
Name Displays the name of all slaves under the master.

Slave Address Displays the address of the slave.

Alias Address Displays the alias of the slave when the slave
communication mode is set to "Alias mode".

● After the slave communication mode is set to
"Alias mode", an alias address is assigned to
every new slave and "Alias mode" is selected.
● After the slave communication mode is set to
"Classic mode" or "Sequential model", no alias
address is assigned to the new slave and
"Sequential model" is selected.

State ● Initialize: The slave is being initialized.
● Pre-Op: The slave is in the pre-operation state.
● Safe-Op: The slave is in the safe operation state.
● Op: The slave is in the operation state.
● BootStrap: The slave is in the boot state.
● No Communication: The communication of the
slave fails.
● Error: The slave state is incorrect.

ErrorFrameCount Counts the error of each activated port.

LinkLostCount Counts the disconnected links of each activated port.
Port Displays the loading state of each port.

Fault Information Describes the slave fault.

EtherCAT I/O Mapping

On the "EtherCAT I/O Mapping" tab page, you can set the bus cycle task for the master.

Network Configuration

‑150‑

EtherCAT IEC Object

This is a tab on the EtherCAT master configuration editor, in which the instance (variable) of
IODrvEtherCAT type is specified for EtherCAT I/O, so that the PLC connected to EtherCAT can be
controlled by the user program. For the description of mapping, see the section "I/O Mapping".

The automatically created master instance is displayed at the bottom of the "IEC Objects" dialog box.

Note
The variables and types of mappings must be consistent.

Information

This dialog box displays the following information about the current module: name, vendor, group,
category, ID, and version.

Network Configuration

‑151‑

4.4.4 EtherCAT Slave

General Settings

The following figure shows the "General" page of the EtherCAT slave, which provides basic settings of
the slave.

Address

If "Autoconfig Master/Slaves" in the master editor is not enabled, the following options are available:

● AutoInc Address: Indicates the automatically incremental address (16 bits), which is determined by
the physical topology location of the slave in the network. This address is used only when the

Network Configuration

‑152‑

EtherCAT master is started. The EtherCAT slave address is allocated to the slave at the
corresponding physical topology location by using the sequential addressing method.

During sequential addressing, according to the EtherCAT protocol, the automatically incremental
address of the slave is determined by its connection location in the physical topology network, and is
represented by a negative number. Sequential addressing sends the subframe, in which the
automatically incremental address is increased by 1 every time the subframe passes a slave. When the
physical slave receives the frame, it determines whether the frame belongs to itself by checking
whether the automatically incremental address in the frame is 0. This mechanism is called sequential
addressing or automatically incremental addressing.

● Slave Address: Indicates the final address (formal address) of the slave. It is assigned by the master
when the master starts. This address is independent of the actual location on the network. The
slave address is irrelevant to the connection order on the network segment.

● Enable Expert Settings: If this option is enabled, the settings of the distributed clock, auto check
upon startup, timeout, cycle unit control, and watchdog can be performed.

Distributed Clock

● If "Enable" is selected, the distributed clock function is enabled.
● Sync Unit Cycle (µs): If the distributed clock function is enabled, the syn unit cycle value is the same

as the cycle time of the EtherCAT master.
● Select DC: This option provides all distributed clock settings in the device description file, including

AutoRun, SM Event Synchron, and DC Synchron. The following table describes options.

No. Option Function

1 AutoRun
In this mode, the local control cycle is generated by a local timer interrupt.
The cycle time is determined by the master. This is an optional function of
the slave.

2 SM Event Synchron

Synchronization is triggered by the data input or output event within the
local cycle. The master can write the sending period of the process data
frames to the slave, and the slave checks whether this cycle time is
supported or optimizes the cycle time. This is an optional function of the
slave. Synchronization is usually triggered by data output events. If the
slave has only the data input event, synchronization is triggered by the
data input event.

3 DC Synchron
Synchronization is triggered by the SYNC event within the local cycle. The
master must complete data frame sending before the SYNC event occurs.
Therefore, the master clock must be synchronized with the reference clock.

4
SYNC0:

SYNC1:

It indicates the slave synchronization signal 0/1. The distributed clock
control unit (internal function of the EtherCAT dedicated communication
chip) of the slave can generate two synchronization signals: SYNC 0 and
SYNC 1, which provide the interrupt sign to the application-layer programs
of the slave, or directly trigger the output data update.

5
Enable SYNC 0:

Enable SYNC 1:

After this option is selected, SYNC0/SYNC1 synchronization signals are
started.

Sync Unit Cycle: If this option is selected, the synchronization cycle time of
the slave is (master cycle time x selected coefficient). The "Cycle time (μs)"
field displays the current cycle time.

● User Defined: If this option is selected, you can enter the desired cycle time in μs in the "Cycle time
(μs)" field.

Diagnosis

Network Configuration

‑153‑

This part is available only in the online mode.

● Current State: Displays the current communication state machine of the slave. The possible values
include initialization, pre-operation, safe operation, operation, and BootStrap (not supported by
Inovance servo currently). If the state is "Op", the configuration of the slave is completed.

Options

Options: If a slave is set as optional, no error message is generated, so that the device will not be
included in the bus system. To enable this option, you must save a station address in the slave.
Therefore, define and write the station alias address into EEPROM. In addition, this option is valid only
when "Autoconfig Master/Slaves" in EtherCAT master settings is selected and this option is supported
by the EtherCAT slave.

Startup Checking

By default, the system automatically checks the vendor ID or product ID after startup. If the IDs do not
match, the bus stops running and does not perform the subsequent operations. This avoids
downloading incorrect configuration.

Timeout

By default, the following operations are not defined as timeout. If you need to know whether the
operations exceed the specified time, set the time here.

● SDO Access: Specifies the timeout interval in which the service data object (SDO) of the EtherCAT
master accesses the slave.

● I -> P: The communication state machine of the slave changes from initialization to pre-operation.
● P -> S / S-> O: The communication state machine of the slave changes from pre-operation to safe

operation, or from safe operation to operation.
● DC cyclic unit control: Allocated to the local microprocessor to set the distributed clock options.

This function is completed in register 0x980 of the EtherCAT slave. The possible values include
cyclic unit, latch unit 0, and latch unit 1.

Watchdog

● Set multiplier: Sets the frequency multiplication ratio of the watchdog timer to determine the
minimum increment unit. The default value is 2498. The minimum increment unit is 100 μs.

● Set PDI watchdog: If the process data interface (PDI) watchdog is enabled, when the PDI
communication time of the EtherCAT slave exceeds the specified value, the watchdog is triggered.

● Set SM watchdog: If the synchronization management (SM) watchdog is enabled, when the process
data (PD) communication time of the EtherCAT slave exceeds the specified value, the watchdog is
triggered

Slave Alias

The settings are valid only when "Options" is selected and the slave supports alias address (defined in
the device description file). If the alias address of the slave has been configured, the slave can normally
run without the need of modifying the user program configuration when you adjust its location on the
physical topology network.

Note that, after the slave alias address is changed, you must download the user program again to
make the modification effective. In addition, the alias addresses of some slaves can take effect only
after power cycle. For details, see the slave user guides.

Network Configuration

‑154‑

● Disable: If this option is selected, the slave will not detect the alias address.
● Configured Station Alias (ADO 0x0012): When this option is supported by the slave and "Options" is

selected, the alias address can be written in the online running state.
● Write into EEPROM: This option is available only in the online mode. It writes the defined address

into the slave EEPROM. If the slave does not support this option, this option is invalid and the slave
cannot work with the alias.

● Actual address: This column is available only in the online mode. It displays the actual address of
the slave. It is used to check whether the EEPROM writing command is successful.

● Explicit Device Identification (ADO 0x0134): Reserved.
● Data Word (2 Bytes): Reserved.

FMMU/Sync

If the autoconfig mode of the master is not enabled, this dialog box is only provided by the EtherCAT
slave configuration editor. It displays the slave's fieldbus memory management units (FMMUs) defined
in the device description file and the synchronization manager (Sync). These settings can be modified,
for example, the communication between slaves.

Note
These are advanced settings, and are unnecessary for standard applications.

FMMU

This tab allows you to configure the FMMUs of the slave used to process the process data, including the
logical address (Ph. Start Address) mapping to each physical address (Ph. GlobStartAddr). You can add
a new unit by clicking "Add..." or "Edit..." in the FMMU dialog box.

Sync Manager

This tab displays the synchronization manager of the slave. On this tab page, you can set the following
information: the synchronization manager type (Mailbox In, Mailbox Out, Inputs, or Outputs), physical
start address, access type, buffer, and physical address to be accessed by the interrupt. In the
synchronization manager editor, you can click "Add" or "Edit" to add or modify synchronization
management.

Network Configuration

‑155‑

Process Data

In the automated control system, application programs exchange data in two modes: time-critical and
non-time-critical. Time-critical means that the specified action must be completed within the specified
time window. If the action cannot be completed in the specified time window, the control is
ineffective. The process for periodically sending time-critical data is called PDO. Non-time-critical data
does not need to be periodically sent, and uses MailBox data communication SDO in EtherCAT.

The first row of the "Process Data" tab page is the PDO edit function key and displays PDO information,
as shown in the following figure.

Network Configuration

‑156‑

● Add: Adds a PDO option based on the PDO group attributes (only editable attributes). You can add
one group or multiple groups of data. To add multiple groups of data, press "Ctrl+" and "Shift+",
and click the desired groups. Ensure that the object dictionary indexes of the options to be added
are correct. Note that the number of PDOs to be added cannot exceed the limitation described in
the servo guide.

● Edit: Edits a PDO option based on the PDO group attributes (only editable attributes).
● Delete: Deletes a PDO option based on the PDO group attributes (only editable attributes). You can

delete one or multiple options. To delete multiple options, press "Ctrl+" and "Shift+", click the
desired groups, and then click "Delete". Or right-click the selected options and select "Delete" from
the shortcut menu.

● Collapse all: Collapses all PDO groups.
● Filter: Options are "Display All", "Display Output PDO", "Display Input PDO", "Display Input and

Output PDO", "Display Only Output PDO", and "Display Only Input PDO".
● Load PDO: The PDO group data of the slave can be uploaded to the programming software only

when the slave is running.
● PDO Assign: After this option is selected, click "DisplaySystemParameter" on the "Startup

parameters" page. Then the input and output PDO group assignment information is added to the
startup parameter group, as shown in the following figure.

Network Configuration

‑157‑

● PDO Config: Select "PDO Config" and click the "DisplaySystemParameter" on the "Startup
parameters" page. Then the input and output PDO group information is added to the startup
parameter group, as shown in the following figure.

● PDO Len: The data size includes the total input and output PDO length.

Startup Parameters

The startup parameters can be transmitted to the slave through the service data object (SDO) upon
system startup. The startup parameters include the basic configuration parameters used for the
startup of the slave. The page is as follows.

● Add: Adds an SDO project to the startup parameter list. The object dictionary dialog box is
displayed, as shown in the following figure.

Network Configuration

‑158‑

Before adding the SDO, you can modify its parameters below the edit bar, including the index, sub-
index, bit length, and value, to form a new startup parameter. To add multiple groups of startup
parameters, press "Ctrl+" and "Shift+", and click multiple groups of startup parameters.

● Edit: Edits the options. Read-only options cannot be edited, such as system parameters.
● Delete: Deletes the options. To delete multiple groups of startup parameters, press "Ctrl+" and

"Shift+", click multiple groups of startup parameters, and click "Del" or press the "Del" key.
● Move Up, Move Down

The SDO list order (from top to bottom) indicates the order in which the startup parameters are
transmitted to the module. By clicking the "Move Up" and "Move Down" buttons, you can change
the parameter transmission order.

● DownLoadAll, CancelAllDownload
After an SDO is downloaded, you do not need to download it again. By clicking
"CancelAllDownload" (system parameters cannot be canceled), you can cancel the attribute
download. You can also select some attributes to be downloaded. By clicking "DownLoadAll", you
can download all attributes.

● DisplaySystemParameter
After "PDO Assign" and "PDO Config" are selected, the parameters added to the SDO are only for
comparison.

● To edit the "Value" and "Comment" columns of the SDO, press "Space" or click the blank space.

Network Configuration

‑159‑

Note
If an error occurs in SDO transmission, the following operations are supported:

● Abort if error: If an error is detected, SDO transmission is stopped.
● Jump to line if error or Next Line: If an error is detected, SDO transmission skips to the line of which the line

number is specified. (The line number is displayed in the line column.)

Figure 4-11 Error handling configuration example

Slots

● On the "Slots" tab page, you can configure modules or functions for slaves in compliance with the
ETG5001.1 protocol.
As shown in the following figure, the current mode is CSP_CSV.

The following table lists available modes.

No. Mode Definition
1 CSP Cyclic Synchronous Position

2 PP Profile Position
3 CSV Cyclic Synchronous Velocity

4 PV Profile Velocity

5 CST Synchronous Torque

6 PT Profile Torque

If the position velocity mode does not meet requirements, change it to another mode, for example,
CST.

The default mode "CSP/CSV" is applicable to most application scenarios. If the field drive shaft
needs to use CSP and CST, select "CSP/CST".

Network Configuration

‑160‑

Note
● Change: Switches to another mode.
● Delete: Deletes the current mode.
● To change the mode, delete the current slot mode first.

After the CSP_CSV mode is changed to the CST mode, the process data and I/O mapping are also
changed:

Before the change to CST:

After the change to CST:

Network Configuration

‑161‑

● Download SlotsConfig: After the module is configured, the configured slot information needs to be
downloaded to the device. After this option is selected, the following parameters are added to the
startup parameters:

① - Indicates the mode ID of the current module.

② - Indicates the number of modes of the module to be downloaded

Online

You can use the slave online configuration editor only after logging in to the device. On this page, you
can switch the slave state machine manually, read/write the EEPROM of the slave, perform FoE-based
upload/download, and slave firmware upgrade.

Network Configuration

‑162‑

The EtherCAT state machine coordinates the state relationship between the master and slave
applications during initialization and operation.

EtherCAT state conversion order: initialization > pre-operation > safe operation > operation.

The following table lists the state conversion process.

The "Init", "Pre-Op", "Safe-Op", "Op", and "ClearError" keys can be used for debugging.

EtherCAT file access

Network Configuration

‑163‑

To transmit a firmware file to the slave for firmware upgrade, click "Bootstrap" to convert the slave
into the "Bootstrap" mode.

By clicking the corresponding button, you can download and upload the firmware file. Then a save or
firmware file selection dialog box is displayed. The file is transmitted by using text string and
password. The information is provided by the slave, and recorded in the data table of the slave. During
firmware upgrade, do not power off the device or switch the state. Perform the operations after the
upgrade is complete.

EEPROM access

Slave configuration can be read from EEPROM and written into EEPROM. Similar to firmware file
transmission, this operation also displays a dialog box, asking you to save or open the file.

You can run the "write EEPROM XML" command to write the slave configuration to the device through
an XML file. This command is valid only when the XML file contains configuration data (in the
configuration data part).

ClearError

When the current state has an error, click this button to clear the error.

COE Online

The online COE values can be read only when the bus is normal and you have logged in to the PLC, as
shown in the following figure.

Network Configuration

‑164‑

Network Configuration

‑165‑

EOE settings

EtherNET over EtherCAT (EOE) allows any EtherNET device to connect to EtherCAT through a
conversion terminal, without affecting the instantaneity of EtherCAT. Similar to popular Internet
protocols (such as TCP/IP, VPN, and PPPoE(DSL)), Ethernet frames are transmitted using the EtherCAT
protocol. This allows standard network devices to connect to terminals, such as printer and PC,
through switches.

For slaves supporting EOE, you can configure the communication function. The preceding page is
available only when the device supports EOE.

● Virtual Ethernet Port: Enables the EOE function for the slave. If this option is selected, a special
virtual MAC address must be specified.

● Switch Port: Uses this device as an IP port. The Ethernet communication parameters must be set.
● IP Port: Uses this device as an IP port. The Ethernet communication parameters must be set.

Ethernet communication parameters must be set based on the virtual Ethernet adapter parameters.
Four bytes are assigned to each of the IP address, subnet mask, and default gateway to identify the
slave on the network. When you hover the cursor over the edit area, you can modify the default
settings.

Note
The IP port must be in the same network segment as the virtual Ethernet adapter. For example, if the Ethernet
adapter's IP address is 192.168.1.1 and subnet mask is 255.255.255.0, the IP port must be within the range from
192.168.1.2 to 192.168.1.254.

● DNS Server: The IP address of the DNS server.
● DNS Name: The name of the DNS server.

Network Configuration

‑166‑

Servo Function Codes

Function codes refer to the vendor-specific parameters of Inovance servo products. On the "Function
Code" tab page of the slave, you can read, write, import, and export vendor-specific parameters for
debugging and maintenance, as shown in the following figure.

● Select All: Selects all servo function codes or cancels all selections.
● Select Page: Selects all or cancels all selections on the current page.
● Read: Reads the selected parameters only when the slave is in the operation state and the project

attribute is "Read".
● Write: Writes the selected parameters only when the slave is in the operation state and the project

attribute is "Write".
● Export: Exports the selected function codes.
● Import: Imports function codes.

ESC Register

"ESC Register" is available only when the "Enable Expert Settings" option is selected. It is used to read
the ESC chip register address in advanced debugging, as shown in the following figure.

Network Configuration

‑167‑

● Select All: Selects all items.
● Cancel All: Cancels all selections.
● Read: Reads option values in the operation state.
● Write: Writes the values carrying "Write" attributes in the operation state.
● Export: Exports the selected items in the XML format.
● Import: Imports a valid XML file. Only the exported XML items are displayed.
● Shortcut menu: Implements conversion among hexadecimal, decimal, and binary formats.

Network Configuration

‑168‑

EtherCAT I/O Mapping

This is a tab on the EtherCAT slave configuration editor, in which the ETCSlave instance (variable) and
I/O variable defined by the slave are specified for EtherCAT I/O. Therefore, the EtherCAT slave
connected to the PLC can be controlled by user program.

For the description of mapping, see the section "I/O Mapping".

The automatically created slave instance is displayed in "IEC Objects" of the master instance at the
bottom of the dialog box.

Note
The variables and types of mappings must be consistent.

State

This configuration editor is used to configure the EtherCAT slave, including the NIC and internal bus
system status information (such as startup and stop), and diagnosis information of the specified
device.

Information

This tab page is provided in EtherCAT master or slave configuration. The configuration of a module
includes: Name, Vendor, Categories, Version, Type, Order ID, Description, and Image.

4.4.5 CiA402 Axis

After adding a servo slave, double-click an axis. The axis configuration page is displayed. The following
is the description of the options on the axis configuration page from top to bottom.

General Setting

Axis general settings include virtual axis and physical axis. The definitions are as follows.

Network Configuration

‑169‑

Type Function

Virtual mode
In this mode, the device runs without a physical servo or motor. It obtains desired parameters
by simulated operation. This mode is not affected by external environment.

Physical mode
In this mode, the device must run with a servo and motor. Some parameters can be obtained
only in the physical mode, for example, online COE. This mode may be affected by external
environment, for example, the trace operation.

Settings of virtual and physical axes

Settings of modulo and finite modes

The following table lists functions on the page.

No. Option Function

1 Virtual mode
If this option is selected, the virtual axis mode is used; otherwise, the
physical axis mode is used.

2 Axis type
Modulo mode: Axis locations are added or reduced in modulo way.

Finite mode: Axis locations are added or reduced within a specified range.

3 Software limits
After this option is selected, the negative and positive location limits on axis
are applied to the modulo mode.

Network Configuration

‑170‑

No. Option Function

4 Software error
reaction

It is relevant to software limits, and is effective only when the software limits
function is enabled. After this option is selected, if the axis location exceeds
the software limit,

the software reacts in response to the error. That is, it decelerates to the
maximum distance.

5 Modulo settings

It applies to the finite mode to limit the finite cycle. This parameter is
associated with the "command pulse count per motor rotation" parameter
on the "Scaling" page, the homing parameters on the "Homing Setting"
page, the maximum velocity parameter on the "Mapping/Other Setting"
page. When setting this parameter, note the associated parameter settings.
If the associated parameter settings do not match this parameter, an error
will be reported and the correct parameter values will be displayed.

6 CNC Dynamic limits Applied to the settings of the CNC function axis.

7 Velocity ramp type Applied to the axis velocity change track.

8 Identification The external ID of the axis.

9
Position lag
supervision

The axis operation mode when the position lags.

The following figure shows the axis operation in the modulo mode after the servo starts, including the
real-time position, velocity, acceleration rate, torque, and communication status. If an error occurs,
the error information is displayed.

Network Configuration

‑171‑

Note
If the encoder location information is lost, check whether the encoder battery is properly connected and fully
charged. Store the battery in an environment within the specified temperature range.

Scaling

On this page, you can calculate the number of pulses by setting the related parameters.

Network Configuration

‑172‑

The following table lists options and functions in the previous figure.

No. Option Function

1 Unit in application
Sets the length unit as needed. After a unit is selected, the unit
settings in axis general settings, scaling, homing settings, and
mapping/other setting modules are also changed.

2 Invert Direction Enables the axis to run in the invert direction

3
Command pulse count per
motor cycle

Sets the encoder resolution of the motor, namely, the number of
pulses required for a motor to rotate a cycle. The default value is
1048576 (Inovance 20-bit encoder).

Network Configuration

‑173‑

No. Option Function

4 Do not use gearbox

Sets the work travel distance per motor rotation according to the
device situation. Work travel distance per motor rotation: travel
distance (unit in application) of the worktable (such as belt pulley,
gear, and reducer) from the end of machinery per rotation. The
number of pulses can be calculated by referencing the unit
conversion formula.

5 Use gearbox

Sets the work travel distance, numerator of gear ratio, and
denominator of gear ratio per motor rotation according to the
device situation. Work travel distance per motor rotation: travel
distance (unit in application) of the worktable from the end of
machinery per rotation; numerator of gear ratio: number of teeth
of the worktable; denominator of gear ratio: number of teeth of the
motor gear. The number of pulses can be calculated based on the
axis type selected in axis basic settings and the corresponding
reference unit. Note: The denominator and numerator of gear ratio
can be scaled up and down by ratio.

Application Example

1. The motor directly drives the screw rod to move, and the motor moves 10 mm per circle around the
screw rod. The motor is Inovance IS620N incremental motor (20-bit encoder resolution ratio). The
configuration is as follows:

2. The motors are connected by driving turnplate. The reduction ratio between motor and turnplate is
30:1. (If the number of motor gear teeth is 1, the number of worktable teeth is 30. That is, when the
worktable gear rotates 1 round, the motor gear rotates 30 rounds.) The travel distance of the
turnplate is 0-360 degrees. The motor is the Inovance IS620N absolute motor (23-bit encoder
resolution). The configuration is as follows:

Network Configuration

‑174‑

Note
After the numerator of gear ratio, denominator of gear ratio, and work travel distance per motor rotation are modi-
fied, the axis parameters on other pages are affected. Therefore, you need to modify them accordingly.

Homing Setting

Homing settings include the graphic parameter settings for axis homing, as shown in the following
figure. This page provides graphic setting instruction, so you can select the homing mode from the
drop-down list without reading the servo guide. In this way, you can visibly and easily complete
parameter settings, as shown in ① in the following figure.

The following table lists options and functions in the previous figure.

Network Configuration

‑175‑

No. Option Description

1 Homing methods
The homing method of the drive. A total of 35 options are supported (the
actual homing method is determined by the drive). The diagrams below vary
with the homing method. Select a homing method as needed.

2 Homing Vel

The high velocity of the axis when searching for the signal of the deceleration
point, for example, H in the figure.

Its value is a floating point number with a minimum retention of 6 decimal
places, compatible with the system of commas as decimal points.

3 Acceleration

The acceleration rate of the axis when searching for the velocity change.

Its value is a floating point number with a minimum retention of 6 decimal
places, compatible with the system of commas as decimal points.

4 Homing Crawl Vel

The low velocity of the axis when searching for the homing, for example, L in
the figure.

Its value is a floating point number with a minimum retention of 6 decimal
places, compatible with the system of commas as decimal points.

5 Time Limit
The total homing time. If timeout, an alarm is reported. It is the maximum
time allowed for the axis performing the homing operation. If homing times
out, the axis homing operation fails.

Network Configuration

‑176‑

Mapping/Other Setting

The following table lists options and functions in the previous figure.

Network Configuration

‑177‑

No. Option Description

1 Other Setting

Sets the maximum values and velocities of positive and negative torques.

Max Positive Torque/Max Negative Torque: Torque instruction limits set for protecting
the drive. When the drive torque value is larger than the limit, the actual drive torque
value is changed to be consistent with the limit.

Max Velocity: Limits the velocity within the specified limit. If the torque value is larger
than the mechanical load torque, the motor keeps speeding up, and overspeed may
occur, which damages the mechanical device. After a velocity limit is set, the actual
velocity will be kept within the limit.

Its value is a floating point number with a minimum retention of 6 decimal places,
compatible with the system of commas as decimal points.

Note: The maximum velocity cannot be set to 0; otherwise, an error may occur when
the axis runs.

2 Mapping

When "Automatic mapping" is selected, the slave is associated with the axis. The slave
data is directly mapped to the axis. If this option is not selected, you can manually
modify the address in the axis mapping data. Specifically:

The input format is %I + Type letters + Arabic numbers.

The output format is %Q + Type letters + Arabic numbers.

Type letters (bytes occupied by the type) include SINT-B, UINT-W, DINT-D, and UDINT-D.

When a compiling error is reported during manual address input, delete the input
address and enter the correct address.

Note: The input address must be quoted by single quotes. If a compiling error is
reported by the display is normal, delete the displayed result and enter the address in
correct format.

Note: To modify the mapping data manually with "Automatic mapping" selected, right-click the target
PDO and click "Delete" in the shortcut menu, or select the target PDO and press the "Delete" key on
the keypad. If an item is deleted by mistake, restore the default mapping table to undo the operation.

Information

This page displays the axis basic settings, including Name, Vendor, Group, Categories, ID, Version,
Module Number, and Description.

Network Configuration

‑178‑

If the axis parameter settings are not modified, the default parameter settings of PDO and SDO are also
retained. If the axis parameter settings have been modified, the default parameter settings of PDO and
SDO are also modified.

4.4.6 Virtual Axis

The virtual axis page is similar to the EtherCAT configuration page. Note that when multiple EtherCAT
masters are enabled and the virtual axis is enabled (by choosing "Axis Pool" > "Virtual Axis"), the bus
cycle task of the virtual axis must be bound to the called EtherCAT task (The default setting is "Use
parent bus cycle setting". This only applies to the single-master scenarios.) One virtual axis cannot be
called by multiple EtherCAT tasks; otherwise, a running error will occur.

The settings in red box in the following figure are bus cycle task settings.

Network Configuration

‑179‑

4.4.7 GR10-4PME Positioning Module

The positioning module pages are the same as CiA402 axis settings pages, except that the following
page is added:

The GR10-4PME module is a pulse positioning module that has four high-speed output channels. It
implements speed and position control for the pulse servos and stepping drives that use pulse as
signals. This page allows you to set the parameters of the GR10-4PME module. Taking the first channel
of GR10-4PME as an example, the following functions can be set on this page.

Network Configuration

‑180‑

Name Description Default Value

Position Mode

Indicates the output pulse type on the
high-speed pulse output port.

Phase A/B single frequency

Pulse+Direction

CW/CCW

Pulse
+Direction

Filter Time
Indicates the pulse input filter time of the
digital input terminal.

4 μs

X00 Setting

Function

Selects the functions of the X00 digital
input terminal.

General input

Emergency stop switch

Positive limit

Positive limit

Polarity

Selects the effective level logic of the X00
digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

X01 Setting

Polarity

Function

Selects the functions of the X01 digital
input terminal.

General input

Emergency stop switch

Negative limit

Negative
limit

Selects the effective level logic of the
X01 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High 　

X02 Setting

Polarity

Function

Selects the functions of the X02 digital
input terminal.

General input

Emergency stop switch

Home switch

Home switch

Selects the effective level logic of the
X02 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High 　

X03 Setting

Polarity

Function

Selects the functions of the X03 digital
input terminal.

General input

Emergency stop switch

General input

Selects the effective level logic of the
X03 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High 　

Network Configuration

‑181‑

Name Description Default Value

YR0 Setting

Polarity

Function

Sets the YR0 function of the digital output
terminal.

Normal digital output terminal

Enable servo (output signal)

Enable servo

(output
signal)

Energizes or de-energizes the digital
output terminal YR0.

High - Energized when control is set
to 1.

High - De-energized when control is
set to 0.

High 　

For the applications of the positioning module, see "EtherCAT Remote Communication Application
Guide".

4.4.8 GR10-2HCE counter module

The counter module pages are the same as CiA402 axis settings pages, except that the following page
is added:

The GR10-2HCE module is a pulse counter module that has two high-speed input channels. It
implements pulse counting and frequency measurement in A/B phase pulse, pulse+direction, and CW/

Network Configuration

‑182‑

CCW modes. This page allows you to set the parameters of the GR10-2HCE module. Taking the first
channel of GR10-2HCE as an example, the following functions can be set on this page.

Name Description Default Value

Mode

Selects the input mode of
channel input pulse.

Phase A/B quadruple
frequency

Phase A/B single frequency

Phase A/B double frequency

Phase A/B quadruple
frequency

Pulse+Direction
CW/CCW

Sampling cycle
Calculates sampling cycle by
input filter frequency. 10 ms

Filter Time
Sets the sampling filter of the
pulse input channel and digital
input channel.

2 μs

Direction

Phase A ahead B

Phase A/B

Phase A ahead B

The counter is increased when
phase A is ahead of phase B.

Pulse+Direction
The counter is increased when
the phase B input level is high.

CW/CCW
The counter is increased when
phase A has counts.

Phase B ahead A

Phase A/B
The counter is increased when
phase B is ahead of phase A.

Pulse+Direction
The counter is increased when
the phase B input level is low.

CW/CCW
The counter is increased when
phase B has counts.

X00 Setting

Function

Selects the functions of the X00
digital input terminal.

Probe 1
General input

Probe 1
Reset counter to 0
Preset counter
Door control

Polarity

Selects the effective level logic
of the X00 digital input.

HighHigh - Input high level is
effective.
Low - Input low level is
effective.

Network Configuration

‑183‑

Name Description Default Value

X01 Setting

Polarity

Function

Selects the functions of the X01
digital input terminal.

Probe 2
General input

Probe 2
Reset counter to 0
Preset counter
Door control

Selects the effective level logic
of the X01 digital input.

High 　High - Input high level is
effective.
Low - Input low level is
effective.

X02 Setting

Polarity

Function

Selects the functions of the X02
digital input terminal.

General inputGeneral input
Reset counter to 0
Preset counter
Door control

Selects the effective level logic
of the X02 digital input.

High 　High - Input high level is
effective.
Low - Input low level is
effective.

X03 Setting

Polarity

Function

Selects the functions of the X03
digital input terminal.

General inputGeneral input

Reset counter to 0
Preset counter
Door control

Selects the effective level logic
of the X03 digital input.

High 　High - Input high level is
effective.
Low - Input low level is
effective.

Y00 Setting

Polarity

Function

Sets the Y00 function of the
digital output terminal.

Comparison output 1
Normal output

Comparison output 1

Energizes or de-energizes the
digital output terminal Y00.

High 　High - Energized when control
is set to 1.
High - De-energized when
control is set to 0.

Network Configuration

‑184‑

Name Description Default Value

Y01 Setting

Polarity

Function

Sets the Y01 function of the
digital output terminal.

Comparison output 2
Normal output

Comparison output 2

Energizes or de-energizes the
digital output terminal Y01.

High 　High - Energized when control
is set to 1.
High - De-energized when
control is set to 0.

Y02 Setting

Polarity

Function
Sets the Y02 function of the
digital output terminal. Normal output
Normal output

Energizes or de-energizes the
digital output terminal Y02.

High 　High - Energized when control
is set to 1.
High - De-energized when
control is set to 0.

For the applications of the positioning module, see "EtherCAT Remote Communication Application
Guide".

4.4.9 Splitter

Overview

The splitter module is used to expand EtherCAT ports, as shown in the following figure.

Interface Option Function

IN1 Splitter input port The splitter input port is connected to the EtherCAT output port of the device.

X2 to X6
Splitter output

ports
X2 to X6 are splitter output ports independent of each other. Each output

port can connect to one EtherCAT slave.

Network Configuration

‑185‑

Adding a Splitter and Adding Slaves to the Splitter

You can add, delete, copy, and paste splitters in the same way as that for common slaves (see “
Configuring a PLC as a Master or a Slave” on page 67 and “ Configuration Device Common Operations”
on page 73). After a splitter is added, perform the following operations to add its slaves:

1. Double-click a configuration splitter. The following page is displayed.

2. Select a node consistent with the physical configuration, and then select a device from the network
device list. The splitter slave configuration is completed, as shown in the following figure.

You can run the scan device command (see “ Scanning a Device” on page 132) to scan the splitter and
its slaves, and copy the detected information to the project. The system then automatically completes
the device configuration.

Deleting a Splitter and Its Slaves

The splitter deletion operation is similar to the slave deletion operation (see “ Configuration Device
Common Operations” on page 73).

Perform the following operations to delete slaves of a splitter:

1. Access the splitter configuration page.
2. Select the target slave (numbered 1 in the following figure).

Network Configuration

‑186‑

Press "Delete".

Note
The deletion operation cannot be canceled. To use the device again, you need to add the device configuration
again.

4.4.10 I/O Module

Adding an I/O module

The I/O module addition operations of communication interface modules AM600-RTU-ECTA, GL10-
RTU-ECTA, GL20-RTU-ECT, and GL20-RTU-ECT32 are similar. The following takes GL20-RTU-ECT32 as
an example to describe how to add an I/O module.

1. Enable the host EtherCAT master and add the GL20-RTU-ECT32 module.

a. In the left device tree, double-click "Network Configuration", and select the EtherCAT master
corresponding to the physical network port of the host connected to the GL20-RTU-ECT32 module
to enable the host EtherCAT master.

b. In the network device list on the right, double-click "GL20-RTU-ECT32_x.x.x.x". The GL20-RTU-
ECT32 module is added.

2. Add the module.
In the left device tree, double-click "EtherCAT Config". In the module list on the right, double-click
theXXmodule. TheXXmodule is added.

Network Configuration

‑187‑

Note
Another module addition method: Right-click "GL20_RTU_ECT32" under "ETHERCAT (EtherCAT Master SoftMotion)"
in the left device tree. In the shortcut menu displayed, click "Add Device". On the page displayed, select "GL20-XX"
and then click "Add Device".

3. Configure the module parameters. For details, see the user guide of the corresponding module.

Note
For how to configure the GL10-series modules, see "EtherCAT Remote Communication Application Guide".

Disabling a GL20-series I/O module

This function is supported in InoProShop V1.7.3 SP4 and later versions as well as the XML files of the versions 2.0.2.0
and later of the GL20-RTU-ECT32 module. This function is not supported by the GL20-RTU-ECT module.

Right-click a GL20-series I/O module. In the shortcut menu displayed, click "Disable Devices". The
module is disabled. The following figure illustrates this process using the GL20-4AD module as an
example.

Network Configuration

‑188‑

You can use the object dictionary to disable GL20-series I/O modules and view the state through
"Online CoE", as shown in the following figure.

The following table lists the object dictionaries and their descriptions.

Object
Dictionary

Data Type Function

16#5001:16#00 UINT Indicates whether a module is disabled.

● 0: No disabled module
● 1: Disabled module existing

16#5000:16#01 UINT Indicates the disabling state of slots 1 to 16. Each bit corresponds to a slot.

Mapping between bits and slots:

Slot 16 Slot 15 Slot 14 ... Slot 3 Slot 2 Slot 1

● Bit value being 0: The slot is not disabled.
● Bit value being 1: The slot is disabled.

16#5000:16#02 UINT Indicates the disabling state of slots 17 to 32. Each bit corresponds to a slot.

Mapping between bits and slots:

Slot 32 Slot 31 Slot 30 ... Slot 19 Slot 18 Slot 17

● Bit value being 0: The slot is not disabled.
● Bit value being 1: The slot is disabled.

Network Configuration

‑189‑

Object
Dictionary

Data Type Function

16#5000:16#03 UINT Indicates the disabling state of slots 33 to 48. Each bit corresponds to a slot.

Mapping between bits and slots:

Slot 48 Slot 47 Slot 46 ... Slot 35 Slot 34 Slot 33

● Bit value being 0: The slot is not disabled.
● Bit value being 1: The slot is disabled.

16#5000:16#04 UINT Indicates the disabling state of slots 49 to 64. Each bit corresponds to a slot.

Mapping between bits and slots:

Slot 64 Slot 63 Slot 62 ... Slot 51 Slot 50 Slot 49

● Bit value being 0: The slot is not disabled.
● Bit value being 1: The slot is disabled.

4.4.11 Library (Implicit Variables)

Master Implicit Instance

An IoDrvEtherCAT implicit instance is created as long as the EtherCAT master is inserted into the device
list. The instance name is the same as the device name in the device list.

Note
Implicit instances are generated automatically by the system. You cannot define an implicit instance in the program;
otherwise, the PLC cannot run normally.

The following table describes the definition of the IoDrvEtherCAT implicit instance.

IoDrvEtherCAT Implicit Instance

Input parameter Definition

xRestart Bus restart: In rising edge, the master restarts, and all configuration parameters are
reloaded.

xStopBus
Bus stop: Triggered by the level. When the input value is "TRUE", the EtherCAT bus
communication stops, and a communication error occurs. To resume the
communication, run "xRestart" to restart the EtherCAT communication.

Output parameter Definition

xConfigFinished
If the parameter value is "TRUE", the transmission of all configuration parameters is
complete. The communication is on-going.

Network Configuration

‑190‑

xDistributedClockInSync

If distributed clock (DC) is configured for the EtherCAT slave, the EtherCAT slave
parameters are set first when the bus starts. When parameter settings are complete
(the value of "xConfigFinished" is changed to "TRUE"), the clocks of slave and master
are adjusted. When the synchronization between master and slave clocks is successful,
the value "TRUE" is output. If loss of synchronization occurs due to a bus fault during
running, the value "FALSE" is output. In the DC mode, the motion control function
block can be started only when this parameter is changed to "TRUE"; otherwise, the
position of motion axis may jump.

xError

If an error is detected during the start of EtherCAT master or communication is
interrupted when the slave communication state machine enters "Operational",
"TRUE" is output because the EtherCAT master cannot receive any message (for
example, the connection is disconnected). In this case, the error reason can be located
in the diagnosis information or log of the master.

Example

The following is a program example, in which the function block name is IoDrvEtherCAT, and the
master name is ETHERCAT (default for AM600) (the instance name). You do not need to claim the
instance in the program. The default master name for the AC800 series is ETHERCAT_C or ETHERCAT_
D.

As shown in the preceding figure, when the xRestart input variable changes from "FALSE" to "TRUE",
the master restarts at the rising edge. When the value of xStopBus is "True", the bus communication
stops upon the level. You can judge the bus communication information based on the output
parameter status.

Master Attributes

Attribute Definition

AutoSetOperational
If this attribute is set to "TRUE", the master always tries to restart the slave upon
communication interruption.

Default value: FALSE

ConfigRead
If this attribute returns "TRUE", the configuration reading is completed. You can edit the
configuration. For example, you can add customized SDOs.

DCInSyncWindow

Time window condition for setting XDistributedClockInSync to "TRUE". The value of
XDistributedClockInSync is "TRUE" only when the master synchronization jitter is within
this window.

Default value: 50 μs

DCIntegralDivider
Integral divider of DC used for circuit control.

Default value: 20

Network Configuration

‑191‑

Attribute Definition

DCPropFactor
Proportion factor of DC used for circuit control.

Default value: 25

DCSyncToMaster
Synchronization between DC and master. If it is set to "TRUE", all slaves are
synchronized with the master, rather than the first slave synchronizing with the PLC.

Default value: FALSE

DCSyncToMasterWith-
SysTime

Synchronization with the master DC. If it is set to "TRUE", all slaves are synchronized
with the master system time. The time read by SysTimeRtcHighResGet can also be used
to synchronize the PLC with all EtherCAT slaves.

Default value: FALSE

EnableTaskOutputMes-
sage

Generally, EtherCAT messages are sent by a bus cycle task, while some messages may
be sent by each slave output task. All outputs are written into the bus cycle task, and all
inputs will be read. In other tasks, outputs are sent one more time so that they can be
written into the corresponding slaves immediately. Therefore, the deadline should be
shortened to ensure a fast writing. When DC is available, some slaves may encounter
problems. For example, synchronization between the servo controller and
synchronization interrupt is lost, but the written time is used for internal synchronizer.
In this situation, multiple write access operations may exist in a cycle. If
EnableTaskOutputMessage is set to "FALSE", only the bus cycle task is used, but
addition tasks will not affect messages.

Default value: TRUE
FirstSlave Pointer of the first slave under the master.

FrameAtTaskStart

If FrameAtTaskStart is set to "TRUE", the frame content to the slave will be sent when
the task starts, to ensure the minimum jitter. This command ensures the smooth
motion of the servo drive. If this flag is set to "TRUE", the output buffer frame is written
into the next cycle.

Default value: FALSE
LastInstance Pointer associated with the master list pointing to the previous master.

LastMessage

This attribute with the EtherCAT latest message together returns a text string. If the
startup is successful, "all slaves completed" is returned. The function of the text string is
the same as the diagnosis information displayed in the EtherCAT master editor in the
online mode.

NextInstance Pointer associated with the master list pointing to the next master.

NumberActiveSlaves
This attribute returns the number of connected slaves. If StartConfigWithLessDevice is
set to "TRUE", the number of devices can be determined.

OpenTimeout Timeout of opening the NMS. Default value: 4s

StartConfigWithLessDe-
vice

This attribute can affect stack start action. If five servo controllers are configured but
only three are connected, the stack stops immediately, the bus configuration fails, and
the PLC reports an error. However, if StartConfigWithLessDevice in the first cycle is set
to "TRUE", the stack tries to start, the bus configuration runs normally, and the PLC
does not report any error. In the following scenario, if one mismatch is detected, the
stack stops: Ten servo controllers are configured, the number of connected controllers
is changeable, and the vendor ID and product ID of each slave will be checked.

If supported by the device, the interface provided by IIoDrvBusControl.library can be used to access
the EtherCAT device from external applications.

Slave Implicit Instance

An "ETCSlave" implicit instance is created as long as the EtherCAT slave is inserted into the device list.
The instance name is the same as the device name in the device list.

Network Configuration

‑192‑

The input and output parameters of instance objects are used for special purposes. For example,
during application running, the slave status is obtained, switched, and checked by using the slave
instances. The following table describes the definition of the ETCSlave implicit instance.

The following table describes the definition of the ETCSlave implicit instance.

ETCSlave Implicit Instance

Input parameter Definition

xSetOperational In rising edge, the slave communication state machine is attempted to be set as "ETC_
SLAVE_OPERATIONAL".

Output parameter Definition

wState

Return the current status of the slave. The possible values include:

0: ETC_SLAVE_BOOT

1: ETC_SLAVE_INIT

2: ETC_SLAVE_PREOPERATIONAL

4: ETC_SLAVE_SAVEOPERATIONAL

8: ETC_SLAVE_OPERATIONAL

Note
The ETC_SLAVE_OPERATIONAL state indicates that configuration is completed. If a configuration error occurs, the
device may return to the previous state. The following is an example of IS620N slave.

ETCSlave Example

Taking 620N as an example, add the instance name 620N. Definition: nSlaveState: ETC_SLAVE_STATE;

Programming Description

IS620N(xSetOperational:= , wState=> nSlaveState); By calling the slave IS620N implicit instance, the slave
state is output to the nSlaveState variable.

Slave Attributes

Attribute Definition
VendorID After the EtherCAT master starts, this attribute returns the vendor ID read from the device.

ConfigVendorID This attribute reads the vendor ID from configuration.

ProductID After the EtherCAT master starts, this attribute returns the product ID read from the
device.

ConfigProductID This attribute reads the product ID from configuration.

SerialID After the EtherCAT stack starts, this attribute carries the device SN.
LastEmergency If a message is received, the message is stored in the slave. This attribute can be used to

read information from application. In addition, a log message is added.

If supported by the device, the interface provided by IIoDrvBusControl.library can be used to access
the EtherCAT device from external applications. After the vendor and product IDs are activated in
advanced settings, if the vendor ID does not match the configured vendor ID or the product ID does
not match the configured product ID, the master is stopped.

Network Configuration

‑193‑

Checking All Slave Link Tables

A function block instance is created between each pair of EtherCAT master and EtherCAT slave in
implicit way. The instance monitors the state of each slave. Therefore, this instance must be called in
the application program. The slave state is read by using wState. To simplify the programming, all
masters and slaves can be found in link tables. Therefore, all slaves can be checked cyclically by a
simple "WHILE" clause.

The masters and slaves correspond to attributes NextInstance and LastInstance, respectively, returning
the pointers to next and previous stations. In addition, the FirstSlave attribute of the master is
effective. It provides the pointer to the first slave.

Link Table Function Example

Check the state of all slaves. Definition: pSlave: POINTER TO ETCSlave;

Programming Description

pSlave := EtherCAT_Master.FirstSlave;

WHILE pSlave <> 0 DO

pSlave^();

//TODO: Add the code, such as counting the Op state of
the slave.

pSlave := pSlave^.NextInstance;

END_WHILE

The first slave of the master is found by using
EtherCAT_Master. FirstSlave.

Instances are called in the "WHILE" loop, to determine
wState. Then the state is checked.

The pointer to the next slave is found by using pSlave^.
NextInstance.

The pointer at the end of table is null, and the loop is
finished.

CoE IODrvEtherCAT Function Library

CoE function block: CANopen over EtherCAT

After EtherCAT configuration is enabled for IODrvEtherCAT.library of EtherCAT, the library is
automatically added to project, including the read/write function block. Therefore, the special
parameters can be checked and modified in the online mode. When the CANopen over EtherCAT
function block is used, multiple function modules can be called. Internal requests are processed in
queue.

The CANopen over EtherCAT function block includes the following function blocks:

● ETC_CO_SdoRead (retrieve parameter, of which the length may exceed four bytes)
● ETC_CO_SdoRead4 (read parameter, of which the length does not exceed four bytes)
● ETC_CO_SdoReadDword (read parameter, of which the value is stored in DWORD)
● ETC_CO_SdoRead_Access (read all records)
● ETC_CO_SdoRead_Channel (read slave parameters)
● ETC_CO_SdoWrite (write parameter, of which the length may exceed four bytes)
● ETC_CO_SdoWrite4 (write parameter, of which the length does not exceed four bytes)
● ETC_CO_SdoWriteDWord (value is written into DWORD)
● ETC_CO_SdoWriteAccess (write slave parameters)

ETC_CO_SdoRead

This function module is provided by IODrvEtherCAT.library to read EtherCAT slave parameters.
Different from ETC_CO_SdoRead4, this module supports parameters longer than four bytes. The read
parameters are specified by object dictionary indexes and sub-indexes.

Network Configuration

‑194‑

ETC_CO_SdoRead Function Block

Input parameter Definition

xExecute
In the input rising edge, read slave parameters. To obtain the storage unit of internal channel,
this instance must be called at least once by "xExecute:= FALSE".

xAbort If it is set to "TRUE", the read process is aborted.

usiCom
Number of EtherCAT masters: If only one EtherCAT master is used, the usiCom value is 1. If
multiple masters exist, the value of the first master is 1, the value of the second one is 2, and so
on.

uiDevice

Physical address of the slave.

If the automatic configuration mode of the master is disabled, you can configure a special
address for the slave. The address selected arbitrarily must be entered here.

If the automatic configuration mode is enabled, the first slave obtains address "1001". The
current slave address can be checked in the "EtherCAT address" field of the slave configuration
dialog box of the device editor.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in milliseconds. If the read parameter is not executed within
the timeout interval, an error is reported.

pBuffer
Pointer of the data buffer. The data buffer refers to the storage area where the successfully
transmitted parameters are stored.

szSize Size of the data buffer (see pBuffer), in bytes.

Output
parameter Definition

xDone The value is "TRUE" when parameter reading is completed.

xBusy The value is "TRUE" when parameter reading has not been completed.

xError The value is "TRUE" when an error occurs. The eError parameter displays the error reason.

eError
The output (ETC_CO_ERROR) displays the error reason specified by xError. For example, "ETC_
CO_TIMEOUT" indicates a timeout error.

udiSdoAbort When an error occurs in device checking, this output provides more error information.

szDataRead Number of read bytes, namely, the maximum szSize (see input parameters).

ENUM ETC_CO_ERROR

Error Code Description

ETC_CO_NO_ERROR 0 No error
ETC_CO_FIRST_ERROR 5750 The error reason is stored in the output of udiSdoAbort.
ETC_CO_OTHER_ERROR 5751 No master is found.
ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited, of which the length is larger than 4.

ETC_CO_TIME_OUT 5753 Timeout occurs.

Network Configuration

‑195‑

Error Code Description
ETC_CO_FIRST_MF 5770 Not in use.
ETC_CO_LAST_ERROR 5799 Not in use.

ETC_CO_SdoRead4

This function module is provided by IODrvEtherCAT.library to read EtherCAT slave parameters.
Different from ETC_CO_SdoRead, this function module reads only parameters not longer than four
bytes. The read parameters are specified by object dictionary indexes and sub-indexes.

ETC_CO_SdoRead4 Function Block

Input parameter Definition

xExecute
In the input rising edge, read slave parameters. To obtain the storage unit of internal channel,
this instance must be called at least once by "xExecute:= FALSE".

xAbort If it is set to "TRUE", the read process is aborted.

usiCom
Number of EtherCAT masters: If only one EtherCAT master is used, the usiCom value is 1. If
multiple masters exist, the value of the first master is 1, the value of the second one is 2, and
so on.

uiDevice

Physical address of the slave.

If the automatic configuration mode of the master is disabled, you can configure a special
address for the slave. The address selected arbitrarily must be entered here.

If the automatic configuration mode is enabled, the first slave obtains address "1001". The
current slave address can be checked in the "EtherCAT address" field of the slave
configuration dialog box of the device editor.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in milliseconds. If the read parameter is not executed within
the timeout interval, an error is reported.

Output
parameter Definition

wState

Return the current status of the slave. The possible values include:

0: ETC_SLAVE_BOOT

1: ETC_SLAVE_INIT

2: ETC_SLAVE_PREOPERATIONAL

4: ETC_SLAVE_SAVEOPERATIONAL

8: ETC_SLAVE_OPERATIONAL

xDone The value is "TRUE" when parameter reading is completed.

xBusy The value is "TRUE" when parameter reading has not been completed.

xError The value is "TRUE" when an error occurs. The eError parameter displays the error reason.

eError
The output (ETC_CO_ERROR) displays the error reason specified by xError. For example,
"ETC_ CO_TIMEOUT" indicates a timeout error.

Network Configuration

‑196‑

ETC_CO_SdoRead4 Function Block

abyData
The read parameter data is copied to this 4-byte array.

If the first byte has been read, it is stored in the first index of the array. The 2 or 4-byte data is
copied to this array in Intel byte order.

usiDataLength Number of read bytes (1, 2, or 4).

ENUM ETC_CO_ERROR

Error Code Description

ETC_CO_NO_ERROR 0 No error
ETC_CO_FIRST_ERROR 5750 The error reason is stored in the output of udiSdoAbort.
ETC_CO_OTHER_ERROR 5751 No master is found.
ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited, of which the length is larger than 4.

ETC_CO_TIME_OUT 5753 Timeout occurs.
ETC_CO_FIRST_MF 5770 Not in use.
ETC_CO_LAST_ERROR 5799 Not in use.

ETC_CO_SdoReadDword

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoRead4, it reads
EtherCAT slave parameters. However, the read data is copied to DWORD (dwData), rather than an
array. Byte exchange is automatically performed. Therefore, the read data can be directly used by
subsequent processes.

ETC_CO_SdoRead_Access

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoRead, it reads
EtherCAT slave parameters. All record indexes can be read by inputting xCompleteAccess (BOOL).
Therefore, xCompleteAccess must be set to "TRUE", and bySubIndex must be 0.

ETC_CO_SdoRead_Channel

The EtherCAT programming interface in EtherCAT configuration editor is used by the ETC_CO_
SdoRead_Channel function block of IODrvEtherCAT in CAN over EtherCAT.

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoRead_Access, it reads
parameters of all EtherCAT slaves.

However, it has an additional input byChannelPriority (BYTE) that specifies the channel and priority in
the CoE email box message. The first 6 bits specify the channel, and the last 2 bits specify the priority.

ETC_CO_SdoWrite

This function module is provided by IODrvEtherCAT.library to write EtherCAT slave parameters.
Different from ETC_CO_SdoWrite4, this function module can read parameters larger than 4 bytes. The
written parameters are specified by object dictionary indexes and sub-indexes.

Network Configuration

‑197‑

ETC_CO_SdoWrite Function Block

Input parameter Definition

xExecute
In the input rising edge, write slave parameters. To obtain the storage unit of internal
channel, this instance must be called at least once by "xExecute:= FALSE".

xAbort If it is set to "TRUE", the write process is aborted.

usiCom
Number of EtherCAT masters: If only one EtherCAT master is used, the usiCom value is 1. If
multiple masters exist, the value of the first master is 1, the value of the second one is 2, and
so on.

uiDevice

Physical address of the slave.

If the automatic configuration mode of the master is disabled, you can configure a special
address for the slave. The address selected arbitrarily must be entered here.

If the automatic configuration mode is enabled, the first slave obtains address "1001". The
current slave address can be checked in the "EtherCAT address" field of the slave
configuration dialog box.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in milliseconds. If the write parameter is not executed
within the timeout interval, an error is reported.

pBuffer
Pointer of the data buffer. The data buffer refers to the storage area where the successfully
transmitted parameters are stored.

szSize Size of the data buffer (see pBuffer), in bytes.

eMode

This input (enumeration: ETC_CO_MODE) defines the number of written bytes. Possible
values include ETC_CO_AUTO (automatic), ETC_CO_EXPEDITED (expedited), and ETC_ CO_
SEGMENTED (segmented). Generally, the ETC_CO_AUTO mode is used because the data
length is automatically matched in this mode.

Output parameter Definition
xDone The value is "TRUE" when parameter writing is completed.

xBusy The value is "TRUE" when parameter writing has not been completed.

xError The value is "TRUE" when an error occurs. The eError parameter displays the error reason.

eError
The output (ETC_CO_ERROR) displays the error reason specified by xError. For example,
"ETC_ CO_TIMEOUT" indicates a timeout error.

udiSdoAbort When an error occurs in device checking, this output provides more error information.

szDataWritten Number of written bytes. After bytes are successfully written, it is set to szSize.

ENUM ETC_CO_MODE

Network Configuration

‑198‑

Mode No. Description
AUTO 0 The automatic mode is selected.

EXPEDITED 1 The expediting protocol is used.

SEGMENTED 2 The segmented transmission
protocol is used.

ETC_CO_SdoWrite4

This function module is provided by IODrvEtherCAT.library to write EtherCAT slave parameters.
Different from ETC_CO_SdoWrite, this function module writes only parameters smaller than four bytes.
The written parameters are specified by object dictionary indexes and sub-indexes.

ETC_CO_SdoWrite4 Function Block

Input
parameter Definition

xExecute
In the input rising edge, write slave parameters. To obtain the storage unit of internal channel,
this instance must be called at least once by "xExecute:= FALSE".

xAbort If it is set to "TRUE", the write process is aborted.

usiCom
Number of EtherCAT masters: If only one EtherCAT master is used, the usiCom value is 1. If
multiple masters exist, the value of the first master is 1, the value of the second one is 2, and so
on.

uiDevice

Physical address of the slave.

If the automatic configuration mode of the master is disabled, you can configure a special
address for the slave. The address selected arbitrarily must be entered here.

If the automatic configuration mode is enabled, the first slave obtains address "1001". The
current slave address can be checked in the "EtherCAT address" field of the slave configuration
dialog box.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in milliseconds. If the write parameter is not executed within
the timeout interval, an error is reported.

abyData This array includes four written data records. The data must be stored in the Intel byte order.

usiDataLength Number of written bytes (1, 2, or 4).

Output
parameter Definition

xDone This output is set to "TRUE" when parameter writing is completed.

xBusy The output is "TRUE" if the write operation is not completed.

xError If an error occurs, this output is set to "TRUE". eError displays the error reason.

Network Configuration

‑199‑

ETC_CO_SdoWrite4 Function Block

eError
This output (ETC_CO_ERROR) displays the error reason, identified as xError. For example, ETC_
CO_TIMEOUT indicates timeout.

udiSdoAbort If the device has an error, this output provides more error information.

ENUM ETC_CO_MODE

Mode No. Description
AUTO 0 The automatic mode is selected.

EXPEDITED 1 The expediting protocol is used.

SEGMENTED 2 The segmented transmission protocol is used.

ETC_CO_SdoWriteDWord

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoWrite4, it writes
EtherCAT slave parameters. However, the data to be written is output in DWORD (dwData) format,
rather than an array. Byte exchange is automatically carried out. The value to be written can be
specified.

ETC_CO_SdoWriteAccess

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoWrite, it writes
EtherCAT slave parameters.

All record indexes can be written by inputting xCompleteAccess (BOOL). Therefore, xCompleteAccess
must be set to "TRUE", and bySubIndex must be 0. However, it has an additional input
byChannelPriority (BYTE) that specifies the channel and priority in the CoE email box message.

Direct Access to EtherCAT Slave Memory

Choose "EtherCAT configuration editor" > "EtherCAT programming interface" to directly access the
EtherCAT slave memory.

Directly access the EtherCAT slave memory through ReadMemory and WriteMemory.

● ReadMemory
This function block is in IODrvEtherCAT.library to read data in the EtherCAT slave memory.

ReadMemory Function Block

Input parameter Type Definition

Network Configuration

‑200‑

ReadMemory Function Block

xExecute BOOL

Rising edge: Action starts.

Falling edge: Reset output.

If there is a falling edge before the function block completes the
action, the output operation is performed in a normal way and a
reset is performed when the action is completed or aborted
(xAbort). In this case, the related output values (xDone, xError, and
iError) are output within a cycle.

xAbort BOOL
If the input is "TRUE", the action is aborted immediately and all
outputs are reset to the initial values.

usiCom USINT Master index 1: The first EtherCAT master.
wSlaveAddress WORD Automatically created address or device physical address.

xAutoIncAdr BOOL Flag confirming that the address mode is used.

xBroadcast BOOL If the board mode is used and the value is "TRUE", wSlaveAddress
and bAutoIncAdr will not be used.

uiMemOffset UINT Memory address offset.

iSize INT Read byte.

pDest POINTER TO BYTE Data storage and retrieve buffer.

udiTimeOut UDINT Operation timeout interval (ms)

Output parameter Type Definition
xDone BOOL Action completed successfully.
xBusy BOOL Function block activated.

xError BOOL TRUE: An error is generated and the function block aborts action.
FALSE: No error.

xAborted BOOL Abort action.

Example: Read register 0x130 (current state)

PROGRAM PLC_PRG

VAR

etcreadmemory : ReadMemory;

wStatus : WORD;

xRead : BOOL;

END_VAR

etcreadmemory(xExecute := xRead, usiCom:=1, wSlaveAddress := 1002,

xAutoIncAdr := FALSE, xBroadcast := FALSE, uiMemOffset := 16#130,

iSize := 2, pDest := ADR(wStatus), udiTimeout := 500);

● WriteMemory
This function block is in IODrvEtherCAT.library to write data into the EtherCAT slave memory.

Network Configuration

‑201‑

WriteMemory Function Block

Input parameter Type Definition

xExecute BOOL

Rising edge: Action starts.

Falling edge: Reset output.

If there is a falling edge before the function block completes the
action, the output operation is performed in a normal way and a
reset is performed when the action is completed or aborted
(xAbort). In this case, the related output values (xDone, xError, and
iError) are output within a cycle.

xAbort BOOL
If the input is "TRUE", the action is aborted immediately and all
outputs are reset to the initial values.

usiCom USINT Master index 1: The first EtherCAT master.
wSlaveAddress WORD Automatically created address or device physical address.

xAutoIncAdr BOOL Flag confirming that the address mode is used.

xBroadcast BOOL If the board mode is used and the value is "TRUE", wSlaveAddress
and bAutoIncAdr will not be used.

uiMemOffset UINT Memory address offset.

iSize INT Write byte.
pDest POINTER TO BYTE Read data in and retrieve data from the data buffer.

udiTimeOut UDINT Operation timeout interval (ms)
Output parameter Type Definition

xDone BOOL Action completed successfully.
xBusy BOOL Function block activated.

xError BOOL TRUE: An error is generated and the function block aborts action.
FALSE: No error.

xAborted BOOL Abort action.

Example: Write register 0x120 (control register)

PLC_PRG

VAR

etcwritememory : WriteMemory;

xWrite : BOOL;

wCommand : WORD := 4; // set to safe operational

END_VAR

etcwritememory(xExecute := xWrite, usiCom:=1, wSlaveAddress := 1002,

xAutoIncAdr := FALSE, xBroadcast := FALSE, uiMemOffset := 16#120,

iSize := 2, pSrc := ADR(wCommand), udiTimeout := 500);

Network Configuration

‑202‑

4.5 Modbus Device Editor

4.5.1 Serial Hardware Port

AM600 supports communication using two RS485 serial ports: serial port 0 and serial port 1, both
supporting the free protocol.

Terminal Channel Pin Definition

5
4

1
2
3

6
7
8
9

COM0 (RS485)
1 RS485–
2 RS485+
5 GND

COM1 (RS485)
6 RS485–
9 RS485+
3 GND

The AC700-series PLCs support one RS485 communication port and one RS232 communication port
connected to the I/O communication port. The RS485 communication port has the pins 1, 3, and 5, and
the RS232 communication port has the pins 2, 4, and 6. The following table describes these pins.

Type Function Terminal No. I/O
communication

port

No. Type Function Terminal

RS485

RS485+ RS485+ 1 2 232R RS232
receiving

RS232
RS485– RS485− 3 4 232T RS232

transmit-
ting

Serial port
ground

GND 5 6 GND Serial port
ground

DI Power-on
signal

7 8 RUN/STOP DI

DI High-speed
input 0

X0 9 10 X1 High-speed
input 1

DI

DI High-speed
input 2

X2 11 12 X3 High-speed
input 3

DI

DI High-speed
input 4

X4 13 14 X5 High-speed
input 5

DI

DI High-speed
input 6

X6 15 16 X7 High-speed
input 7

DI

DI Input
common
terminal

S/S 17 18 COM Output
common
terminal

DO

DO High-speed
output 0

Y0 19 20 Y1 High-speed
output 1

DO

DO High-speed
output 2

Y2 21 22 Y3 High-speed
output 3

DO

The AC800-series PLCs support one RS485 communication port and one RS232 communication port
connected to the I/O communication port. The RS485 communication port has the pins 8, 9, and 11,
and the RS232 communication port has the pins 8, 10, and 12. The following table describes these pins.

Network Configuration

‑203‑

Description Function Signal No.
I/O

communica
tion port

No. Signal
Func
tion

Descrip
tion

When a pulse of high-
level width 500 ms is
input and the power
key is pressed, the
PLC is started.

Power-on signal
(used together
with the UPS)

1 2
P_
STATUS

Power-
on
signal

Output
after
the
con-
troller
is
pow-
ered
on and
started

Enable memory
retention at power
failure during ON-
OFF switchover

Power failure
detection signal P_OK 3 4

P_
STATUS

Opera-
tion
status
signal

Output
after
the
con-
troller
is
pow-
ered
on and
started

OFF: RUN ON: STOP RUN/STOP RUN 5 6 0V

Output
com-
mon
termi-
nal

-

- Input common
terminal

0V 7 8 GND

Com-
muni-
cation
refer-
ence
ground

-

- RS485+ RS485+ 9 10 232R
RS232
receiv-
ing

-

- RS485– RS485− 11 12 232T
RS232
trans-
mitting

-

The AM300-/AM500-series PLCs support up to three RS485 communication ports (one for the main unit
and two for the expansion card). The following table defines the relevant pins.

Network Configuration

‑204‑

Signal Left Terminal Right Terminal Signal

RS485 differential pair
positive signal

RS485+ +24V 24 VDC power supply
positive

RS485 differential pair
negative signal

RS485− 0V 24 VDC power supply
negative

RS485 communication
ground

GND PE

Note
On the software page of the AC700/AC800 series, the COM port 0 corresponds to the RS232 communication port,
and the COM port 1 corresponds to the RS485 communication port. Differentiate them during configuration.

4.5.2 Network Configuration

AM400/AM600/AC700/A800 Network Configuration

1. In the left device tree, double-click "Network Configuration". The "Network Configuration" page is
displayed.

2. Click the PLC device picture. The enabling states of all masters/slaves supported by the PLC are
displayed.

3. Enable the PLC as the Modbus master or Modbus slave.

● Enable the PLC as the Modbus master.
Select "Modbus Master". In the "Network Device List" on the right, double-click "MODBUS" to
enable the PLC as the Modbus master and add the Modbus slave to the network.

● Enable the PLC as the Modbus slave.
Select "Modbus Slave" to enable the PLC as the Modbus slave.

Network Configuration

‑205‑

When the PLC serves as the Modbus slave, the addresses that can be accessed by the master are
as follows:

a. All bit variable operations (function codes 0x01, 0x02, 0x05, and 0x0F) can read/write 65535 bit
variables ranging from %QX0.0 to %QX8191.7.

b. All register variable operations (function codes 0x03, 0x04, 0x06, and 0x10) can read/write
65536 register variables ranging from MW0 to MW65535.

c. Inovance HMI can access system variables SM0 to SM7999 and register variables SD0 to SD7999.

AM300/AM500 Network Configuration

1. In the left device tree, right-click "COM (Serial Port)". In the shortcut menu, select "Add Device". The
"Add Device" dialog box is opened.

Network Configuration

‑206‑

2. Enable the PLC as the Modbus master or Modbus slave.

● Enable the PLC as the Modbus master.

a. Select "Modbus Master", and click "Add Device" to enable the PLC as the Modbus master.

b. Right-click "Modbus Master" and select "Add Device". In the dialog box displayed, click
"Modbus Slave" and then click "Add Device" to add the Modbus slave to the network.

Network Configuration

‑207‑

Network Configuration

‑208‑

● Enable the PLC as the Modbus slave.
Select "Modbus Slave", and click "Add Device" to enable the PLC as the Modbus slave.

When the PLC serves as the Modbus slave, the addresses that can be accessed by the master are
as follows:

a. All bit variable operations (function codes 0x01, 0x02, 0x05, and 0x0F) can read/write 65535 bit
variables ranging from %QX0.0 to %QX8191.7.

b. All register variable operations (function codes 0x03, 0x04, 0x06, and 0x10) can read/write
65536 register variables ranging from MW0 to MW65535.

c. Inovance HMI can access system variables SM0 to SM7999 and register variables SD0 to SD7999.

Network Configuration

‑209‑

4.5.3 Modbus Master Configuration

When the PLC serves as the Modbus master, the communication parameters of the Modbus master and
slave must be consistent; otherwise, communication may fail.

1. Open the "Modbus Master Configuration" page.

● AM400/AM600/AC700/A800: In the left device tree, double-click the Modbus master. The "Modbus
Master Configuration" page is displayed.

● AM300/AM500: In the left device tree, double-click "COM (Serial Port)". The "COM Configuration"
page is displayed. Double-click "Modbus_Master (Modbus Master)". The "Modbus Master
Configuration" page is displayed.

Network Configuration

‑210‑

2. Configure the Modbus master parameters. The following table lists the master parameters.

Parameter Description
COM Port Serial port 0 or 1, which is used to establish a physical connection to the master

Baud rate Communication rate
Parity Method of verifying communication frames

Data Bits Actual data bits included in communication frames
Stop Bits Last bit in a single message during communication

Transmission Mode RTU
Time between
Frames

The time for the master to wait for the next request data frame after receiving a
response data frame

Example

Parameter Value
COM Port 0
Baud rate 115200
Parity Even parity

Data Bits 8
Stop Bits 1

Transmission Mode RTU
Time between
Frames

2 ms

4.5.4 Modbus Master Communication Configuration

When the PLC serves as the Modbus master, double-click a slave in the device tree. The "Modbus Slave
Configuration" window is displayed, as shown in the following figure.

Network Configuration

‑211‑

Figure 4-12 Modbus slave configuration when port functions as master

Slave configuration parameters:

Configuration Item Function

Unit ID ID of the slave, ranging from 1 to 247

Timeout After sending frames, the master reports receiving timeout if no data is
received from the slave within this timeout period.

Slave Enable Variable Enables the slave by programming and starts to send frames to the slave.

Example:

Configuration Item Value

Unit ID 11
Timeout 1000 ms
Slave Enable Variable 1001

Switch to the "Modbus Slave Configuration" window, and add the Modbus master-slave
communication configuration. Up to 60 configuration entries can be added, as shown in the following
figure.

Figure 4-13 Modbus slave communication configuration when port functions as master

In the preceding figure, each channel represents an independent Modbus request. The fourth row
defines the cyclic operation on a write-single register (function code 0x06) to write a word to the
register with an offset of 0x0020.

After you click "Add...", a dialog box for adding a channel for the Modbus slave is displayed. Click "OK"
to create a channel.

Network Configuration

‑212‑

Select a channel from the Modbus slave channel list and click "Edit...". The "Modbus Channel Set"
dialog box is displayed. Change the values of parameters to modify the channel settings. Click "OK" to
update the channel settings. You can set the following parameters to add or edit a channel:

Figure 4-14 Modbus slave communication configuration when port functions as master

Modbus communication parameter settings

Configuration
Item

Function

Name Channel name, in the string format.

Access Type

Read Coils (Function Code 01).

Read Discrete Inputs (Function Code 02).

Read Holding Registers (Function Code 03).

Read Input Registers (Function Code 04).

Write Single Coil (Function Code 05).

Write Single Register (Function Code 06).

Write Multiple Coils (Function Code 15).

Write Multiple Registers (Function Code 16).

Network Configuration

‑213‑

Configuration
Item

Function

Trigger

Cyclic: Requests are triggered
periodically.

Cycle Time: Time for re-execution.

Level Trigger: Requests are
triggered when a change is
made during programming.

Trigger Variable (SM): SM element that implements trigger.
After trigger is successful, the element is reset
automatically.

Repeated
A request is resent for the specified times when no response frame is received from the slave
upon a communication error.

Comment Brief text description about data.

Read registers 　

Offset Head address of the registers to be read.

Length Number of registers to be read.

Error Handling
Keep Last Value: The last valid value is kept.

0: All the values are zeroed.
Write Register 　

Offset Head address of the registers to be written.

Length Number of registers to be written.

The valid range of the "Length" parameter depends on the following parameters:

Function Code Access Type Register Count

01 Read Coils 1 to 2000
02 Read Discrete Inputs 1 to 2000

03 Read Holding Registers 1 to 125

04 Read Input Registers 1 to 125

05 Write Single Coil 1

06 Write Single Register 1

15 Write Multiple Coils 1 to 1968

16 Write Multiple Registers 1 to 123

Modbus slave internal I/O mapping

Network Configuration

‑214‑

Figure 4-15 Modbus slave internal I/O mapping when port functions as master

After master-slave communication configurations are added on the "Modbus Slave Communication
Configuration" page, the mapped address of each configuration is automatically allocated in the
Internal I/O Mapping. In the preceding figure, %IW1 in the first row indicates that the read value of a
coil to the address %IW1. Besides, you can map the customized variables in the program to the I/O
address through the input assistant or directly inputting the example variable path.

4.5.5 Modbus Master Broadcast Configuration

Broadcast configuration is only required for Modbus masters of the AM400-/AM600-series PLCs. Skip this section for
PLCs of other series.

When the Modbus master is connected to multiple Modbus slaves, and all Modbus slaves receive the
write operation, the Modbus master needs to perform broadcast.

1. On the "Modbus Master Configuration" page, click "Broadcast Communication Configuration". The
"Broadcast Communication Configuration" page is displayed.

2. Click "Add". The "Modbus Broadcast Channel Set" dialog box is displayed.

Network Configuration

‑215‑

3. Set the following parameters: Name, Access Type, Trigger Variable (SM), Repeated, Comment, and
Write Register (Offset and Length).
The access type includes multiple function codes, including Write Single Coil (Function Code 05),
Write Single Register (Function Code 06), Write Multiple Coils (Function Code 15), and Write Multiple
Registers (Function Code 16).

● Trigger Variable: Condition that triggers the Modbus master to start communication. The Modbus
master can perform broadcast communication only when the trigger variable is "TRUE". The
trigger variable needs to be reset during programming.

● Repeated: Number of resend times after a send operation is completed. The number of send
failures can be reduced by setting the number of resend times.

4. Click "OK".

4.5.6 Modbus Slave Configuration

When the PLC serves as the Modbus slave, the communication parameters of the Modbus master and
slave must be consistent; otherwise, communication may fail.

1. Open the "Modbus Slave Configuration" page.

● AM400/AM600/AC700/A800: In the left device tree, double-click the Modbus slave. The "Modbus
Slave Configuration" page is displayed.

Network Configuration

‑216‑

● AM300/AM500: In the left device tree, double-click "COM (Serial Port)". The "COM Configuration"
page is displayed. Double-click "Modbus_Slave (Modbus Slave)". The "Modbus Slave
Configuration" page is displayed.

2. Configure the Modbus slave parameters.
Among these parameters, the serial port configuration parameters have the same meanings as those
of the Modbus master. The Modbus slave number refers to the local device station number. "Time
between Frames" indicates the delay of responding to the master after the frame from the master is
received.

Network Configuration

‑217‑

4.5.7 Modbus Device Diagnosis

The Modbus master diagnosis information includes the communication configurations of faulty slaves
and the fault.

Figure 4-16 Modbus master diagnosis

4.5.8 Common Errors of Modbus

The following errors are frequently encountered during Modbus master-slave connection:

● The configurations of Modbus master and Modbus slave are inconsistent, causing a communication
failure between the master and slave.

● An error response is returned when the Modbus master accesses a Modbus slave through an invalid
address.

● The Modbus master receives an error response from the Modbus slave when it attempts to write a
register of the Modbus slave that only supports the read operation.

Incorrect response frame

An error response consists of a slave address, command code+0x80, error code, and cyclic redundancy
check (CRC) code.

The preceding error frame is applicable to all command frames.

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2 Command code+0x80 1 Command error code
3 Error code 1 Value range: 1 to 4

4.5.9 Modbus Variable Addressing

Coil: Bit variable, indicated by 0 or 1 The PLC includes Q and SM area variables.

Network Configuration

‑218‑

Variable Command Code Start Address Number of
Coils

Description

QX0.0-QX1023.7 0X01, 0x05, 0x0f 0 8192 Accessible by standard Modbus protocols.

SM0-SM7999 0x31, 0x35, 0x3f 0 8000 Use different function codes from
Inovance HMI dedicated protocol.

Register: 16-bit (word) variable. The PLC includes M and SD area variables.

Variable Command Code Start Address
Number of
Registers

Description

MW0-MW65535 0x03, 0x06, 0x10 0 65536
Accessible by standard Modbus
protocols.

SD0-SD7999 0x33, 0x36, 0x40 0 8000
Use different function codes from
Inovance HMI dedicated protocol.

Note:

Inovance HMI dedicated protocol uses different function codes: For the access to SM, use 0x31, 0x35
and 0x3f (0x30 added based on bit variable access command). For the access to SD, use 0x33, 0x36,
and 0x40 (0x30 added based on register variable access command).

AM600 soft elements include Q, I, and M areas, which can be accessed by bit, byte, word, and double-
word. For example, %QX, %QB, %QW, and %QD are converted as follows:

QB0 = (QX0.0-QX0.7)

QW0 = (QB0-QB1) = ((QX0.0-QX0.7) + (QX1.0-QX1.7))

QD0 = (QW0-QW1) = (QB0-QB3) = ((QX0.0-QX0.7) + (QX1.0-QX1.7) + (QX2.0-QX2.7) + (QX3.0-QX3.7))

Register addressing rules

Network Configuration

‑219‑

Addressing
by Bit

Addressing
by Byte

Addressing by
Word

Addressing
by DWord

Addressing
by Bit

Address
ing by
Byte

Address
ing by
Word

Addressing
by DWord

QX0.0

QB0

QW0

QD0

MX0.0

MB0

MW0

MD0

QX0.1 MX0.1
QX0.2 MX0.2
QX0.3 MX0.3
QX0.4 MX0.4
QX0.5 MX0.5
QX0.6 MX0.6
QX0.7 MX0.7
QX1.0

QB1

MX1.0

MB1

QX1.1 MX1.1
QX1.2 MX1.2
QX1.3 MX1.3
QX1.4 MX1.4
QX1.5 MX1.5
QX1.6 MX1.6
QX1.7 MX1.7
QX2.0

QB2

QW1

MX2.0

MB2

MW1

QX2.1 MX2.1
QX2.2 MX2.2
QX2.3 MX2.3
QX2.4 MX2.4
QX2.5 MX2.5
QX2.6 MX2.6
QX2.7 MX2.7
QX3.0

QB3

MX3.0

MB3

QX3.1 MX3.1
QX3.2 MX3.2
QX3.3 MX3.3
QX3.4 MX3.4
QX3.5 MX3.5
QX3.6 MX3.6
QX3.7 MX3.7
QX4.0

QB4 QW2 QD1
MX4.0

MB4 MW2 MD1
QX4.1 MX4.1

The head address of AM600's Word registers contains an even number of bytes. The head address of
DWord registers contains an even number of words. The index number is two times, facilitating
address calculation.

4.5.10 Modbus Communication Frame Format

● Read coils
The 0x01 command code is used to read the Q variable.

The 0x31 command code is used to read the SM variable.

Network Configuration

‑220‑

Request frame format: slave address + 0x01 + head address of coils + number of coils + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x01/0x31 (command
code) 1 Read coils

3 Coil head address 2
Upper bits are followed by lower bits. See
coil addressing.

4 Number of coils (N) 2 Upper bits are followed by lower bits.

5 CRC code 2 Upper bits are followed by lower bits.

Response frame format: slave address + 0x01 + number of bytes + coil status + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x01/0x31 (command
code) 1 Read coils

3 Number of bytes 1 Value: (N + 7)/8

4 Coil status (N + 7)/8

Every 8 coils are combined into one byte. If
the number of coils is not a multiple of 8,
undefined bits are filled with 0. The first 8
coils are in the first byte, and the coil with
the smallest address is in the least
significant bit. This pattern continues for the
rest of the coils.

5 CRC code 2 Upper bits are followed by lower bits.

● Read registers
The 0x03 command code is used to read the M variable.

The 0x33 command code is used to read the SD variable.

Request frame format: slave address + 0x03 + head address of registers + number of registers + CRC
code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2 0x03/0x33 (command
code)

1 Read registers

3 Register head address 2 Upper bits are followed by lower bits. See
register addressing.

4 Number of registers 2 Upper bits are followed by lower bits (N).
5 CRC code 2 Upper bits are followed by lower bits.

Response frame format: slave address + 0x03 + number of bytes + register value + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x03/0x33 (command
code) 1 Read registers

3 Number of bytes 1 Value: N x 2

4 Register value N x 2

Every two bytes represent one register
value, with upper bits followed by lower
bits. The register with the minimum address
is in the foremost.

5 CRC code 2 Upper bits are followed by lower bits.

Network Configuration

‑221‑

● Write a single coil.
The 0x05 command code is used to write the Q variable.

The 0x35 command code is used to write the SM variable.

Request frame format: slave address + 0x05 + coil address + coil status + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2 0x05/0x35 (command
code)

1 Write a single coil

3 Coil address 2 Upper bits are followed by lower bits. See
coil addressing.

4 Coil status 2 Lower bits are followed by upper bits. Active
when the value is other than 0

5 CRC code 2 Upper bits are followed by lower bits.

Response frame format: slave address + 0x05 + coil address + coil status + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x05/0x35 (command
code) 1 Write a single coil

3 Coil address 2
Upper bits are followed by lower bits. See
coil addressing.

4 Coil status 2
Lower bits are followed by upper bits. Active
when the value is other than 0

5 CRC code 2 Upper bits are followed by lower bits.

● Write a single register.
The 0x06 command code is used to write the M variable.

The 0x36 command code is used to write the SD variable.

Request frame format: slave address + 0x06 + register address + register value + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x06/0x36 (command
code) 1 Write a single register

3 Register address 2
Upper bits are followed by lower bits. See
register value addressing.

4 Register value 2 Upper bits are followed by lower bits. Active
when the value is other than 0

5 CRC code 2 Upper bits are followed by lower bits.

Response frame format: slave address + 0x06 + register address + register value + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2 0x06/0x36 (command
code)

1 Write a single register

3 Register address 2 Upper bits are followed by lower bits. See
register addressing.

Network Configuration

‑222‑

No. Meaning of Data (Byte) Number of Bytes Description

4 Register value 2 Upper bits are followed by lower bits. Active
when the value is other than 0

5 CRC code 2 Upper bits are followed by lower bits.

● Write multiple coils
The 0x0f command code is used to write multiple consecutive Q variables.

The 0x3f command code is used to write multiple consecutive SM variables.

Request frame format: slave address + 0x0f + head address of coils + number of coils + number of
bytes + coil status + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x0f/0x3f (command
code) 1 Write multiple coils

3 Coil head address 2
Upper bits are followed by lower bits. See coil
addressing.

4 Number of coils (N) 2 Upper bits are followed by lower bits. The
maximum value is 1968.

5 Number of bytes 1 Value: (N + 7)/8

6 Coil status (N + 7)/8

Every 8 coils are combined into one byte. If
the number of coils is not a multiple of 8,
undefined bits are filled with 0. The first 8
coils are in the first byte, and the coil with the
smallest address is in the least significant bit.
This pattern continues for the rest of the
coils.

7 CRC code 2 Upper bits are followed by lower bits.

Response frame format: slave address + 0x05 + head address of coils + number of coils + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2 0x0f/0x3f (command
code)

1 Write multiple coils

3 Coil head address 2 Upper bits are followed by lower bits. See
coil addressing.

4 Number of coils 2 Upper bits are followed by lower bits.
5 CRC code 2 Upper bits are followed by lower bits.

● Write multiple registers
The 0x10 command code is used to write multiple consecutive M variables.

The 0x40 command code is used to write multiple consecutive SD variables.

Request frame format: slave address + 0x10 + head address of registers + number of registers +
number of bytes + register value + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2
0x10/0x40 (command
code) 1 Write multiple registers

3 Register head address 2
Upper bits are followed by lower bits. See
register addressing.

Network Configuration

‑223‑

No. Meaning of Data (Byte) Number of Bytes Description

4 Number of registers 2 Upper bits are followed by lower bits (N).

5 Number of bytes 1 Value: N x 2

6 Register value N x 2 (N x 4)

7 CRC code 2 Upper bits are followed by lower bits.

Response frame format: slave address + 0x05 + head address of coils + number of coils + CRC code

No. Meaning of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247

2 0x10/0x40 (command
code)

1 Write multiple registers

3 Register head address 2 Upper bits are followed by lower bits. See
register addressing.

4 Number of registers 2 Upper bits are followed by lower bits (N).
5 CRC code 2 Upper bits are followed by lower bits.

4.6 Application of Free Protocols on Serial Ports

4.6.1 Overview

This section describes communication using free protocols on the serial ports of a medium-sized PLC.
The applicable versions are as follows:

Device Name Version
InoProShop 1.2.0 or later

PLC firmware 1.19.70 or later

4.6.2 Serial Port Configuration

● Enable the free protocol for the AM400/AM600/AC700/A800 series

1. In the left device tree, double-click "Network Configuration". The "Network Configuration" page is
displayed.

2. Click the PLC device picture. The enabling states of all masters/slaves and free protocols
supported by the PLC are displayed.

3. Take the COM0 port as an example. Select "Free Protocol" for the COM0 port.

Network Configuration

‑224‑

● Enable the free protocol for the AM300/AM500 series

1. In the left device tree, right-click "COM (Serial Port)". In the shortcut menu, select "Add Device".
The "Add Device" dialog box is opened.

2. Select "Free Protocol Serial Port" and then click "Add Device". The free protocol is enabled for the
PLC.

Network Configuration

‑225‑

Network Configuration

‑226‑

4.6.3 Communication Configuration

The following table lists the parameters that need to be set.

Configuration Item Function

COM Port Serial port 0 or 1, which is used to establish a physical connection to the
master

Baud rate Communication rate
Parity Method of verifying communication frames

Data Bits Actual data bits included in communication frames
Stop Bits Last bit in a single message during communication

The communication format used by the serial port with "Free Protocol" selected must be consistent
with that of the connected slave, for example, 9600 8 E 1.

4.6.4 Registers for Data Sending and Receiving

The following figure shows the configurations of a port enabled with free protocol.

Network Configuration

‑227‑

Figure 4-17 Free Protocol Configuration

Configuration Item Function
Register Type Options are %MW and SD.

Receive Count Register This register displays the number of received bytes when data is received.

Receive Buffer Address This parameter indicates the head address of the buffer that receives data.

Max Receive Length This parameter indicates the maximum number of buffered bytes.

Send Count Register Data is sent when this parameter is not set to 0. Its value is automatically
reset after data is sent.

Send Buffer Address This parameter indicates the head address of the buffer that sends data.

Max Send Length This parameter indicates the maximum number of data bytes sent at a
time.

In the preceding figure, the option "%MW0" is set and indicates the length of data frames received
from external devices. "MW0" needs to be cleared manually; otherwise, its value keeps increasing until
it is cleared when the value of "Max Receive Length" is reached. In this case, the receive buffer is
overwritten from the start.

For example, if the receive length is "%MW0 = 10", the receive buffer ranges from %MW1 to %MW5. One
%MW occupies 2 bytes.

For example, if the send length is "%MW300 = 8", the send buffer ranges from %MW301 to %MW304.
Data is automatically sent when %MW300 is not 0. %MW300 is automatically cleared after data is sent.

Application example:

The process based on the preceding settings is as follows:

1. When data is received, %MW0 displays the number of received data bytes, and the received data is
stored in the registers starting from the head address %MW1.

2. Each time after data is received, %MW0 must be cleared manually so that data is buffered all over
again starting from %MW1. If %MW0 is not cleared, data is buffered in sequence.

Network Configuration

‑228‑

3. When the length of received data exceeds the value 256 (bytes) of "Max Receive Length", %MW0
starts counting again and the received data is stored from the head address %MW1.

4. Before data is sent, the data is written to the registers starting from the head address %MW301.
5. After the data (bytes) to be sent is written to %MW300, data starting from %MW301 is sent.
6. %MW300 is automatically cleared after data is sent.
7. When the number of bytes written to %MW300 exceeds the value 256 of "Max Send Length", data is

sent based on "Max Send Length".

4.6.5 Communication Tests Through the Serial Port Commissioning Assistant

1. Receive data by the PLC
Open "Serial Port Commissioning Assistant" and set the serial port communication parameters as
those on the programming software as follows: baud rate = 9600, check mode = NONE, data bit = 8,
and stop bit = 1.

Use the serial port commissioning assistant to send the 4-byte data "12 34 56 78" in hexadecimal.
The length %MW0 of the data received by the PLC is 4 bytes. The buffer that receives data ranges
from %MW1 to %MW2. %MW0 must be manually cleared before data is received by the PLC again
through the serial port commissioning assistant; otherwise, the buffer receiving the data is not
updated.

2. Send data from the PLC
If the PLC wants to send data of 4 bytes, the data value is written to the data sending buffers %
MW301 to %MW302 and 4 is written to the buffer %MW300. Then, the data is automatically sent.
After data is sent, %MW300 is automatically cleared and the receiving area of the serial port
commissioning assistant can receive the data sent by the PLC.

Network Configuration

‑229‑

4.7 Modbus TCP Device Editor

4.7.1 Overview

Click a PLC on the "Network Configuration" page. A window is displayed, allowing you to enable the
master and slaves supported by the PLC, as shown in the following figure. Select the check box before
the master or slave you want to enable, and double-click "MODBUS_TCP" in "Network Devices List" on
the right to add the slave to the network.

Figure 4-18 Modbus TCP configuration example

The device tree corresponding to Modbus TCP configuration is displayed on the left, as shown in the
following figure.

Figure 4-19 Device tree corresponding to Modbus TCP configuration

For Modbus TCP communication specifications of medium-sized PLCs, see the user guide of the
specific product.

4.7.2 Modbus TCP Master Configuration

When the PLC serves as the Modbus TCP master, double-click a master in the device tree. The "Modbus
Master Configuration" window is displayed, as shown in the following figure.

Network Configuration

‑230‑

Figure 4-20 Modbus TCP Master Configuration

"Time between Frames" refers to the time for the master to wait for the next request data frame after
receiving a response data frame. This parameter can be used to adjust the data exchange rate.

4.7.3 Modbus TCP Master Communication Configuration

Modbus TCP slave configuration

Figure 4-21 Modbus TCP master-slave connection configuration

Configuration parameters:

Configuration Item Function
Slave IP Address IP address of the Modbus TCP slave used to connect to the master.
Port TCP port of the Modbus TCP slave used to connect to the master.

Unit ID Protocol station address of the Modbus TCP slave used to connect to the
master.

Timeout
After sending frames, the master reports receiving timeout if no data is
received from the slave within this timeout period.

Slave Enable Variable Enables the slave by programming and starts to send frames to the slave.

Example:

Network Configuration

‑231‑

Configuration Item Value

Slave IP Address 192.168.10.16
Port 502
Unit ID 05
Timeout 1000
Slave Enable Variable 3001

Configuring Modbus TCP master-slave communication

Figure 4-22 Configuring Modbus TCP master-slave communication

In the preceding figure, each channel represents an independent Modbus TCP request. The "Access
Type" column defines the 5-ms cyclic operation triggered by "Write Single Register (function code 06)"
to write 2-byte data (one register occupies 2 bytes) to the register whose offset address is 0x0020.

After you click "Add...", a dialog box for adding a channel for the Modbus TCP slave is displayed.
Complete settings and click "OK" to create a channel.

Select a channel from the Modbus TCP slave channel list and click "Edit...". The "Modbus Channel Set"
dialog box is displayed. Change the values of parameters to modify the channel settings. Click "OK" to
update the channel settings.

You can set the following parameters to add or edit a channel:

Network Configuration

‑232‑

Figure 4-23 Dialog box for Modbus TCP master-slave communication configuration

Modbus communication parameter settings

Configuration
Item

Function

Name Channel name, in the string format.

Access Type

Read Coils (Function Code 01).

Read Discrete Inputs (Function Code 02).

Read Holding Registers (Function Code 03).

Read Input Registers (Function Code 04).

Write Single Coil (Function Code 05).

Write Single Register (Function Code 06).

Write Multiple Coils (Function Code 15).

Write Multiple Registers (Function Code 16).

Trigger
Cyclic: Requests are triggered periodically. Cycle Time: Time for re-execution.

Level Trigger: Requests are triggered when a
change is made during programming.

Trigger Variable (SM): SM element that
implements trigger.

Repeated
A request is resent for the specified times when no response frame is received from the slave
upon a communication error.

Network Configuration

‑233‑

Configuration
Item

Function

Comment Brief text description about data.

Read Register —

Offset Head address of the registers to be read.

Length Number of registers to be read.

Error Handling
Keep Last Value: The last valid value is kept.

0: All the values are zeroed.
Write Register —
Write Register Head address of the registers to be written.

Length Number of registers to be written.

The valid range of the "Length" parameter depends on the following parameters:

Function Code Access Type Register Count

01 Read Coils 1 to 2000
02 Read Discrete Inputs 1 to 2000

03 Read Holding Registers 1 to 125

04 Read Input Registers 1 to 125

05 Write Single Coil 1

06 Write Single Register 1

15 Write Multiple Coils 1 to 1968

16 Write Multiple Registers 1 to 123

Modbus TCP slave internal I/O mapping

Figure 4-24 Internal I/O mapping of Modbus TCP master-slave connection

After master-slave communication configurations are added on the "Modbus TCP Slave
Communication Configuration" page, the mapped address of each configuration is automatically
allocated in "Internal I/O Mapping". In the preceding figure, %IW1 in the first row indicates that the
read value of a coil to the address %IW1. Besides, you can map the customized variables in the
program to the I/O address through the input assistant or directly inputting the example variable path.

4.7.4 Modbus TCP Slave Configuration

When the PLC serves as the Modbus TCP slave, double-click a slave in the device tree. The "Modbus
TCP Slave Configuration" window is displayed, as shown in the following figure.

Network Configuration

‑234‑

Figure 4-25 Modbus TCP slave configuration

Configuration parameters:

Configuration Item Function

Slave Port TCP port of the Modbus TCP slave

Time between Frames Delay for the Modbus TCP slave to return a response frame after receiving a
communication frame

Example:

Configuration Item Value

Slave Port 502
Time between Frames 1

4.7.5 Modbus TCP Device Diagnosis

Modbus TCP master diagnosis

Figure 4-26 Modbus TCP master diagnosis

Network Configuration

‑235‑

Figure 4-27 Modbus TCP master-slave connection diagnosis

Modbus TCP slave diagnosis

Figure 4-28 Modbus TCP slave diagnosis

4.7.6 Common Errors of Modbus TCP

The following errors are frequently encountered during Modbus TCP master-slave connection:

● The IP addresses configured for Modbus TCP master-slave connection are incorrect, causing a
communication failure.

● An error response is returned when the Modbus TCP master accesses a Modbus TCP slave through
an invalid address.

● The Modbus TCP master receives an error response from the Modbus TCP slave when it attempts to
write a register of the Modbus TCP slave that only supports the read operation.

An error frame consists of a transaction meta identifier, protocol identifier, length, slave address,
(command code+0x80), error code, and cyclic redundancy check (CRC) code.

The preceding error frame is applicable to all command frames.

No. Meaning of Data (Byte) Number of Bytes Description

1 Transaction meta identifier 2 Identifier of the Modbus request/
response transaction being processed

2 Protocol identifier 2 0: Modbus protocol

Network Configuration

‑236‑

No. Meaning of Data (Byte) Number of Bytes Description

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5 Command code+0x80 1 Command error code
6 Error code 1 1 to 4

4.7.7 Modbus TCP Communication Frame Format

● Read coils
The 0x01 command code is used to read the Q variable.

The 0x31 command code is used to read the SM variable.

Request frame format: transaction meta identifier + protocol identifier + length + slave address +
0x01 + head address of coils + number of coils

No. Meaning of Data (Byte)
Number of

Bytes
Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x01/0x31 (command
code) 1 Read coils

6 Coil head address 2
Upper bits are followed by lower bits. See coil
addressing.

7 Number of coils (N) 2 Upper bits are followed by lower bits.

Response frame format: transaction meta identifier + protocol identifier + length + slave address +
0x01 + number of bytes + coil status

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x01/0x31 (command
code) 1 Read coils

6 Number of bytes 1 Value: (N + 7)/8

7 Coil status (N + 7)/8

Every 8 coils are combined into one byte. If
the number of coils is not a multiple of 8,
undefined bits are filled with 0. The first 8
coils are in the first byte, and the coil with the
smallest address is in the least significant bit.
This pattern continues for the rest of the
coils.

● Reads registers
The 0x03 command code is used to read the M variable.

The 0x33 command code is used to read the SD variable.

Network Configuration

‑237‑

Request frame format: transaction meta identifier + protocol identifier + length + slave address +
0x03 + head address of registers + number of registers

No. Meaning of Data (Byte) Number of
Bytes

Description

1 Transaction meta
identifier

2 Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol
3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5 0x03/0x33 (command
code)

1 Reads registers

6 Register head address 2 Upper bits are followed by lower bits. See
register addressing.

7 Number of registers (N) 2 Upper bits are followed by lower bits.

Response frame format: transaction meta identifier + protocol identifier + length + slave address +
0x03 + number of bytes + register value

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x03/0x33 (command
code) 1 Reads registers

6 Number of bytes 1 Value: N x 2

7 Register value (N x 2) bytes

Every two bytes represent one register value,
with upper bits followed by lower bits. The
register with the minimum address is in the
foremost.

● Writes a single coil.
The 0x05 command code is used to write the Q variable.

The 0x35 command code is used to write the SM variable.

Request frame format: transaction meta identifier + protocol identifier + length + slave address +
0x05 + coil address + coil status

No. Meaning of Data (Byte)
Number of

Bytes
Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x05/0x35 (command
code) 1 Write a single coil

6 Coil address 2
Upper bits are followed by lower bits. See coil
addressing.

7 Coil status 2 Lower bits are followed by upper bits. A non-
zero value is valid.

Network Configuration

‑238‑

Response frame format: transaction meta identifier + protocol identifier + length + slave address +
0x05 + coil address + coil status

No. Meaning of Data (Byte)
Number of

Bytes
Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x05/0x35 (command
code) 1 Write a single coil

6 Coil address 2
Upper bits are followed by lower bits. See coil
addressing.

7 Coil status 2 Lower bits are followed by upper bits. A non-
zero value is valid.

● Writes a single register.
The 0x06 command code is used to write the M variable.

The 0x36 command code is used to write the SD variable.

Request frame format: transaction meta identifier + protocol identifier + length + slave address +
0x06 + register address + register value

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x06/0x36 (command
code) 1 Write a single register

6 Register address 2
Upper bits are followed by lower bits. See
register value addressing.

7 Register value 2 Upper bits are followed by lower bits. A non-
zero value is valid.

Response frame format: transaction meta identifier + protocol identifier + length + slave address +
0x06 + register address + register value

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x06/0x36 (command
code) 1 Write a single register

6 Register address 2
Upper bits are followed by lower bits. See
register addressing.

7 Register value 2 Upper bits are followed by lower bits. Active
when the value is other than 0

Network Configuration

‑239‑

● Writes multiple coils
The 0x0f command code is used to write multiple consecutive Q variables.

The 0x3f command code is used to write multiple consecutive SM variables.

Request frame format: transaction meta identifier + protocol identifier + length + slave address +
0x0f + head address of coils + number of coils + number of bytes + coil status

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x0f/0x3f (command
code) 1 Write multiple coils

6 Coil head address 2
Upper bits are followed by lower bits. See coil
addressing.

7 Number of coils (N) 2 Upper bits are followed by lower bits. The
maximum value is 1968.

8 Number of bytes 1 Value: (N + 7)/8

9 Coil status (N + 7)/8

Every 8 coils are combined into one byte. If the
number of coils is not a multiple of 8, undefined
bits are filled with 0. The first 8 coils are in the
first byte, and the coil with the smallest address
is in the least significant bit. This pattern
continues for the rest of the coils.

Response frame format: transaction meta identifier + protocol identifier + length + slave address +
0x05 + head address of coils + number of coils

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x0f/0x3f (command
code) 1 Write multiple coils

6 Coil head address 2
Upper bits are followed by lower bits. See coil
addressing.

7 Number of coils 2 Upper bits are followed by lower bits.

● Writes multiple registers
The 0x10 command code is used to write multiple consecutive M variables.

The 0x40 command code is used to write multiple consecutive SD variables.

Request frame format: transaction meta identifier + protocol identifier + length + slave address +
0x10 + head address of registers + number of registers + number of bytes + register value

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

Network Configuration

‑240‑

No. Meaning of Data (Byte) Number of Bytes Description

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x10/0x40 (command
code) 1 Writes multiple registers

6 Register head address 2
Upper bits are followed by lower bits. See
register addressing.

7 Number of registers 2 Upper bits are followed by lower bits.

8 Number of bytes 1 Value: N x 2

9 Register value N x 2 (N x 4)

Response frame format: transaction meta identifier + protocol identifier + length + slave address +
0x05 + head address of coils + number of coils

No. Meaning of Data (Byte) Number of Bytes Description

1
Transaction meta
identifier

2
Identifier of the Modbus request/response
transaction being processed

2 Protocol identifier 2 0: Modbus protocol

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5
0x10/0x40 (command
code) 1 Writes multiple registers

6 Register head address 2
Upper bits are followed by lower bits. See
register addressing.

7 Number of registers 2 Upper bits are followed by lower bits.

4.8 CANopen Network

4.8.1 Overview of CANopen Communication

CANopen bus

CANopen is the industrial communication protocol family for distributed automatic control devices
based on the CAN bus. CANopen is promoted by CAN in Automation (CiA) and was standardized at the
end of 2002, with a standard number of CENELEC EN 50325-4. CANopen defines application-layer
protocols, communication-layer protocols, and multiple application protocols. The following figure
shows the overall architecture of CANopen.

Network Configuration

‑241‑

The application layer provides applications with acknowledged and unacknowledged services and
defines communication objects. Those services can be used to request data from a server.

Communication objects are used during data exchange. They are used to exchange process data and
service data, manage processes or synchronize the system clock, manage error statuses, and control
and monitor node statuses. A communication object is defined by a structure, transmission type, and
CAN identifier. Typical parameters of communication objects include the CAN identifier for data
transmission, message transmission type, and disable time or event time. The parameters are defined
in communication protocols.

For each CANopen device, the main data structure is an object dictionary, which is the primary data
exchange medium for the communication between the application layer and CAN bus. Object
dictionary portals can be accessed from the application layer and CAN bus through special messages.
Those portals can be considered as a variable or a programmer-defined area.

Each portal has an index or a sub-index. An object dictionary portal can be accurately located by using
the index structure. The CANopen protocol stack provides standard API functions to define object
dictionary portals, including their read and write attributes. Object dictionaries can be accessed by
using communication objects through the CAN bus.

In object dictionaries, attributes of each portal must be defined, including the data type, access
permission, data transmission for process data objects (PDOs), and variable range.

● PDOs are used to transmit the real-time data of processes.
● Service data objects (SDOs) are used to access the object dictionary of a device, set parameters, or

transmit non-real-time data.
● SYNC messages do not contain data. They are sent by the producer to the CAN network periodically

to trigger transmission of PDO data on nodes.
● Emergency messages are triggered by the internal critical errors of devices. They consist of an error

code, error register, and manufacturer specific error.

Network Configuration

‑242‑

CiA DS-301 defines the application layer and communication protocols. CiA DSP-302 defines the
framework of programmable CANopen devices. CiA DSP-304 defines the framework of secure
redundant data transmission, whereas the data description of specific devices is defined in the
application protocol consisting of respective device protocols. For example, CiA DSP-401 defines the
data format of the I/O module, and CiA DSP-402 defines the data format for drive control.

Hardware port

CANopen transmits data through the DB9 connector. The following table lists pins of the DB9
connector.

Diagram Pin Signal Definition

5
9

4

1

2

3
8

7

6

PIN2 CANL
PIN7 CANH

PIN3 CGND

It is recommended to use shielded twisted pairs to connect the CAN bus. Connect two 120 Ω
termination resistors at each end of the bus to prevent signal reflection. Typically, ground the shield in
the single-point grounding mode. Do not bundle the bus cables together with AC power cords and high
voltage cables; otherwise, communication signals may be affected by interference.

Networking diagram

The following figure shows the CAN bus topology.

Process of using CANopen

The general process of using CANopen is as follows:

1. Design the CANopen hardware network structure.
2. On the "Network Configuration" page, activate the CANopen bus. After the CANopen bus is activated,

the CANopen master is automatically added, and the CANopen bus task named "CANopen" is also
added. By default, the CANopen bus uses the task to refresh I/O.

3. On the "Network Configuration" page, add CANopen slaves and modules based on the hardware
structure. Before adding a third-party slave, import an EDS file to import the third-party slave on the
"Network Configuration" page.

Network Configuration

‑243‑

4. To add an AM600 slave, you need to add an I/O module on the "Hardware Configuration" page.
Double-click the module in "In\Output Module List" on the right, as shown in the following figure.
The CANopen slave is a CANopen remote device.

5. Set the master parameters, slave parameters, and module parameters properly. In normal cases, the
slave node ID is automatically generated, PDOs and mapping are automatically generated based on
the EDS file, and some special settings need to be modified manually.

When setting the parameters of the master and slave, ensure that the master baud rate and slave node
ID match with the slave baud rate, slave node ID, and DIP switch, respectively.

Network Configuration

‑244‑

Network Configuration

‑245‑

The software provides soft elements to obtain the CANopen slave status and the CiA-DSP405 library for
slave management and operation.

4.8.2 CANopen Master Configuration

Master configuration

If an AC800-series PLC serves as the master, the conversion module must be configured, as shown in
the following figure.

Figure 4-29 CANopen master configuration page

Two conversion modules are available: built-in CAN card and network-to-CAN module. If the built-in
CAN card is used, select "Built In CAN". When the network-to-CAN module is used, configure the
module type, IP address, and subnet mask. The network segment of the network-to-CAN module must
be consistent with that of the port A or B of the AC800; otherwise, the network-to-CAN module cannot
be scanned out by the AC800.

Network Configuration

‑246‑

Note
After the IP address and subnet mask of the network-to-CAN module are modified, the modification takes effect and
the network-to-CAN module is restarted and re-connected upon next login. Start the application program after the
network-to-CAN module is restarted and the SYS indicator turns from red to green and blinks for 10s.

Network management

● Node ID: The unique identifier of the master in the CANopen network. The default value is 127, and
the value range is 1 to 127, in the decimal format.

● Check and fix configuration: See the section "Check and fix configuration."
● Stopped on failure: See the section "Stopped on failure."
● Baudrate: The baud rate of transmission along the bus. The unit is kbps. Options are 10, 20, 50, 100,

125, 250, 500, 800, and 1000. The default value is 500.

Note
If the CPU module is at the head end or tail end of the network, turn the termination resistor of the CANopen port to
ON. Set a proper baud rate because the communication distance is related to the baud rate.

● No access to SDO, NMT when program is running: If this option is selected, the slave cannot be
accessed through SDO and NMT in the user program or on the slave commissioning page when the
application program is running.

● Network load: The real-time load of the CANopen network when the bus is running. The network
load is displayed only after you log in to the PLC.

Sync

● Enable Sync Producing: If this option is selected, the master sends synchronization information. It is
deselected by default. This function can be enabled on only one station of the CANopen bus
system. The PDO indicating the synchronization type sends information based on the preset type
after synchronization information is sent.

● COB-ID: The communication object identifier, which is also the synchronization message ID. It is set
to 16#80 and cannot be changed. This COB-ID is also used if "Enable Sync Producing" is selected on
the slave.

● Cycle Period (μs): The interval at which synchronization information is sent. The value ranges from
2000 to 4294967000, in microseconds (μs). It is an integral multiple of the bus task time.

Network Configuration

‑247‑

● Window Length (μs): Used for PDO synchronization. The unit is microseconds. It is invariably set to
0 and cannot be changed.

Heartbeat

Heartbeat is a node guarding mechanism. Different from node daemon, heartbeat can be triggered by
the master or slave. In normal cases, the master sends heartbeat information to the slave, which is
configured with the master node ID for consumption so that the slave can monitor the master.

● Enable Heartbeat Producing: If this option is selected, the master sends heartbeat information. It is
deselected by default.

● Node ID: The unique identifier of the sent heartbeat information. By default, it is set to the master
node ID. The value ranges from 1 to 127.

● Producer Time (ms): The interval at which heartbeat information is sent. The value ranges from 2 to
32767, in milliseconds (ms). It is an integral multiple of the bus task time.

● Window Length (μs): Used for PDO synchronization. The unit is microseconds. It is invariably set to
0 and cannot be changed.

If an AC800-series PLC serves as the master, the conversion module must be configured, as shown in
the following figure.

Figure 4-30 CANopen external module configuration page

Check and fix configuration

When multiple slaves are added to the CANopen system, the master or slave node IDs may be repeated
or the COB-IDs may conflict with each other because the EDS files of different slaves may contain a
configured COB-ID by default or the slave node ID is modified. In this case, click "Check and fix
configuration" on the CANopen master configuration page to solve the problem of repeated node IDs
or conflicting COB-IDs.

Network Configuration

‑248‑

Figure 4-31 "Check and fix configuration" page

Double Node ID

The "Double Node ID" section lists the slaves with the same node ID. You can edit the Node ID column
to re-allocate node IDs. Then, repeated node IDs are automatically canceled.

Wrong COB-ID

The "Wrong COB-ID" section lists the slaves with conflicting and invalid COB-IDs. You can modify COB-
IDs in the following three ways:

● Edit items in the "Wrong COB-ID" column to manually modify the COB-ID corresponding to the
current slave index.

● Click the button in the "Automatic suggestion" column and modify the COB-ID corresponding to the
current slave index based on the displayed value.

● Click "Use suggestion for all" and modify all the incorrect COB-IDs based on the displayed values in
the "Automatic suggestion" column.

After modification, slaves with correct COB-IDs disappear from the page.

Stopped On Failure

The "Stopped on FailureStopped On Failure" function determines whether to stop slave operation
when a slave or module is faulty or the configuration is inconsistent. This function is only applicable to
AM600 CANopen slaves.

Network Configuration

‑249‑

Figure 4-32 Stopped On Failure

● Setting list on slaves failure: You can view and set whether to stop operation upon slave failure or
inconsistent configuration.

● In the "Stopped On Failure" column, you can set whether to stop slave operation when the
specified slave or module is faulty. If the check box under "Stopped On Failure" is selected, the
slave stops running when it is faulty or when the I/O module with the diagnosis and report function
enabled is faulty.

● In the "Stopped on Inconsistent Configuration" column, you can set whether to stop slave
operation when the I/O module of the slave has inconsistent configuration. If the check box is
selected, the slave stops running when the I/O type does not match or the number of modules is
more or less than the actual quantity.

● Click "Select All" or "Select None" to activate or deactivate all the slave settings in the section
"Setting list on slaves failure".

● Click "OK" or "Cancel" to save or cancel the settings on the "Stopped On Failure" page.

CANopen Master I/O Mapping

For the general description of I/O mapping and instructions on this dialog box, see "I/O mapping".

State

The state configuration editor for the CANopen bus devices or modules displays state information
(such as "Running" and "Stopped") and the state of the internal bus system.

Information

The following basic information about the currently available device is displayed: Name, Vendor,
Categories, Version, Module Number, and Description.

Network Configuration

‑250‑

4.8.3 CANopen Slave Configuration

Main items of CANopen slave configuration include the basic parameters, PDO settings, SDO settings,
and commissioning.

Slave parameter setting

Figure 4-33 Slave parameter setting

General

● Node ID: The unique identifier of a slave in the CANopen network. The value ranges from 1 to 127, in
the decimal format. The node ID must be consistent with the slave identifier (such as the DIP
switch).

● SDO Channels: Not supported.
● Enable Expert Settings: If this option is selected, you can set expert parameters, such as slave node

protection, heartbeat generation, emergency message, restart check, PDO mapping operation,
system SDO display, and SDO abnormal jump.

● Option Device: Not supported.
● Create all SDOs: Select this option to create writable SDOs in the object dictionary. For example, the

object access attributes are RW, WO, RWR, and RWW. The created SDOs are displayed on the
"Service Data Object" page.

● NO Initialisation: Not supported.
● Enable Sync Producing: If this option is selected, the slave sends synchronization information. It is

deselected by default. This function can be enabled on only one station of the CANopen bus
system. Synchronous sending adopts the synchronization parameter settings of the master.

● Factory Settings: If this option is selected, the slave parameter settings are restored before you
download configuration or configure the slave. The type of parameter restoration depends on the
option selected from the restoration type list. The options are as follows:

Network Configuration

‑251‑

1. sub:001: Restores all the parameters.
2. sub:002: Restores communication-related parameters (manufacturer-specified communication

parameters indexed from 1000h to 1FFFh).
3. sub:003: Restores application-related parameters (manufacturer-specified application

parameters indexed from 6000h to 9FFFh).
4. sub:004 to sub:127: Restores manufacturer-defined parameters.
5. sub:128 to sub:254: Reserved.

Options in the parameter restoration type list are based on the current object dictionary (EDS file) and
come from the parsing results of EDS file index 1011. The sub-indexes have one-to-one
correspondence with the preceding options.

Error Control

In the "Error Control" area, you can configure to monitor the node online status. The configuration
items include node guarding and heartbeat.

The node guarding function enables the master to monitor the online status of the slave. The master
sends slave daemon information periodically, and the slave is supposed to return a response to the
master. If the slave fails to respond within the node daemon time (equal to the guard time multiplied
by the life time factor), the master considers that the slave is lost.

Heartbeats can be produced by the master or slave. The producer broadcasts heartbeat messages to
the CAN bus, and the heartbeat consumer consumes the heartbeat messages. If a node is configured
with heartbeat consumption and no heartbeats corresponding to the node ID are detected within the
configured time, the node is considered lost. Generally, the slave consumes the heartbeat messages of
the master to monitor the online status of the master.

● Enable Nodeguarding: Select this check box to enable the node guarding function. Node guarding
and heartbeat are mutually exclusive. The master sends a node guard matrix periodically within the
guard time. If the slave fails to return a response containing a specific COB-ID (communication
object identifier) within the node daemon time (which is equal to the guard time multiplied by the
life time factor), the slave is considered offline.

● Guard Time: The interval at which the master sends node guard frames periodically. The value is an
integral multiple of the bus task time and ranges from 10 to 65535, in ms.

● Life Time Factor: Used with "Guard Time". If the slave does not return a response within the node
daemon time (equal to the guard time multiplied by the life time factor), the master considers that
the slave is lost. The value ranges from 1 to 255.

● Enable Heartbeat: Select this check box to enable the heartbeat function on the slave so that the
slave sends heartbeat frames periodically at an interval indicated by "Producer Time". Heartbeat
and node guarding are mutually exclusive.

● Producer Time: The interval at which the slave sends heartbeat frames. The value is an integral
multiple of the bus task time and ranges from 10 to 32767, in ms.

● Change Heartbeat Consumer Properties: Click this button to configure a heartbeat producer for the
slave. You can configure heartbeat consumption for a slave so that the slave monitors the online
status of the slave that produces heartbeats. Generally, the slave consumes the heartbeats of the
master.

Network Configuration

‑252‑

Figure 4-34 "Heartbeat Properties" page

The heartbeat consumption configuration list is used to configure the producer of the consumed
heartbeat. You can configure a heartbeat producer after selecting the "Enable" check box.

By default, "NodeID of guarded Node" is set to the ID of the heartbeat producer node of the master.
If the heartbeat producer function is not enabled on the master, this parameter is set to 0. The
value ranges from 1 to 127. By default, "Heartbeat Time" is equal to the master heartbeat producer
time multiplied by 1.5. The value ranges from 1 to 65535.

Emergency message

● Enable Emergency: Select this check box so that the slave sends emergency messages through the
emergency message COB-ID. The emergency messages can be obtained through the functions
provided by the CiA405 library (RECV_EMCY_DEF and RECV_EMCY) function library.

● Emergency COB-ID: COB-ID for the slave to send emergency messages. The default value is
$NODEID+16#80, where NODEID is the node ID of the slave. The COB-ID is in the format of $NODEID
+16#+hexadecimal number, 16#+hexadecimal number, or decimal number. (Example)

Checks At Startup

● Check Vendor ID: Select this check box to enable vendor ID checking. The slave checks whether the
vendor ID (index: 1018; sub-index: 01) in the object dictionary matches with the vendor ID of the
slave. The slave may not run properly if they do not match.

● Check Product Number: Select this check box to enable product number checking. The slave checks
whether the product number (index: 1018; sub-index: 02) in the object dictionary matches with the
product number of the slave. The slave may not run properly if they do not match.

● Check Revision: Select this check box to enable version checking. The slave checks whether the
version (index: 1018; sub-index: 03) in the object dictionary matches with the version of the slave.
The slave may not run properly if they do not match.

Receive PDO

PDOs are used for real-time data transmission between master and slave. "Receive PDO" is the real-
time data that the master sends to the slave.

A PDO includes communication parameters and mapping parameters. The communication parameters
include the unique communication identifier COB-ID, transmission type, and transmission control. The

Network Configuration

‑253‑

PDO mapping parameters indicate the indexes and sub-indexes in the object dictionary from which the
PDO transmitted data comes.

The receive PDO comes from the objects starting from index 1400 to index 1600 in the object
dictionary. The default communication parameter values of each PDO come from the corresponding
sub-indexes. The objects mapped to the receive PDO come from the writable objects in the object
dictionary, such as the RW, RWW, and WO access permissions.

Note
● In non-expert mode, you can only change the values of the PDO communication parameters, but cannot add or

delete PDOs and PDO mappings.
● AM600 slaves can only change the values of the PDO communication parameters, but cannot add or delete PDOs

and PDO mappings. PDO mappings increase as AM600 I/Os are added.

The receive PDO is mapped to the AM600 output module. Each module corresponds to an invariable
index, as shown in the following table.

Module Type Index (Hexadecimal) Sub-index (Hexadecimal) Data Type

DO16 6300 01-10 Unsigned short int

DA4 6411 01-10 Short int

Figure 4-35 "Receive PDO" page

● Click "Add PDO" to add a PDO. The new PDO appears at the end of the PDO list. The maximum
number of receive PDOs of the slave is determined by the number of indexes from 1400 to 1600 in
the object dictionary. No more PDOs can be added when the maximum number is exceeded. The
added PDO name and index are automatically obtained from the object dictionary in the usage
sequence, and they cannot be modified.
After you click "Add PDO", a dialog box is displayed, where you can set PDO attributes. For details,
see "PDO attributes".

● Click "Add Mapping" to add a PDO mapping to the selected PDO. The new PDO mapping appears
after the current PDO. A PDO mapping contains a maximum of 64 bits. If this limit is exceeded, the

Network Configuration

‑254‑

PDO mapping cannot be added. PDO mappings come from the object dictionary. Receive PDOs are
mapped to the writable objects in the object dictionary, such as the RW, RWW, and WO access
permissions. For non-AM600 slaves, when you click "Add Mapping" to add a receive PDO mapping,
the "Select Item From Object Dictionary" dialog box is displayed. For details, see "Adding an
object".

● Click "Edit" to change the value of the selected PDO communication or mapping parameter. If a
PDO is selected, you can change the values of PDO communication parameters. If a PDO mapping is
selected, you can modify the PDO mapping. For AM600 slaves, you can only change the values of
communication parameters.

● Click "Delete" to delete the selected PDO or PDO mapping. If a PDO is selected, this PDO is deleted.
If a PDO mapping is selected, you can modify the PDO mapping. AM600 slaves do not support the
delete operation.

Send PDO

PDOs are used for real-time data transmission between the master and slave. Send PDO is the real-
time data that the slave sends to the master.

Send PDO comes from the objects starting from index 1800 to index 1A00 in the object dictionary. The
default communication parameter values of each PDO come from the corresponding sub-indexes. The
objects mapped to the send PDO come from the readable objects in the object dictionary, such as the
RW, RWR, RO, and CONST access permissions.

Note
● In non-expert mode, you can only change the values of the PDO communication parameters, but cannot add or

delete PDOs and PDO mappings.
● AM600 slaves can only change the values of the PDO communication parameters, but cannot add or delete PDOs

and PDO mappings. PDO mappings increase as AM600 I/Os are added.

The send PDO is mapped to the AM600 input module. Each module corresponds to an invariable index,
as shown in the following table.

Module Type Index (Hexadecimal) Sub-index (Hexadecimal) Data Type

DI16 6100 01-10 Unsigned short int

AD4 6401 01-10 Short int

Network Configuration

‑255‑

Figure 4-36 "Send PDO" page

● Click "Add PDO" to add a PDO. The new PDO appears at the end of the PDO list. The maximum
number of send PDOs of the slave is determined by the number of indexes from 1800 to 1A00 in the
object dictionary. No more PDOs can be added when the maximum number is exceeded. The added
PDO name and index are automatically obtained from the object dictionary in the usage sequence,
and they cannot be modified.
After you click "Add PDO", a dialog box is displayed, where you can set PDO attributes. For details,
see "PDO attributes".

● Click "Add Mapping" to add a PDO mapping to the selected PDO. The new PDO mapping appears
after the current PDO. A PDO mapping contains a maximum of 64 bits. If this limit is exceeded, the
PDO mapping cannot be added. PDO mappings come from the object dictionary. Send PDOs are
mapped to the readable objects in the object dictionary, such as the RW, RWR, RO, and CONST
access permissions.
When you click "Add Mapping" to add a PDO mapping, the "Select Item From Object Dictionary"
dialog box is displayed. For details, see "Adding an object."

● Click "Edit" to change the value of the selected PDO communication or mapping parameter. If a
PDO is selected, you can change the values of PDO communication parameters. If a PDO mapping is
selected, you can modify the PDO mapping. For AM600 slaves, you can only change the values of
communication parameters.

● Click "Delete" to delete the selected PDO or PDO mapping. If a PDO is selected, this PDO is deleted.
If a PDO mapping is selected, you can modify the PDO mapping. AM600 slaves do not support the
delete operation.

Service Data Object

SDOs are used to transmit data during slave initialization and operation. Settings on the "Service Data
Object" page are written to the slave during slave initialization.

On the "Service Data Object" page, you can configure the selected SDO, modify the SDO transmission
sequence, and define an error handling method to be applied during SDO transmission.

Network Configuration

‑256‑

Figure 4-37 Service data object list page

The SDO list displays all the SDOs written to the slave during slave initialization. The SDOs in gray are
automatically added and displayed on the top of the list. They are configured preferentially and
automatically generated based on the parameter settings on the slave configuration page, such as
heartbeat, node daemon, emergency message, PDO, and PDO mapping. You can click "Add" to add
user-defined SDOs. User-defined SDOs can be modified and their positions in the list can be changed.

Double-click a value in the "Value" column of an SDO to change the value of the corresponding SDO.

You can define an error handling method to be applied during SDO configuration. If "Abort if error" is
selected, SDO configuration is aborted in the case of an error, and the subsequent SDOs are not
configured. If "Jump to line if error" is selected, the system jumps to the specified line and you can
configure the subsequent SDOs. If "Abort if error" and "Jump to line if error" are not selected, the
default error handling method applies, where the next SDO is configured.

Note
● SDOs and the error handling method are displayed only in expert mode.
● Be cautious when selecting "Jump to line if error". SDO configuration may encounter infinite loop if the system

jumps to a previous line.

Item Description
Move Up Move the selected SDO to the previous line. Only user-defined SDOs can be moved to the

previous line.
Move Down Move the selected SDO to the next line. Only user-defined SDOs can be moved to the next

line.

Network Configuration

‑257‑

Item Description

Add Add an SDO before the selected SDO. When you click "Add", the "Add Object" dialog box
is displayed, The "Add Object" page is similar to the "Add PDO" page, but the "Add SDO
Object" page displays the SDO value text box and comment, allowing you to edit the SDO
value and modify the SDO comment.

Edit Modify the selected SDO. In the "Add Object" dialog box, modify the SDO information.
Only user-defined SDOs can be modified.

Delete Delete the selected SDO. Only user-defined SDOs can be deleted.

SDO Timeout Set the timeout period of an SDO. The value ranges from 0 to 4294967, in ms. The default
value is 1000 ms.

Commissioning

The commissioning page provides the functions of slave NMT control, SDO read and write, and
diagnosis information acquisition.

Figure 4-38 Commissioning page

NMT

NMT provides network management services, such as initialization, node start/stop, and failed node
detection. These services adopt the master-slave communication mode, in which only one NMT master
node or station exists.

The following figure shows the state transition of a slave during startup.

Network Configuration

‑258‑

Figure 4-39 State transition of a slave during startup

Note:

a. NMT; b. Node Guard; c. SDO; d. Emergency; e. PDO; f. Boot-up

State transition (1 to 5 are initiated by NMT) sequence, NMT command words (enclosed by brackets):

1: Start_Remote_node (0x01, Start Node)

2: Stop_Remote_Node (0x02, Stop Node)

3: Enter_Pre-Operational_State (0x80, Enter Pre-operational State)

4: Reset_Node (0x81, Reset Node)

5: Reset_Communication (0x82, Reset Communication)

6. The device completes initialization, enters the Pre_Operational state, and sends a Boot-up message.

Initialization includes application data initialization and communication initialization. During node
reset, all the data of slave nodes is reset. During communication reset, only communication data is
reset.

NMT can enable all or some nodes to enter different states at any time.

● Start Node: Click this button to run slave nodes. PDO communication can be implemented only
when slave nodes are running. When the slave is in the pre-operational or stopped state, clicking
"Start Node" sets the slave to the running state (state 1 in “Figure 4–39 State transition of a slave
during startup” on page 258).

● Stop Node: Click this button to stop slave nodes from running, and all communication except node
daemon and heartbeat stops. When the slave is in the pre-operational or running state, clicking
"Stop Node" sets the slave to the stopped state (state 2 in “Figure 4–39 State transition of a slave
during startup” on page 258).

● Enter Preoperational State: Click this button to enable the slave to enter the pre-operational state,
in which the slave can initiate SDO communication, but not PDO communication. The slave enters
the pre-operational state after initialization. When the slave is in the running or stopped state,
clicking "Enter Preoperational State" sets the slave to the pre-operational state (state 3 in “Figure 4–
39 State transition of a slave during startup” on page 258).

Network Configuration

‑259‑

● Reset Node: Click this button to reset the configuration of the slave. The application configuration
and communication configuration are reset in sequence. The slave enters the pre-operational state
(state 4 in “Figure 4–39 State transition of a slave during startup” on page 258).

● Reset Communication: Click this button to reset the communication configuration of the slave. Only
the communication configuration is reset. The slave enters the pre-operational state (state 5 in
“Figure 4–39 State transition of a slave during startup” on page 258).

Service data object (SDO)

SDOs are used to transmit a large volume of low-priority data between devices. A typical usage of SDOs
is to configure devices in a CANopen network. On this page, you can read or write SDO object values
when slave nodes are running. When reading or writing an SDO object, you need to determine the
index, sub-index, and bit length of the SDO object. Also, specify the value to be written.

● Index: SDO read/write index, ranging from 16#0 to 16#FFFF.
● Sub-index: SDO read/write sub-index, ranging from 16#0 to 16#FF.
● Bit length: SDO read/write bit length. The optional values are 8, 16, 24, and 32.
● Data: SDO value read or written. Enter a hexadecimal value in the first text box, and enter a decimal

value after the equal sign (=). The range of the written SDO value is related to the bit length. The
minimum value is 0, and the maximum value is indicated by the bit length.

● Result: SDO read/write result. An error message is displayed when read/write is abnormal.

Status

This section displays the running status and emergency message about slave nodes.

● Online Status: Indicates whether the slave is online. If the slave is online, a green icon with the text
"Online" is displayed. If the slave is offline, a red icon with the text "Offline" is displayed.

● Run Status: Indicates the running status of the slave with an icon, followed by descriptive text. The
following table lists relevant icons and their descriptive texts.

State Icon Descriptive Text

Running The slave is running.

Stopped The slave is stopped.

Pre-operational The slave is in the pre-operational
state.

Initialized The slave has been initialized.

Not connected The slave is disconnected.

Connecting The slave is being connected.

Preparing The slave is in the preparation
state.

Reset node A node is being reset.

Reset communication Communication is being reset.

Scan node The slave is being scanned.

Configure node The slave is being configured.

Network Configuration

‑260‑

State Icon Descriptive Text

Start node The slave is being started.

Unknown state Unknown state

● Diag String: Displays the current diagnosis information of the slave.
● The Latest Emergency Information: Displays the first unconfirmed emergency message. Incoming

emergency messages are not displayed until the current emergency message is confirmed.
An emergency message contains 8 bytes and is in the following format:

sender receiver(s) COB-ID Byte 0-1 Byte 2 Byte 3-7

0x080+Node_ID Emergency error code
Error register

(Object 0x1001)
Manufacturer specific
code

The following table lists hexadecimal fault codes. The xx part is defined by the corresponding
device profile.

Emergency Fault Code
(Hexadecimal)

Function

00xx Error Reset or No Error
10xx Generic Error
20xx Current
21xx Current, device input side

22xx Current, inside the device

23xx Current, device output side

30xx Voltage

31xx Mains voltage

32xx Voltage inside the device

33xx Output voltage

40xx Temperature

41xx Ambient temperature

42xx Device temperature

50xx Device hardware
60xx Device software
61xx Internal software
62xx User software
63xx Data set
70xx Additional modules
80xx Monitoring

81xx communication
8110 CAN overrun
8120 Error Passive
8130 Life Guard Error or Heartbeat Error
8140 Recovered from Bus-Off
82xx Protocol Error

8210
PDO no processed

Due to length error

8220 Length exceeded

90xx External error
F0xx Additional functions
FFxx Device specific

Network Configuration

‑261‑

The emergency message includes the time, error code, error register, and manufacturer specific
code.

● Time: The time when the emergency message is obtained, rather than the time when a fault occurs.
● Error code: Hover the cursor over an error code to view the emergency message.
● Error register: The register that stores emergency message. See the following table.

Error Register Definition (Bit) Error Type

0 Generic
1 Current
2 Voltage

3 Temperature
4 Communication
5 Device profile specific
6 Reserved(=0)
7 Manufacturer

● Manufacturer specific code: The code of the emergency message manufacturer.
● Confirm: Click this button to confirm the emergency message. Only one emergency message is

retained. Incoming emergency messages are not displayed until the current emergency message is
confirmed.

PDO attributes

PDO attributes are used to set PDO communication parameters, including COB-ID (communication
object identifier), transmission type, inhibit time, and event time. The "Send PDO Properties" dialog
box is displayed when you modify or add a PDO.

Figure 4-40 "Send PDO Properties" dialog box

● COB-ID: The communication object identifier of the PDO. Each COB-ID is unique within the
CANopen bus and cannot be the same as other PDO COB-IDs, emergency COB-IDs, and heartbeat
COB-IDs. The value range of PDO COB-ID is 16#180-57F and 681-6DF. If it is invalid, you can modify it

Network Configuration

‑262‑

manually or by using the "check and fix configuration" function on the master. The default COB-ID
of each PDO comes from the object of sub-index 01 of the corresponding PDO in the object
dictionary. If the object dictionary format is $NodeID+value, the COB-ID changes with the slave
node ID. After the COB-ID is changed manually, the original emergency code does not change with
the new ID. The COB-ID cannot be changed if the object dictionary corresponding to the COB-ID
does not have the write permission.

● RTR: Whether to enable remote frame reception. PDO sending is triggered when remote frames are
received. Only sent PDOs are displayed.

● Transmission Type: The transmission mode to be applied during PDO communication.
PDO supports the following transmission modes:

1. Synchronous (synchronization is implemented by receiving SYNC objects)

Aperiodic: Sending is triggered by remote frames or object-specific events specified in the
device profile.

Periodic: Sending is triggered after 1 to 240 SYNC messages.
2. Asynchronous

Sending is triggered by remote frames or object-specific events specified in the device profile.

The following table lists the different PDO transmission modes defined by transmission types,
which are part of the PDO communication parameter objects and defined by an eight-digit
unsigned integer.

Transmission Type
PDO Communication Trigger Condition

(B = both needed; O = one or both) PDO Transmission
SYNC RTR Event

0 B - B Synchronous and non-cyclic

1-240 O - - Synchronous and cyclic

241-251 - - - Reserved
252 B B - Synchronous, after RTR

253 - O - Asynchronous, after RTR

254 - O O Asynchronous, manufacturer specific event

255 - O O
Asynchronous, specific event defined in the
device profile

Note:

SYNC: SYNC-object received.

RTR: remote frame received.

Event: Value changed or timer interrupted.

Transmission type: A value ranging from 1 to 240 indicates the number of SYNC objects between two PDOs.

The default transmission type of each PDO comes from the object of sub-index 02 of the
corresponding PDO in the object dictionary. If the object dictionary does not have the write
permission, the transmission type cannot be changed.

● Number Of Syncs: This parameter is related to the transmission type and can be modified only
when the value of "Transmission Type" is within the range from 1 to 240. The slave starts
processing transmitted PDO data after receiving the number of synchronization frames specified by
this parameter.

Network Configuration

‑263‑

● Inhibit Time: The value of this parameter can be changed only when the value is equal to the
product of the minimum interval at which the same PDO transmits two data records and 100 μs.
This parameter prevents frequent PDO sending when a value is changed. The value ranges from 0 to
65535. The default value is 0. This parameter can be set only when PDOs are sent and
"Transmission Type" is set to 254 or 255. The default value of "Inhibit Time" of each PDO comes
from the object of sub-index 03 of the corresponding PDO in the object dictionary. The value of
"Inhibit Time" cannot be changed if the object dictionary corresponding to "Inhibit Time" does not
have the write permission.

● Event Time: The interval at which the same PDO transmits two data records. The value ranges from
0 to 65535, in ms. The default value is 0. This parameter can be set only when PDOs are sent and
"Transmission Type" is set to 254 or 255. The default value of "Event Time" of each PDO comes
from the object of sub-index 05 of the corresponding PDO in the object dictionary. The value of
"Event Time" cannot be changed if the object dictionary corresponding to "Event Time" does not
have the write permission.

Adding an Object

In the "Select Item From Object Dictionary" dialog box, you can add and modify receive PDO
mappings, send SDO mappings, or SDOs. During SDO operation, this dialog box adds the "SDO Value"
text box and the "SDO Comment" text box.

Figure 4-41 "Select Item From Object Dictionary" dialog box

The object list displays the objects in the EDS file. When receive PDO mappings are modified, only the
objects with the RW, RWW, or WO access permission and with an index greater than 16#2000 are
displayed. When send PDO mappings are modified, only the objects with the RW, RWR, RO, or CONST

Network Configuration

‑264‑

access permission and with an index greater than 16#2000 are displayed. When SDOs are modified,
only the objects with the RW, RWW, RWR, or WO access permission are displayed.

Note
When the SDOs of AM600 slaves are modified, the objects with an index within the range from 16#2000 to 16#40df
cannot be displayed. These parameters are used by module configuration and set in the module.

● Index: The index of an object, ranging from 16#0 to 16#FFFF. After an object in the object list is
selected, its index is displayed.

● Sub-index: The sub-index of an object, ranging from 16#0 to 16#FF. After an object in the object list
is selected, its sub-index is displayed.

● Bit length: The bit length of an object, ranging from 0 to 32. After an object in the object list is
selected, its bit length is displayed.

● Value: The SDO value. It is displayed only when SDOs are modified. Its value range is related to the
data type of the selected object. After an object in the object list is selected, its value is displayed.

● Comment: The SDO comment. It is displayed only when SDOs are modified. The value contains a
maximum of 50 characters.

CANopen slave I/O mapping

This page is displayed only when the slave is not of the AM600 series. The I/O mappings of AM600
slaves correspond to the AM600 I/O modules and are not displayed here. For the general description of
I/O mapping and instructions on this page, see "I/O mapping".

State

The state configuration editor for the CAN bus or modules displays state information (such as
"Running" and "Stopped") and the state of the internal bus system.

Information

The following basic information about the currently available device is displayed: Name, Vendor,
Categories, Version, Module Number, Description, and Image.

4.8.4 CANopen Module

Modular device and non-modular device

In CANopen slave configuration, you can connect CANopen slave nodes to the following two types of
modular devices:

Modular device: It is connected to a CANopen slave node and provides an I/O mapping list. The
"CANopen Slave I/O Mapping" dialog box is not required. The PDO mappings of slave nodes increase as
modules are added. Currently, the AM600 I/O module is a type of modular device.

Non-modular device: The slave node dialog box includes the I/O mapping dialog box. PDO mappings
cannot be configured automatically.

Network Configuration

‑265‑

AM600 CANopen I/O module

The AM600 CANopen I/O module is added in hardware configuration. A PDO mapping is automatically
added when an I/O is added. For details about the relationship with PDO mappings, see "Receive PDO
and Send PDO". After an I/O is added, you can set I/O parameters and add mappings to refresh data.
For details, see "CPU-specific I/O module".

4.8.5 CANopen Parameter Configuration

Configuration is an important part of Inovance InoProShop programming software. Currently,
InoProShop supports IS620P-CO models only. To use drives of other vendors, import EDS files of other
vendors first. In addition, confirm that drive programs of other vendors are designed in strict
compliance with CANopen communication flags and CiA402 standard. Before calling the CANopen402
function block, set parameters correctly. The details are as follows:

Master configuration

Major configuration items for the master include communication baud rate, synchronization mode,
synchronization time, heartbeat, and heartbeat interval.

● Communication baud rate: The communication efficiency is improved as the baud rate increases.
However, the communication distance decreases as the baud rate increases. Normally, the baud
rate is set to 500 Kbits/s.

● Synchronization mode: The "Enable Sync Producing" function must be selected; otherwise, the
function block cannot work.

● Synchronization cycle time: If only CANopen axis is available, it is recommended that you set the
parameter to 4 ms, set the number of slaves to 3, and set the size of PDO configurations sent and
received to less than 8 bytes. It is recommended that the cycle time be equal to the CANopen task
scan cycle time.

● Heartbeat: The master sends heartbeat frames at intervals of the heartbeat time so that slaves can
monitor whether the master is disconnected. The function must be used with slaves. Some slaves
do not have the heartbeat check function, which is not required by default.

● Heartbeat time: The master sends heartbeat frames to slaves at intervals of the preset time. The
heartbeat time is 300 ms by default and takes effect when "Enable Heartbeat" is selected.

Network Configuration

‑266‑

Figure 4-42 CANopen master configuration

Slave configuration

Major configuration items for a slave include node ID, heartbeat, heartbeat time, PDO synchronization
mode, and synchronization object dictionary.

● Node ID: Also called the station number, it is a basic parameter for slave communication. It must be
consistent with the physical station number.

● Heartbeat: The slave sends heartbeat frames to specified stations so that other stations can
monitor its communication state. "Enable Heartbeat" is selected by default.

● Heartbeat time: The slave sends heartbeat frames to the master at intervals of the preset time. The
heartbeat time is 1000 ms by default and takes effect when "Enable Heartbeat" is selected.

● PDO synchronization mode: The asynchronous mode is selected by default. You need to change it
to the cyclic synchronization mode.

● PDO object dictionary configuration: The PDO object dictionary ensures that slaves exchange data
with the master every bus cycle. The more PDOs are, the more efficient slaves exchange data with
the master is. However, the more PDOs are, the more the bus load is. Excessive PDOs may delay bus
data transmission and even cause disconnection. Select 6040, 6041, 6060, 6061, 607A, 6064 (6063),
60FF, 606C, and 6081 for sending and receiving PDOs for axis control devices. Options are 6083,
6084, 607C, and 6098.

Network Configuration

‑267‑

Figure 4-43 CANopen slave parameter configuration

Figure 4-44 Configuration for CANopen slave sending PDOs

Figure 4-45 Configuration for CANopen slave receiving PDOs

Network Configuration

‑268‑

CANopen axis configuration

Figure 4-46 CANopen axis configuration

4.8.6 Programming Interface

For details, see section 6.3 "CANopen Communication Instructions" in the "Medium-Sized PLC
Instruction Guide".

4.9 CANlink 3.0 Configuration Editor

4.9.1 Overview

The CANlink protocol is a real-time CAN bus application-layer protocol developed by Inovance based
on the CAN 2.0 bus protocol. CANlink is mainly used for high-speed and real-time data exchange
between Inovance products, such as PLCs, AC drives, servo controllers, and remote expansion
modules. Read this section carefully before using the CANlink function of AM600-series PLCs.

CANlink 3.0 adopts the master/slave mode. A network must have a single master and may have 1 to 62
slaves. The master and slave numbers range from 1 to 63, and each number must be unique. It
supports the following functions:

1. Master/slave running state monitoring through heartbeat
2. Bus usage warning and real-time bus usage monitoring
3. Reconnection upon disconnection
4. Hot access
5. 256 configuration records (including time trigger, event trigger, and synchronization trigger) sent by

the master

Network Configuration

‑269‑

6. 16 configuration records (including time trigger, event trigger, and synchronization trigger) sent by a
single slave, amounting to 256 configuration records sent by all slaves

7. Point-to-multi-point data received by each station from other eight stations
8. Master-slave data exchange and slave-slave data exchange
9. Up to 128 data records written synchronously to the master

4.9.2 CANlink3_en.0 网络组成

Hardware port

For details about CANlink communication ports, see “ Hardware port” on page 242.

Communication distance

A CANlink 3.0 network consists of 1 master and 1 to 62 slaves. The specific number of slaves is related
to the baud rate.

Baud Rate
Maximum Communication

Distance
Communication Cable

Diameter
Number of Connected

Stations
1000 kbps 20 m ≥ 0.3 mm2 18
500 kbps 80 m ≥ 0.3 mm2 32
250 kbps 150 m ≥ 0.3 mm2 63
125 kbps 300 m ≥ 0.5 mm2 63
100 kbps 500 m ≥ 0.5 mm2 63
50 kbps 1000 m ≥ 0.7 mm2 63

The preceding data is obtained under the premise of using standard shielded twisted pairs. The
maximum number of connected stations (master and slaves) is determined based on the current baud
rate.

Supported CANlink 3.0 devices

A CANlink 3.0 network must have a single master, which is a PLC of the AM400, AM600, or AC800 series.
The network may have 1 to 62 slaves, including AM400, AM600, or AC800 (300 of D8280 indicates
support), remote expansion modules (51210 or versions later than 52210), 214 non-standard IS500
servos (H00-02 = 214.xx), IS620P (H01-00 = 6.0 or greater), IS700 (H01-00 = 301.05), MD310 (F7-11 =
u37.18 or greater), and MD380 (F7-11 = 4.71.06 or greater). Some products must be configured with a
CANlink communication expansion card to use the CANlink function. For details, see the user guide of
the specific product.

Special elements of CANlink 3.0 supported by AM600

Note
The CANlink function of AM600 uses the SD and SM soft elements, which are similar to the D and M elements of
small-sized PLCs. However, they do not have a mapping relationship.

Network Configuration

‑270‑

SD Range Function SM Range Function

0-7000
User-specific word soft element
area (available range in the
CANlink configuration table)

0 to 3071
User-specific bit soft element area
(available range in the CANlink
configuration table)

7000-7999 User-specific word soft element
area

3072-7999 User-specific bit soft element area

8000 to 8999 System-defined special register
element area

8000 to 8999

System-defined special bit element
area,

which is currently only used by
CANlink

9000 to 9999

System-defined special register
element area,

which is currently only used by
high-speed I/O

9000 to 9999

System-defined special register
element area,

which is currently only used by
high-speed I/O

The following table lists the special soft elements involved in the AM600 CANlink function (for details,
see the CANlink 3.0 standard).

Special Soft Element Attribute

SD8100-SD8163

SD8100 indicates the current state of the local node. SD81xx indicates the current
state of the node with the station number xx. For example, SD8101 indicates the
current state of the node with station number 1. Meanings of register values:

0: unconfigured; 1: configured; 2: online; 5: offline

SD8164-SD8239 Reserved
SD8240 Bus loading capacity (monitoring in the programming software)

SD8241 CAN 3.0 slave state
SD8242 CAN 3.0 slave state
SD8243 CAN 3.0 slave state
SD8244 CAN 3.0 slave state
SD8245 Number of received frames
SD8246 Receive error count
SD8247 Send error count
SD8287 Vendor code
SD8288 Product series
SD8289 Product model
SD8290 Firmware version
SD8307 CAN 3.0 error (command error code)

SD8308 CAN 3.0 error (configuration error code)

4.9.3 General Process of Using CANlink

The general process of using CANlink is as follows:

1. Design the CANlink hardware network structure.
2. On the "Network Configuration" page, activate the CANlink bus. The AM600 CPU can serve as the

CANlink master or a CANlink local slave. Bus devices are automatically added after the bus is
activated.

3. If the AM600 CPU serves as the CANlink master, in the CANlink network configuration wizard, you can
set the master parameters and add or delete slaves. Slaves refer to remote slaves. If the AM600 CPU
serves as a CANlink local slave, you can set other parameters.

Network Configuration

‑271‑

4. Set the send parameters, receive parameters, and synchronization parameters properly.
5. Control CANlink transmitted data through soft elements in programs.
6. Control master and slave start/stop and monitor the master/slave running state on the "Network

Management" page.

4.9.4 CANlink Network Configuration

Activate the CANlink bus in network configuration before configuring a CANlink network. After the
CANlink master is activated, the CANlink master node is added to the device tree. When configuring the
first CANlink network, double-click the node to display the network configuration wizard. After a
CANlink slave is activated, the CANlink slave node is added to the device tree. Double-click the node to
display the local slave configuration page.

CANlink 3.0 network configuration wizard

The network configuration wizard is displayed when you configure the CANlink bus for the first time or
click "Site Management" on the "Network Management" page. Set the master and slave parameters in
the network configuration wizard.

Master configuration

Figure 4-47 Master parameter setting page

● Host No.: Identifies a station as the master in the network. The master manages and monitors the
entire CANlink 3.0 network. The master number must be consistent with the number of the
configured PLC.

Network Configuration

‑272‑

Network Information

● Baudrate: Select a baud rate to be used by the network. The baud rate of each station must be
consistent with the selected one. If no baud rate is selected here, the baud rates of the connected
stations must be consistent.

● Net Heartbeat: The value ranges from 10 to 20000, in ms. The master and slaves send heartbeats to
the network periodically based on this value to monitor each other. When a communication error
occurs, the master or slave triggers an alarm and handles the error. When "Net Heartbeat" is set to
a smaller value, monitoring is more sensitive and the network usage of heartbeats is higher. An
alarm is automatically triggered when the network usage of heartbeats exceeds 10%.

Note
If you deselect this parameter, the heartbeat function is disabled and the system cannot monitor the network.

Network Management

● Network Start/Stop Element: Control the CANlink network to start and stop by using the SM8290
soft element. When SM8290 is set to "TRUE", the CANlink network starts; otherwise, the CANlink
network stops.

● Syn Send Trigger Element: Control the synchronous write function for the configuration sent by all
stations by using the SM8291 soft element. For details, see “ Synchronous trigger configuration” on
page 279.

Host Syn Write Trigger Element

This element is used by the master to synchronize configuration. Up to eight synchronous write trigger
elements can be configured. You can leave this parameter unspecified when the master does not need
to synchronize configuration. For details, see “4.9.8 Synchronous Write by the Master” on page 281.

Adding and deleting a slave

This page allows you to add, modify, and delete CANlink slaves.

Network Configuration

‑273‑

Figure 4-48 Page for adding and deleting a slave

Site Information

● Slave Site Type: Indicates supported type of the slaves, which can be the PLC, servo, AC drive,
temperature control module, and non-temperature control module.

● Slave Site No.: Identifies a slave in the network. It must be different from the number of the master
or any other slave.

● Status Code Register: Refers to the SD element that indicates the running state of the
corresponding slave. These elements cannot be the same as other slave state register elements.
The state may be "Running" or "Faulty" (excluding offline).

● Start/Stop Element: Indicates the SM element used by the master to start and stop slaves. These SM
elements can be used to start and stop slave communication during network runtime. These
elements cannot be the same as other slave start/stop elements and synchronous write trigger
elements.

● Slave Information: Indicates the comment about a slave, containing up to 32 characters.
● Add: Click this button to add the slave with the configured information to the slave list. The system

checks whether "Status Code Register" and "Start/Stop Element" are unique.
● Delete: Click this button to delete the selected slave from the slave list.
● Modify: Click this button to modify the settings of the selected slave. These settings are obtained

from the site information. The system checks whether "Status Code Register" and "Start/Stop
Element" are unique.

After the slave settings are complete, click "OK" to enter the "Network Management" page.

Network Configuration

‑274‑

4.9.5 Network Management

On the "Network Management" page, you can start and stop the network, trigger synchronous
sending, start and stop monitoring, start and stop slaves, enter the station configuration wizard,
modify the network information of stations, and clear all the configurations.

Figure 4-49 "Network Management" page

Network Information

● Baudrate: Select a baud rate to be used by the network. The baud rate of each station must be
consistent with the selected one. If no baud rate is selected here, the baud rates of the connected
stations must be consistent.

● Network Heartbeat: The value ranges from 10 to 20000, in ms. The master and slaves send
heartbeats to the network periodically based on this value to monitor each other. When a
communication error occurs, the master or slave triggers an alarm and handles the error. When
"Network Heartbeat" is set to a smaller value, monitoring is more sensitive and the network usage
of heartbeats is higher. An alarm is automatically triggered when the network usage of heartbeats
exceeds 10%.

Note
If you deselect this parameter, the heartbeat function is disabled and the system cannot monitor the network.

● Cycle Period: Used to estimate the loading capacity of CANlink.
● Network Load: Indicates the CANlink network load, including CANlink receiving and sending, all

heartbeat loads, real-time load of the CANlink bus obtained during monitoring (SD8240 register
value), and estimated network load under non-monitoring conditions.

● Background color of "Network Load":

Color Range (%) Load Description

Green 0 to 50 Load percentage, such as 10%

Yellow 51 to 75 Load percentage, such as 55%

Red 76 to 90 Load percentage, such as 78%

Red > 90 ERR

Network Configuration

‑275‑

● Heartbeat Load: Indicates the heartbeat load of CANlink, which is calculated through estimation. An
estimated value is obtained after login.

● Background color of "Heartbeat Load":

Color Range (%) Load Description

Green 0 to 10 Load percentage, such as 10%

Red > 10 ERR

Network Management

The network management function is available only after login to the PLC.

● Start Network: Click this button to start and stop the CANlink network by using the SM8290
element.

● Start Monitor: Click this button to start CANlink network monitoring and obtain the CANlink master/
slave running state periodically. The online state of stations is updated in the station list.

● Sync Send Trigger: Click this button to trigger a synchronous write operation.

Site Configuration

● Device Type: Select the device type to be displayed in the station list.
● Slave Start/Stop: Set the slave to the running state by setting the slave start/stop element to

"TRUE".
● Site Management: Click this button to display the network configuration wizard dialog box, where

you can configure a CANlink network.
● Clear Settings: Click this button to clear all the CANlink configurations and restore the master

configuration to the default.
● Site list: Displays the information and state of CANlink stations. The following columns are

displayed: "Site", "Device Type", "Online Status", "Status Register", "Status Code", "Start/Stop
Element", and "Slave Information". Double-click a slave in the list to display the page for send
configuration, receive configuration, or synchronous master write.

● Site: Indicates the unique identifier of a station.
● Device Type: Indicates the device type of the station, which can be the PLC, servo, AC drive,

temperature control module, and non-temperature control module.
● Online Status: Click "Start Monitor" after login to the PLC to display the slave state. The online state

of a slave is obtained through the SD8241, SD8242, SD8243, and SD8244 online status registers. If
the slave is online, the system determines whether the slave is running or stopped by obtaining the
value of the slave start/stop element. The online status register is read-only and cannot be
modified. The following table lists the mapping relationships between each bit of the online status
register and the station number.

Soft Element Bit Slave Number
SD8244 Bit 15 to bit 0 32 to 47
SD8243 Bit 15 to bit 0 48 to 63
SD8242 Bit 14 to bit 0 1 to 15
SD8241 Bit 15 to bit 0 16 to 31

● Status Register: Indicates the register that stores the slave running state. The running status
register is read-only and cannot be modified.
The following table lists each bit of the running status register.

Network Configuration

‑276‑

Bit Description

Bit 0 Indicates the fault status. 1 indicates that the node is faulty, and 0 indicates that the node is
normal.

Bit 1 Indicates the running status. 1 indicates that the node is running, and 0 indicates that the
node is stopped.

Bit 2 Indicates whether the device is ready. 1 indicates that the device is ready, and 0 indicates
that the device is not ready. This bit is only applicable to servos.

... Reserved
Bit 15 Reserved

● Status Code: Indicates the value of the slave status register, which indicates the status code defined
by the slave.

● Start/Stop Element: Starts or stops the element.
● Slave Information: Indicates the comment about the slave.

4.9.6 Send Configuration

CANlink send configuration is divided into time trigger configuration, event trigger configuration, and
synchronous trigger configuration. Event trigger configuration is divided into PLC event trigger and
non-PLC event trigger.

Send configuration editor

Figure 4-50 Send configuration editor

On the "Send Configuration" page, you can set the site send parameters. The send list is divided into
two parts, of which the upper part displays the configuration sent by the local station to other stations,
while the lower part displays the configuration sent by other stations to the local station.

For the master, up to 256 data records can be configured for sending; for slaves, up to 16 data records
can be configured for sending.

Network Configuration

‑277‑

The send list contains the following columns: "Trigger Way", "Trigger", "Send Site", "Send Register",
"Receive Site", "Receive Register", and "Reg Count".

Item Description

Trigger Way Indicates the trigger type of data sending by stations. The options are time trigger,
event trigger, and synchronous trigger.

Trigger

Indicates the trigger condition of data sending by stations. Configuration is sent when
the trigger condition is met. When the trigger type is time trigger and the range is 0 to
30000, the station sends configuration periodically based on the trigger value. When
the trigger type is event trigger and the trigger condition is "TRUE", the station sends
configuration if it belongs to the host or PLC type, the trigger is an SM soft element, and
the range is 0 to 3071. The station sends configuration periodically if it is a servo, AC
drive, temperature control module, or non-temperature control module, and the range
is 0 to 30000. Sending is executed when the trigger mode is synchronous trigger and
soft element SM8291 is set to "TRUE".

Send Site Indicates the station that sends configuration. It cannot be changed.

Send Register

Indicates the register corresponding to the send station. If the send station belongs to
the PLC type, the range is 0 to 7000 (which indicates the register value plus the number
of registers). If the send station is a temperature control module, the range is 0 to 499
or 700 to 722. If the send station is a non-temperature control module, the range is 0 to
63 or 700 to 722. If the send station is a servo or an AC drive, the range is 0 to 65535.

Receive Site Indicates the station that receives configuration. It must be an existing station.

Receive Register

Indicates the register of the station that receives configuration. For point-to-multi-point
communication (the send station and receive station are the same), the range is 0 to
65535. If the receive station is a PLC, the range is 0 to 7000. If the receive station is a
temperature control module, the range is 0 to 499 or 721 to 722. If the receive station is
a non-temperature control module, the range is 0 to 63 or 721 to 722. If the receive
station is a servo or an AC drive, the range is 0 or 65535.

Reg Count
Indicates the number of send or receive registers. The value range is 1 to 4. The total
length of "Reg Count" and "Send Register" or "Receive Register" cannot exceed the
specified limit.

Time trigger configuration

Time trigger configuration is a common configuration. The send station writes the source address to
the target address of the target station based on the configured time cycle. That is, the target station
reads the source address of the send station cyclically and saves the source address to the target
address.

If the send station and receive station are the same, it is a point-to-multi-point configuration. All the
stations in the network configured to receive point-to-multi-point data from this station can receive
such data. For details, see “4.9.7 Receive Configuration” on page 281.

Network Configuration

‑278‑

Figure 4-51 Time trigger configuration page

In case of time trigger, the cycle time ranges from 1 to 30000, in ms. The shorter the time, the higher
the data update speed and the network load are.

In the 3rd row of the preceding figure, station 1 writes the values of registers SD102 and SD103 to
registers H0200 and H0201 of station 3's servo every 100 ms. In the fourth row of the preceding, the
send station and receive station are both station 1, so the configuration is a point-to-multi-point
configuration. Station 1 sends the data of registers SD110 to SD113 to the network in point-to-multi-
point mode every 100 ms. All the stations configured to receive point-to-multi-point data from station
1 can receive the frame.

Event trigger configuration

Event trigger is a real-time trigger configuration. Sending is triggered immediately when conditions are
met. If conditions are not met, sending is not triggered, regardless of the interval from the last sending.
The event trigger of PLCs is slightly different from that of other products based on product features.

PLC event trigger configuration

The corresponding event is triggered when SM used as the trigger condition is set to "ON". The event
trigger range is SM0 to 3071. A prompt is displayed when the range is exceeded.

In the preceding figure, when SM100 is set to 1, station 1 sends the value of SD100 to SD100 of the PLC
of station 2. Then, SM100 is automatically reset.

Non-PLC event trigger configuration

Except PLCs, the event trigger of AC drives, servos, and expansion modules is based on register value
change and the minimum interval from the last sending.

Network Configuration

‑279‑

Figure 4-52 Non-PLC event trigger configuration

As shown in the preceding figure, when H3000 of the AC drive of station 4 is changed, sending is
triggered immediately if the interval from the last sending of the configuration reaches 100 ms. If the
interval from the last sending is less than 100 ms, sending is not triggered until the specified time is
reached. A shorter interval results in better real-time effect but has greater impact on the network.

The minimum interval ranges from 1 to 30000, in ms. A prompt is displayed when the range is
exceeded.

Synchronous trigger configuration

When the master configured with synchronous trigger detects that the synchronous send trigger
element SM8291 is reset, the master broadcasts commands to the network to require all the stations in
the network to trigger synchronous send in sequence. The trigger condition is configured by SM8291.
The master resets SM8291 after sending a command frame. As shown in the following figure, master 1,
PLC slave 2, and MD380 slave 4 are configured with synchronous trigger. If SM8291 of the master is
reset, the three stations send synchronous trigger data.

Network Configuration

‑280‑

Figure 4-53 Synchronous trigger configuration

SM8291 is used in the same way as the SM element of PLC event trigger. You can perform the
corresponding operation by clicking "Sync Send Trigger" on the CANlink 3.0 main screen.

Only SM8291 of the master can operate SM8291 of the slave PLC without impact.

In essence, synchronous trigger is a type of event trigger in which SM8291 of the master is used as an
event by all the stations in the network.

Differences among time trigger, event trigger, and synchronous trigger

Item Time Trigger Event Trigger Synchronous Trigger

Sending mode Scheduled and cyclic sending.

Sending is triggered in the
case of an event or data
change. The event is
automatically cleared after
sending.

Sending is enabled by the
master. The event is
automatically cleared after
sending.

Real-time effect

The real-time effect is related
to the configured time. The
shorter the time, the better
the real-time effect is.

Sending is triggered in the
case of an event, with good
real-time effect.

Sending is triggered when
M8291 of the master is reset.
The real-time effect is better
than that of event trigger.

Execution times Scheduled sending. Triggered once in the case of
an event.

Triggered once in the case of
an event.

Programming in
PLC

Scheduled sending, without
program design.

Sequential logic design in
program.

Sequential logic design in
program.

Network usage High Low Low

Applicable
scenario

There are no special time
sequence requirements. Data
can be written continuously.

There are time sequence
requirements. Data is written
once, or continuous writing
may cause a fault.

The master requires data
returned by multiple slaves in
special scenarios.

Network Configuration

‑281‑

4.9.7 Receive Configuration

On the "Receive Configuration" page, you can configure stations to receive point-to-multi-point data
from the network.

Figure 4-54 "Receive Configuration" dialog box

In the preceding figure, the receive configuration of slave 2 contains stations 1 and 3, indicating that
slave 2 only receives point-to-multi-point data frames from stations 1 and 3. If the destination register
address of the received point-to-multi-point data meets the definition of station 2, the received data
takes effect; otherwise, the received data is discarded.

Each station can receive point-to-multi-point data from up to eight stations. Each send station does
not limit the number of stations that receive point-to-multi-point data.

The point-to-multi-point sending function allows a station to modify the same parameter number on
multiple stations and implement synchronization.

4.9.8 Synchronous Write by the Master

Synchronization configuration is specific to the master and allows the master to write the multiple
registers or parameters of one or more slaves. For example, the master can control multiple servos to
start or stop simultaneously by writing the parameter H31-00.

Trigger element

For example, after you enter a trigger element in "Host Syn Write Trigger Element (SM)" in the
configuration wizard, double-click the master on the main screen to enter master configuration. On the
"Sync Configuration" page, select a configuration condition from the "Trigger Condition" drop-down
list. If no trigger element is entered in the configuration wizard, you can still open the "Sync
Configuration" page but the "Trigger Condition" drop-down list is unavailable. In this case, click "Site
Management" on the main screen to open the configuration wizard again and add or delete trigger
elements.

Network Configuration

‑282‑

Figure 4-55 "Sync Configuration" page for the master

When a synchronous write trigger element of the master is set to "ON", all the configuration data under
the trigger element is sent in sequence. The slaves receive the data and store it in the buffer. When the
master detects that all the synchronous write operations under the trigger condition are successfully
sent, the master broadcasts an effectiveness command so that all the receive slaves retrieve data from
the buffer and make the data effective.

The master supports synchronous write based on up to 8 different trigger conditions, each of which
can be configured with 16 synchronous write operations. A single slave can receive up to 8
synchronous write operations. A prompt is displayed when this limit is exceeded.

Operation on the 32-bit register of the servo

CANlink 3.0 supports operations on 16-bit registers and parameters. To operate 32-bit registers or
parameters, use the following method:

Write the upper and lower 16-bit addresses of 32-bit registers or parameters through the synchronous
write function of the master.

For example, for the parameter H11-12 (1st displacement) of the servo, the following operation writes
SD1000 and SD1001 of the master to H11-12 of servo 3 as lower 16 bits and upper 16 bits, respectively.

Figure 4-56 Two 16-bit registers combined in the 32-bit format

It is recommended that you use the SET statement of the upper- and lower-edge conducting trigger
element of the M element. When operating the parameters of 32-bit addresses, you cannot only

Network Configuration

‑283‑

operate the addresses of the lower and upper 16 bits or split the addresses of the lower and upper 16
bits of 32-bit parameters to different trigger conditions.

You can use general send configuration to write the values of two consecutive SD elements to the
lower address bits of the 32-bit parameters of the servo, as shown in the following figure:

Figure 4-57 Writing a 32-bit value to two 16-bit registers

4.9.9 Local Slave Configuration

A local slave is a PLC serving as a CANlink slave. A remote slave is attached to the master, such as a
servo, AC drive, temperature control module, or PLC. A PLC can serve as a master or local slave.

Figure 4-58 Dialog box for local slave configuration

Site No.: Identifies a local slave. It cannot be the same as the number of any other station in the
CANlink network. The value ranges from 1 to 63.

Baudrate: Indicates the baud rate of data communication of the local slave. It must be consistent with
the baud rate of the master.

4.9.10 设备接入CANlink3_en.0 网络

Connecting an AM600-series PLC to the CANlink 3.0 network

The station number and baud rate of AM600 can be set only in software. To make the settings take
effect, you need to restart the machine or download the running program again.

Each station number in the same network must be unique. If station numbers are repeated,
subsequently connected stations disable communication. Station number 0 is not allowed in the
network.

Network Configuration

‑284‑

Connecting the MD380/500 AC drive to the CANlink 3.0 network

Installing the MD38CAN1 expansion card of the AC drive

Insert the MD38CAN1 expansion card into the Inovance AC drive. The expansion card (CANlink) cannot
be installed or uninstalled in the power-on state. Power off the AC drive before installation, and wait 10
minutes until the power indicator of the AC drive is off. Install the expansion card in accordance with
the following figure.

Insert the MD38CAN1 expansion card into the AC drive and fasten screws.

Configuring the MD380/500 AC drive

Network Configuration

‑285‑

To configure start/stop control of the AC drive through the CANlink network, set the command source
of the AC drive to be the communication command channel. That is, set F0-02 to 2. If start/stop control
is not required, set F0-02 based on the actual situation.

Setting the station number

Set the station number through Fd-02. The value ranges from 1 to 63. A value beyond the range may
result in access failure of CANlink 3.0. The modified value takes effect immediately. Each station
number in the network must be unique. If station numbers are repeated, subsequently connected
stations may disable communication.

Setting the baud rate

Set the baud rate through Fd-00. The thousands position indicates the baud rate of CANlink. The
following table lists the mapping relationships.

Parameter
Address

Name Value Range Default

HFd-00 Baud rate

Ones position: Modbus

Tens position: PROFIBUS-DP

Hundreds position: Reserved

Thousands position: CANlink

0: 20 kbps

1: 50 kbps

2: 100 kbps

3: 125 kbps

4: 250 kbps

5: 500 kbps

6: 1000 kbps

5005

The baud rates of all the stations in the CANlink 3.0 network must be consistent; otherwise,
communication may be abnormal.

Note
MD380/500 AC drives do not support the 800 kbps baud rate.

Connecting the MD310 AC drive to the CANlink 3.0 network

Installing the MD310-CANL card

Insert the MD310-CANL card into the Inovance AC drive. The card cannot be installed or uninstalled in
the power-on state. Power off the AC drive before installation, and wait 10 minutes until the power
indicator of the AC drive is off. Install the expansion card in accordance with the following figure.

Network Configuration

‑286‑

Configuring the MD310

Network Configuration

‑287‑

When the MD310 uses CANlink 3.0, the station number and baud rate are set by the DIP switch of the
CAN expansion card. The S1 and S2 of the MD310-CANL DIP switch form a 10-bit DIP switch used to set
the communication baud rate of the CAN bus and the communication device address. The following
figure shows the numbers on the DIP switch. Bd1, 2, and 3 are used to set the baud rate, and Adr1 to 7
are used to set the CANlink address. The "ON" position of the DIP switch indicates 1, and the lower
position indicates 0. The modified baud rate and station number take effect immediately.

Figure 4-59 MD310-CANL DIP switch

Setting the baud rate

The following table lists the mapping relationships between the DIP switch and the baud rate. Up to
eight baud rates can be set.

MD310-CANL baud rates

DIP Switch Bd
Baud Rate

1 2 3
0 0 0 20 kbps

0 0 1 50 kbps

0 1 0 100 kbps

0 1 1 125 kbps

1 0 0 250 kbps

1 0 1 500 kbps

1 1 0 800 kbps

1 1 1 1 Mbps

CANlink device address

MD310-CANL provides a 7-bit DIP switch for setting the CANlink communication address. Adr1 of the
DIP switch indicates the highest bit, and Adr7 indicates the lowest bit. Adr1 to 7 correspond to b6 to b0
of a station number. The valid address setting range of the DIP switch is 1 to 63, as shown in the
following table. 0 and 64 to 127 are reserved addresses and cannot be used. The MD310-CANL card is
not functional when a reserved address is set.

MD310-CANL DIP switch addresses

DIP Switch Adr
Address

1 2 3 4 5 6 7
0 0 0 0 0 0 0 Reserved
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 2
0 0 0 0 0 1 1 3

... ...
0 1 1 1 1 1 1 63
1 x x x x x x Reserved

Network Configuration

‑288‑

For the usage instructions of the MD310-CANL expansion card, see MD310-CANL Communication
Expansion Card Guide.

Connecting the servo to the CANlink 3.0 network

Setting the station number

Modify the station number of the servo through H0C-00. The value ranges from 1 to 63. A value beyond
the range may result in access failure of CANlink 3.0. The modified value takes effect immediately. Each
station number in the network must be unique. If station numbers are repeated, subsequently
connected stations may disable communication.

Setting the baud rate

Modify the baud rate through H0C-08. See the following table.

Parameter Address Value Range Default

H0C-08

0: 20 kbps

1: 50 kbps

2: 100 kbps

3: 125 kbps

4: 250 kbps

5: 500 kbps

6: 800 kbps[1]

7: 1000 kbps

5

IS620P does not support the 800 kbps baud rate. When 6 is selected, the 1000 kbps baud rate is used.

The baud rate takes effect immediately after setting. The baud rates of all the stations in the network
must be consistent; otherwise, communication may be abnormal.

4.10 CAN Free Protocol

4.10.1 Overview

Only AM400/AM600/AM300/AM500 support the CAN free protocol.

AM400/AM600/AM300/AM500 adopts the CAN2.0B protocol. The protocol supports standard frames
and expansion frames and is applicable to scenarios where the application-layer protocol is
customized. The baud rate ranges from 10 kbps to 1000 kbps.

Network Configuration

‑289‑

4.10.2 Network Configuration

AM400/AM600 network configuration

1. In the left device tree, double-click "Network Configuration". The "Network Configuration" page is
displayed.

2. Click the PLC picture, select "Free CAN". Then, "CANBUS (Free CANBus)" is automatically added to
the left device tree and the CAN free protocol network configuration is completed.

AM300/AM500 Network Configuration

1. In the left device tree, right-click "EXP_A (Expansion card)". In the shortcut menu, select "Add
Device". The "Add Device" dialog box is opened.

Network Configuration

‑290‑

2. Select "GE20_CAN_485" and click "Add Device".
After the expansion card is added, the "CAN_Port (CAN Port)" and "COM_1 (Serial Port)" are
automatically added to the left device tree.

3. Right-click "CAN_Port (CAN Port)". In the shortcut menu, select "Add Device". The "Add Device"
dialog box is opened.

Network Configuration

‑291‑

4. Select "Free CANbus" and click "Add Device". The CAN free protocol network configuration is
completed.

4.10.3 CAN Free Protocol Configuration

The methods to configure the AM400/AM600 and AM300/AM500 series PLCs are different. This section
takes the AM600 series PLC as an example to describe how to configure the protocol for the device.

1. In the left device tree, double-click "CANBUS (Free CANBus)" (for AM300/AM500, "CAN Free Protocol
(CAN Free Protocol)") is displayed in the device tree. The CAN free protocol configuration page is
displayed.

Network Configuration

‑292‑

2. Configure the network.
Set the network number and baud rate.

● When a function block is used, the network number is the unique ID used to identify specific CANBus device in
the function block.

● Skip this step for the AM300/AM500 series PLCs.

3. Configure the channel.

a. Click "Channel Settings". On the tab page displayed, click "Add". The "FreeCAN Channel Set"
dialog box is displayed.

b. Configure the CAN free protocol communication parameters. The following table lists the relevant
parameters.

Parameter Description Setting

SendingMethod Indicates the data sending
method.

Note: The trigger mode is
implemented by the CANBus_
DevTxMsg function block.

Set it to "Cyclic".

Default: "Cyclic".

FrameType The frame type includes standard
frames and expansion frames.

Set as required.

Default: Standard frame

Network Configuration

‑293‑

Parameter Description Setting

FrameFormat The frame format includes data
frames and remote frames.

Caution: When the remote frame
is selected, 0-byte data is sent no
matter the value of "Number of
Bytes".

Set as required.

Default: Data frame

FrameID It is in the decimal format and
supports range detection. For
standard frames, 11 bits are
effective. For expansion frames, 29
bits are effective.

Set as required.

Default: 0

NumberOfBytes (0-8) Indicates the number of bytes. Set as required.

Value range: 0 to 8

Default: 0
RepeatNum (0-65535) Indicates the number of repeat

data sending attempts. 0 indicates
that the data is not re-sent upon a
sending failure.

Set as required.

Value range: 0 to 65535

Default: 0

Repeat Interval (0-65535) Indicates the interval of two
consecutive data sending
attempts.

Set as required.

Value range: 0 to 65535

Default: 5
CycleSendingTime (0-65535) Indicates the cyclic sending

interval.

Caution: A too small cycle sending
time will result in high CPU usage.

Set as required.

Value range: 0 to 65535

Default: 10

Note
● CANBus is a non-real-time task affected by other high-priority real-time tasks such as MainTask. Therefore, there

is an error in the CAN message sending time. When the execution time of high-priority tasks (such as MainTask)
is less than 1 ms, the frame interval error does not exceed ±1 ms.

● In some applications, the CAN free protocol frame interval error will be more than ±1 ms, which is actually
caused by the high-priority real-time tasks seizing CPU resources during the system scheduling process, and the
frame interval time error can be reduced by the following ways:

● Increase the cycle of high-priority tasks (such as MainTask) to reduce the CPU loading capacity.
● Optimize the application program to reduce the execution time of each high-priority task (such as MainTask).

c. (Optional) Configure "FrameEnable" to "Yes" or "No", as shown in the following figure. The
following table describes relevant parameters.

Network Configuration

‑294‑

Parameter Description Setting

FrameEnable Enables or disables the filtering
mechanism of the received frame
IDs.

Set as required.

Default: No

MinFrame This setting is effective when
"FrameEnable" is set to "Yes".

Set as required.

Default: 0
MaxFrame This setting is effective when

"FrameEnable" is set to "Yes".
Set as required.

Default: 536870911

d. (Optional) Download the program and log in to the PLC. Then, click "CANBus Parameters",
"CANBus I/O Mapping", or "Status" to view the CANBus parameters, CANBus I/O mappings, and
the status information, respectively.

4.10.4 CANBus Library

4.10.4.1 Enumeration Types of CANBus Library

CANBus_BaudrateType_Enum: Enumeration type of CANBus baud rate

CANBus_CtrlCmdType_Enum: Enumeration type of CANBus control command

Network Configuration

‑295‑

CANBus_ErrorType_Enum: Enumeration type of CANBus error

CANBus_FBErrorType_Enum: Enumeration type of CANBus function block error

Network Configuration

‑296‑

CANBus_FBStateType_Enum: Enumeration type of CANBus function block state

CANBus_StateType_Enum: Enumeration type of CANBus state

Network Configuration

‑297‑

4.10.4.2 Structure Types of CANBus Library

CANBus_IoDrvVer_t: Version of the drive component used by CANBus

Parameters of the CANBus_IoDrvVer_t type are all in the hexadecimal format.

CANBus_DiagInfo_t: Structure of the CANBus diagnosis information

Network Configuration

‑298‑

CANBus_FrameMsg_t: Structure of the CANBus frame information

CANBus_RxFilter_t: Structure of the CANBus receive frame filter

4.10.4.3 CANBus Function Blocks

The following table lists the name, meaning, and trigger mode of CANBus function blocks.

Name Meaning Trigger Mode

CANBus_CtrlDevState State of the control device Edge trigger (rising edge)

CANBus_DevRxMsg Information about the single frame
received by the device

Level trigger (high level), singe frame
cached

CANBus_DevRxMultiMsg Information about the multiple
frames received by the device

Level trigger (high level), multiple
frames cached

CANBus_DevTxMsg Device send information Edge trigger (rising edge)

CANBus_GetDevDiagInfo Get the device diagnosis information Level trigger (high level)

Network Configuration

‑299‑

Name Meaning Trigger Mode

CANBus_GetIoDrvVer Get the version of the CANBus
component

Level trigger (high level)

CANBus_SetDevBaud Set the device baud rate Edge trigger (rising edge)

The following describes CANBus function blocks:

● The input parameter uiDevId (device ID) in the function block must correspond to the network ID of
the CANBus device.

● The input condition of the edge trigger function block is "xExecute", indicating that the function
block is triggered at the rising edge and is aborted or reset at the low level.

● The input condition of the level trigger function block is "xEnable", indicating that the function
block is triggered at the high level and is aborted or reset at the low level.

● Up to 128 instantiated receive function blocks can be enabled at a time, including CANBus_
DevRxMsg and CANBus_DevRxMultiMsg.

● Only one instantiated CANBus_DevTxMsg function block can be enabled at a time; otherwise, the
error "Sending busy" is reported.

CANBus_CtrlDevState

Network Configuration

‑300‑

CANBus_DevRxMsg

Parameter Description

xEnable The function block is enabled at high level and reset at
the low level.

uiDevId The device ID, which must correspond to the network ID
of the CANBus device.

stRxFilterMsg Set the receive parameters and filter parameters.

udiFrameCnt The frame counter, indicating the number of received
frames that meet the conditions.

stRxMsg Save information of the received frames that meet the
conditions (only the last received CAN message is
cached).

CANBus_DevRxMultiMsg

Network Configuration

‑301‑

Parameter Description

xEnable The function block is enabled at high level and reset at
the low level.

xBuffResetFlag The reset buffer flag. The value "True" indicates
clearing the buffer. The buffer is filled again and the
function block is automatically zeroed.

● Manually reset the received buffer data.
● Triggered when the function block is enabled.
● When executed at high level, xBuffResetFlag is
automatically reset.

xBuffReadFlag The read buffer flag. The value "TRUE" indicates that
the application layer reads data from the buffer. This
state can prevent the function block from writing data
to the buffer.

● During buffer reading, you can reset this flag to
prevent new data from overwriting existing data
in the buffer.
● Note that during buffer reading, the internal
register only saves the last received message.
● To avoid frame loss, reset this flag timely at the
possible smallest internal.

uiDevId The device ID, which must correspond to the network ID
of the CANBus device.

stRxFilterMs Set the receive parameters and filter parameters.

uiBuffFrameMaxNum Indicates the maximum number of received and
buffered frames, which is automatically calculated
based on the structure array.

uiBuffFrameNum Indicates the number of received and buffered frames.
After the buffer is used up, you can reset xBuffResetFlag
to clear the buffer.

Network Configuration

‑302‑

Parameter Description

udiFrameCnt The frame counter, indicating the number of received
frames that meet the conditions.

stRxMsg Save information of the received frames that meet the
conditions (only the last received CAN message is
cached).

astRxFrameBuff Indicates the received frame buffer. It is a one-
dimensional length-variable structure array. The
number of array elements cannot exceed 65535.

● The interface type of astRxFrameBuff is a
structure pointer (POINTER TO CANBus_
FrameMsg_t). Actually, it is a variable-length
structure array (ARRAY[*] OF CANBus_FrameMsg_
t).
● Structure arrays are necessary for parameter
transmission. If other data types are used, an
error will be reported during programming.

Up to 128 instantiated receive function blocks can be enabled at a time, including CANBus_DevRxMsg
and CANBus_DevRxMultiMsg.

CANBus_DevTxMsg

Parameter Description

xEnable The function block is enabled at rising edge, and
aborted and reset at falling edge and low level.

uiDevId The device ID, which must correspond to the network ID
of the CANBus device.

Network Configuration

‑303‑

Parameter Description

uiTmieOutMs Set the send timeout time, in ms.
stTxMsg Indicate the send information, including the expansion

frame flag, remote frame flag, CANID, data length, and
data.

● If the timeout time is set to 0, the send timeout is detected at an interval of 50 ms by default during
function block running.

● Only one instantiated CANBus_DevTxMsg function block can be enabled at a time; otherwise, the
error "Sending busy" is reported.

CANBus_GetDevDiagInfo

Parameter Description

stDevDiag The diagnosis information is updated in real time,
including but not limited to the running state, error
state, DevID, running baud rate, bus loading capacity,
and send/receive counter.

Network Configuration

‑304‑

CANBus_GetIoDrvVer

Parameters of the stCmpDrvVer structure are all in the hexadecimal format.

CANBus_SetDevBaud

Network Configuration

‑305‑

eSetBaud CAN is used to set the bus baud rate. Use the enumeration type to avoid baud rates not
supported by the device.

4.10.4.4 Error Codes of CANBus Function Blocks

The following table lists error codes of CANBus function blocks.

Fault codes of CANBus_CtrlDevState
Error Type Error Code Meaning Solution

CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

The input DevID is invalid.

CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

The input DevID is invalid.

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. The device is being
started.

CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

The input CtrlCmd is
invalid.

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. -

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

-

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

-

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

-

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

CANBus_DevRxMsg

Error Type Error Code Meaning Solution
CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

The parameter address is
modified.

CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

The input DevID is invalid.

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. -

CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

-

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. The instantiated function
block is out of the limit.

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

Network Configuration

‑306‑

Error Type Error Code Meaning Solution
CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

-

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

-

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

-

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

CANBus_DevRxMultiMsg

Error type Error code Meaning Solution
CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

The parameter address is
modified.

CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

The input DevID is invalid.

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. -

CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

The maximum number of
buffers is 0.

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. The instantiated function
block is out of the limit.

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

-

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

The input/output
parameters or the buffer
address cannot be
specified.

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

The receive buffer is used
up.

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

CANBus_DevTxMsg

Error Type Error Code Meaning Solution
CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

The input DevID is invalid.

CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

The input DevID is invalid.

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. The device is not running
or faulty.

Network Configuration

‑307‑

Error Type Error Code Meaning Solution
CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

The CANID is invalid and
the data length exceeds
the limit (8 for data frames
and 0 for remote frames).

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. The send requests are
conflicting.

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

The data sending times
out and is not successful.

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

-

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

-

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

CANBus_GetDevDiagInfo

Error type Error code Meaning Solution
CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

-

CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

The input DevID is invalid.

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. -

CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

-

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. -

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

-

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

-

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

-

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

CANBus_GetIoDrvVer
Error type Error code Meaning Solution

CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

-

Network Configuration

‑308‑

Error type Error code Meaning Solution
CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

-

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. -

CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

-

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. -

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

-

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

-

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

-

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

CANBus_SetDevBaud
Error type Error code Meaning Solution

CANBUS_FBERR_NO_
ERROR

0x0000 The function block runs
normally or has no error.

The function block runs
normally.

CANBUS_FBERR_EXE_
FAILED

0x0001 The function block failed
to run.

Modification of the baud
rate failed.

CANBUS_FBERR_INVAILD_
DEVICEID

0x0002 The device ID is invalid
because this ID is not
enabled.

The input DevID is invalid.

CANBUS_FBERR_DEVICE_
FAULT

0x0003 The device is faulty. -

CANBUS_FBERR_WRONG_
PARAMETER

0x0004 The input parameters of
the function block are
incorrect.

The input baud rate is
incorrect.

CANBUS_FBERR_BUSY_
ERROR

0x0005 The function block is busy. -

CANBUS_FBERR_ABORT_
ERROR

0x0006 An error occurs when the
function block is aborted.

-

CANBUS_FBERR_TIME_
OUT_ERROR

0x0007 The function block times
out.

-

CANBUS_FBERR_
POINTER_NULL

0x0008 The function block pointer
is null.

-

CANBUS_FBERR_BUFF_
FULL

0x0009 The function block buffer
is used up.

-

CANBUS_FBERR_
UNKNOWN_ERROR

0x00FF The function block has an
unknown error.

-

Network Configuration

‑309‑

4.10.4.5 Example of Using CANBus Function Blocks

Adding a CANBus library

1. In the left device tree, double-click "Library Manager". On the page displayed, click "Add library".

2. In the dialog box displayed, click "Advanced". On the page displayed, unfold the item "Inovance",
select "HC_CANBus", and click "OK". The CANBus library is added to the library manager.

Using the CANBus function block instructions

1. In the left device tree, double-click "PLC_PRG". The program editor page is displayed.

Network Configuration

‑310‑

2. In the toolbox section, choose "CAN Instructions" > "CANBus Instructions", and then click the
corresponding CANBus function block instruction to use this instruction and create an instance for it.
CANBus function block instructions support the ST language and LD language, as shown in the
following figure.

Network Configuration

‑311‑

4.11 EtherNet/IP Communication

4.11.1 Overview of the Protocol

The EtherNet/IP communication protocol is a protocol system suitable for industrial environments (IP
refers to "Industrial Protocol"), based on the traditional Ethernet protocol and the standard TCP/IP
protocol, which enables efficient exchange of application information between industrial devices. The
EtherNet/IP application layer protocol uses the standard object-oriented CIP protocol [1]. The following
figure shows the structure of each layer.

Technical characteristics of the EtherNet/IP protocol:

1. Standard. EtherNet/IP is built on top of the standard TCP/UDP protocol and is fully compliant with
the standard IEEE802.3U standard, and all devices with standard Ethernet nodes can join this
network.

2. Real-time [2]. EtherNet/IP data transmission is divided into implicit messaging and explicit
messaging. Implicit messaging is used to transmit real-time data cyclically. Explicit messaging is
used to transmit non-real-time data (such as configuration information), using a request-response
approach.

3. Efficient communication. EtherNet/IP uses the producer/consumer technology, which allows nodes
on the network to access data from the same source at the same time. In the producer/consumer
mode, each data is assigned a unique identifier, and each data source sends the data to the network
at one time, and the other nodes read the data selectively, which greatly improves the
communication efficiency of the system.

4. Wide application of EtherNet/IP devices. EtherNet/IP communication devices include simple I/O
devices, sensors (scanners/cameras), activators, and complex control devices (such as robots, PLCs,
and welders).

InoProShop 1.5.0 and later versions support EtherNet/IP function with the following communication
specifications:

● All medium-sized PLCs support one EtherNet/IP master and one slave at the same time.

Network Configuration

‑312‑

● Both the master and slave support Class-1 tag or instance path connection, and the slave supports
Class-3/UCMM service message tag connection.

● The minimum cycle communication period (RPI) is 5 ms.
● One connection supports up to 1400 bytes of data reading and writing.
● An EtherNet/IP master supports a maximum of 64 slaves.
● An EtherNet/IP slave supports a maximum of 32 connections.

Note
● [1]: For protocol details, see the official standard documents EIP-CIP-V1-1.0 and EIP-CIP-V2-1.0.
● [2]: When EtherCAT and EtherNet/IP networks both exist in a networking project, the real-time communication

performance of EtherNet/IP network is reduced because EtherCAT has the highest priority by default.

4.11.2 EtherNet/IP Communication Specifications

Item AM300
Series

AM400
Series

AM500
Series

AM600
Series

AC700
Series

AC800
Series

CIP
serv-
ice

Implicit (I/
O)
messaging

Number of I/O
connections at the
originator[1]

16 16 16 16 32 64

Number of I/O
connections at the
target end[2]

16 16 16 16 32 64

RPI (communication
cycle)

5 to 50000 (unit: ms)

Band-
width
allowable
for
implicit (I/
O)
messaging

(@4 Byte) 6400
(pps)[3]

6400
(pps)

6400
(pps)

6400
(pps)

12800
(pps)

25600
(pps)

(@250
Byte)

4800
(pps)

4800
(pps)

4800
(pps)

4800
(pps)

12800
(pps)

25600

(pps)

(@500
Byte)

3200
(pps)

3200
(pps)

3200
(pps)

3200
(pps)

12800
(pps)

25600

(pps)

(@1400
Byte)

1000
(pps)

1000
(pps)

1000
(pps)

1000
(pps)

12800
(pps)

25600

(pps)

Maximum data size
per connection[4]

1400
bytes

1400
bytes

1400
bytes

1400
bytes

1400
bytes

1400
bytes

Multicast filter[5] Supported (IGMP client function)

Explicit
messaging

Number of Class-3
tags at the target end
[6]

128 128 128 128 128 128

Number of UCMM tags
at the target end[6]

128 128 128 128 128 128

[1] I/O connections at the originator include:

● Consumer tags: Connections requested by the originator with the name of the producer tag as the
connection path.

● Originator generic I/O connections: Connections requested by the originator with the instance ID of
the generic I/O connections of the target end as the connection path.

[2] I/O connections at the target end include:

Network Configuration

‑313‑

● Consumer tags: Responses from the target end to the connection requests with the name of the
producer tag as the connection path.

● Target end generic I/O connections: Responses from the target end to connection requests with the
instance ID of the generic I/O connections of the target end as the connection path.

[3] pps refers to Packet Per Second. pps is the unit of network throughput rate. Here, it means the sum
of the number of grouping packets sent and received that can be processed in one second. It is
calculated according to the following formula: Communication bandwidth pps = 1000 ms/RPI x
Number of connections x 2.

[4] Data simultaneity within a connection is guaranteed. The device used supports Large Forward Open
(CIP option specification) when the data size is greater than 509 bytes.

[5] The EtherNet/IP unit supports the IGMP client function, so the use of an Ethernet switch that
supports IGMP Snooping allows filtering out unattended multicast packets.

[6] The number of tags is as follows:

● Initiator tags include the consumer tags, initiator generic I/O connections, Class-3 tags at the
originator, and UCMM tags at the initiator. The maximum number is 32.

● Target end tags include the producer tags, target end generic I/O connections, Class-3 tags at the
target end, and UCMM tags at the target end. The maximum number is 32. The maximum number of
target end generic I/O connections is 16.

4.11.3 Configuration of PLC as the EtherNet/IP Master

When communication starts, the end that opens the connection is called the initiating device, also
called the scanner, which is usually the EtherNet/IP master. The open end is called the target device,
also called the adapter, which is usually the EtherNet/IP slave.

This section describes in detail how to configure the InoProShop software with a medium-sized
Inovance PLC as the EtherNet/IP master.

EtherNet/IP device IP settings

EtherNet/IP supports bus topology, star topology, hybrid topology, and ring topology.

In a star topology, all nodes are connected to the network hub, and nodes are easily added, deleted,
and maintained. Such topology is often used due to its cost-effectiveness, easy connection, and
availability of required devices. In a star topology, IP addresses of all devices must be unique and in
the same EtherNet/IP network segment.

Network Configuration

‑314‑

EtherNet/IP

PLC

LAN

For example, IP addresses of devices in the network can be set to the following formats:

IP address of the EtherNet/IP master: 192.168.1.100

IP address of the EtherNet/IP slave 1: 192.168.1.101

IP address of the EtherNet/IP slave 2: 192.168.1.102

...

IP address of the EtherNet/IP slave n: 192.168.1.XXX

Adding EtherNet/IP Remote Slave

1. Import the EDS description file of the slave.
The InoProShop software provides two methods for importing the EDS files of EtherNet/IP slaves.
Method 1: In the device library, choose Tools > Device Library in the menu tool. Click "Install" and
then import the file. Method 2: On the "Network Configuration" page, click "Import EDS File" to
import the file.

Take KEYENCE N-L20 EtherNet/IP slave module as an example. You can import the EDS description
file of a third-party device according to method 1.

2. Select the "EtherNet/IP" master.
Click the master. On the page displayed, select "EtherNet/IP Master".

3. Add an EtherNet/IP remote slave.

● Method 1: Add the slave on the "Network Devices List" page.
On the "Network Devices List" page on the right, locate the third-party vendor device imported in
step 1 under "EtherNet/IP Port List", and right-click the device to add this slave device to the
network configuration.

As shown in the following figure, in the right device tree, the slave N_L20 is generated under the
master. If there are multiple EtherNet/IP remote slaves, the slaves can be added one by one.

Under the task configuration behind the EtherNet/IP device, the system automatically generates
two tasks EIPMaster.IOTask and EIPMaster.ServiceTask, which are used to update the cyclic
communication data and service data of EtherNet/IP. The default priority of the task EIPMaster.
IOTask is 0, which can be adjusted as required. For example, if the priority of the task EtherCAT in
the project must be set to 0 (the highest), then the priority of EIPMaster.IOTask can be modified
to 1.

Network Configuration

‑315‑

● Method 2: Add the slave through the EtherCAT scanning function.
After adding the EDS file of the slave, log in to the PLC, select "EtherNetIPMaster" from the device
tree. In the shortcut menu displayed, right-click "Scan Devices" to scan EtherNet/IP devices in the
current network, and then click "Copy All Scanned Devices" to add slaves. For details, see the
EtherCAT scanning function.

EtherNet general settings

Before configuring EtherNet general settings, configure the PLC gateway to connect the PLC through
the software.

Double-click the Ethernet device to enter the "General" page, as shown in the following figure. Access
the "Network Adapters" page.

Select the master IP address of the corresponding network interface.

Note: This IP address refers to the IP address through which the PLC serving as the master and external
devices connect to the EtherNet/IP network. The AC800 series PLCs have two network interfaces. Make
sure that the IP address of the connected device corresponds to the network interface. The AM600-
series PLCs have only one Ethernet port. Ensure that the IP address is consistent with that of the
logged-in PLC. For PLCs not scanned on the device initialization page, IP address and other
information of the network interface adapters cannot be obtained.

Besides, on the general settings page of the master, "Auto reestablish connections" is selected by
default, so the connection is reestablished when the slave link is restored.

EtherNet/IP remote slave settings

Double-click the EtherNet/IP slave "N-L20" you want to set. On the page displayed, set the IP address
of the slave as that of the remote slave.

In the "Electronic Keying" section, the EtherNet/IP device information loaded from the slave EDS file is
displayed. During communication connection request, the strict identity check is performed by default,
that is, the system checks whether the actual product information and the information of the
requested connection are consistent. If not, the connection is failed. During actual application, you
should select or modify relevant information for product check.

Connection settings

1. Add a connection.
The EtherNet/IP remote slave supports connections based on the instance ID path and tag path,
among which connections based on the instance ID path can be created through "Add Connection".
The EDS description file of an EtherNet/IP remote slave generally contains one or more connection
information entries. After the EtherNet/IP network configuration is added, the connection page of
the remote slave loads the first connection as the default connection

On this page, the "Assembly" section displays the default defined parameter names, parameter type,
and bit length. In the EDS connection whose parameter name is not defined, you can set the data
type and parameter command freely based on the data transmission length.

You can click "Add Connection" and set the default connection path pre-defined in the EDS file.

2. Edit the connection.

Network Configuration

‑316‑

Click "Edit" on the preceding page to enter the connection settings page. Generally, parameters RPI
(communication cycle) and number of transmission bytes of the default pre-defined path connection
need to be modified based on the application, and other parameters directly use the default values.

The "Edit Connection" page contains main configuration parameters of the connection requested by
the EtherNet/IP master. The following describes some important parameters.

● Connection Path: Specifies the format and connection instance of a byte stream frame. For
example, 20 04 2C C6 2C 68 (for details, see EIP-CIP-V1-1.0, Appendix C: Data Management).
20: Logical Segment, ClassID, 8-bit logical address

04: Assembly Object (04H)

2C: Logical Segment, Connection Point, 8-bit logical address

C6: ID-C6H of the Assembly Object instance

2C: Logical Segment, Connection Point, 8-bit logical address

68: ID-68H of the Assembly Object instance

Note: The connection path varies with the vendor and must be configured based on the guide of
the specific slave.

● RPI (ms): Requested Packet Interval. It indicates the communication transmission interval in ms.
The RPI of each node can be set individually without affecting each other.

The master RPI period must be an integer multiple of the task period.

● Transmission byte size
O->T size (bytes): Indicates the amount of data transferred from the producer (initiator) to the
consumer (target device), in bytes.

T->O size (bytes): Indicates the amount of data transferred from the consumer (target device) to
the producer (initiator), in bytes.

● Transport Type
Exclusive Owner: Allows users to set both data sending from the initiator to the target device and
data receiving from the target device to the initiator.

Redundant Owner: Allows multiple initiators to create independent and identical connections to
the same target device.

Input Only: This connection can only be used to set data receiving from the target device to the
initiator.

Listen Only: EtherNet/IP devices apply this type of connections to listen to multicast data without
providing configuration or scheduling information.

● Trigger Type
Cyclic: Periodically triggers data transmission.

Change-Of-State: Transmits data when a change in the state of the application object is detected.

Network Configuration

‑317‑

Application Object: Transmits data when the application object is triggered.

● Connection Type
Multicast: Multiple scanners receive data from one target device at the same time.

Point-to-Point: One scanner can receive data from only one target device.

3. Add a generic connection.
On the "Connection" page, click "Add Device". On the connection settings page, select "Generic
connection", as shown in the following figure. The default connection settings are recommended.
You can customize a connection path based on the slave specifications based on CIP protocol
knowledge. For Inovance PLC slaves, you just need to modify the instance ID of configuration
assembly, the dataset instance ID of consuming assembly (O->T), and the dataset instance ID of
consuming assembly (T->O).

4. Add a tag connection.
On the "Connection" page, click "Add Tag Connection" to add a tag path connection. The tag
connection type is "Input Only" by default, and the connection only reads the producer tag sent from
the consumer slave. You can directly modify the T->O size and connection path (tag name) in the
current entry, and modify other connection parameters on the "Edit Connection" page.

Setting user parameters

If you need to set additional EtherNet/IP bus communication parameters required by the slave, you
can make configuration through this option with CIP protocol knowledge. In most cases, you do not
need to make such configuration. After configuration is completed, each time the communication of
the slave is started or restarted, these configured parameters are sent to the master once.

● Name: Indicates the name of the parameter.
● Class: All accessible objects in the network have a unique integer ID, such as classes #5 and #7 in

the preceding figure.
● Instance: Indicates the concrete and real (physical) occurrence of an object. For example, the new

New Zealand is an instance of the object class "Country", as shown in Instance#1 and Instance#2. (A
CIP instance ID value of 0 is used to indicate a reference to a specific instance within the class.)

● Attribute: Indicates the description of an externally visible feature or characteristic of an object.
Usually, attributes provide state information or control objects, such as Attribute#1 and Attribute#2
in the preceding figure.

Network Configuration

‑318‑

Configuring I/O variable mapping in the program

The following figure shows the EtherNet/IP I/O mapping page of the variable. You can set the input and
output variables through address setting. Directly select the address and edit it. You can modify the
address automatically allocated by the system to map variables in the program.

The default value of "Always update variables" is "Enable 2 (always in bus cycle task)" and remains unchanged.

4.11.4 Programming Example for Configuration of PLC as the EtherNet/IP

Master

General steps for configuring the EtherNet/IP master project

1. Create a project and select the master on the "Network Configuration" page.
2. Import the third-party EDS file and add the EtherNet/IP slave to the networking project.
3. Set the IP address in the EtherNet generic settings. This IP address must be in the same LAN of the IP

address set on the slave generic settings page.
4. Add the default pre-defined connection/tag of the slave, set the RPI, task period, and connection

parameters.
5. Map parameters in the EtherNet/IP I/O mappings of the remote slave.
6. Compile the user POU program as needed.

Cycle data communication project example of the EtherNet/IP master

In cyclic communication, you can set the RPI (communication cycle) based on the priority of the sent
and received data to receive the data after the adjusted communication load, as shown in the
following figure.

This instance project uses AC810 as the EtherNet/IP master and KEYENCE NL-20+SR700 scanner as the
EtherNet/IP slave. After the configuration is completed, the default connection is established and the
program starts to run. When all the devices in the device tree turn to green, the communication
connection is established. Besides, in the master state, CommunicationState is 4, indicating the state is
OP, SlaveState is 1, indicating the state is OK, and ErrorCount is 0. See the following figure.

Network Configuration

‑319‑

Note
To check whether the master-slave communication in the user program is normal, check whether EtherNetIPMas-
ter.eState is 6 (RUNNING). To check the slave state, check whether the instantiated slave name N_L20.eState is 8
(RUNNING).

● The test steps of the cyclic communication instance of the KEYENCE NL20 and scanning module are
as follows:

1. Map operation variables of the slave module, and associate global variables with the EtherNet/IP
I/O mappings, as shown in the following figure.

2. During barcode reading, data is written to "Read Data". Then, "Read Complete" changes to "TRUE
(1)".

3. After "Read Complete" changes to "TRUE(1)", set "Read Complete Clear" to "TRUE(1)".
4. After "Read Complete Clear" is set to "TRUE(1)", "Read Complete" changes to "FALSE(0)"
5. After "Read Complete" changes to "FALSE(0)", set "Read Complete Clear" to "FALSE(0)".

The user program judges the communication state in each cycle. When the communication
connection is normal and the sensor scanning is completed, the xReadComplete flag is set to
"TRUE", the returned scanning data is not 0, and the data results are parsed by BUFFER_TO_
STRING. The following figure shows the sample program and results.

The following figure shows the QR code strings scanned out.

Service data communication project example of the EtherNet/IP master

In service message communication, the timing is controlled by command/response, as shown in the
following figure.

Network Configuration

‑320‑

According to the naming format of service data communication sending command, it is usually
necessary to specify "Service code", "Class ID", "Instance", "Attribute ID", and "Service data". This can
be realized in the application program by using the EtherNet/IP service function block library
EtherNetIPService, as shown in the following figure.

This function block library provides most of common services of the CIP communication protocol (CIP
Common Services). The service IDs and names are listed in the following table.

Table 4–1 CIP Common Services IDs and Names
ID Name

00 Reserved for future use
01 Get_Attributes_All
02 Set_Attributes_All Request
03 Get_Attribute_List
04 Set_Attribute_List
05 Reset
06 Start
07 Stop
08 Create
09 Delete
0A Multiple Service Packet
0B-0C Reserved for future use
0D Apply_Attributes

0E Get_Attribute_Single

0F Reserved for future use
10 Set_Attribute_Single

11 Find_Next_Object_Instance

Network Configuration

‑321‑

ID Name
12-13 Reserved for future use
14 Error Response (used by DeviceNet only)

The Get_Attribute_Single and Generic_Service function blocks allow you to get attributes and service
data from the user program.

● Get_Attribute_Single
The KEYENCE NL-20 module guide provides special attribute IDs to get the current state of the
reader, as shown in the table below.

Instance ID Attribute ID Name
Parameter

Qty Description

1

(0x01)

100

(0x64)
Read Status

UINT

bit0: Error

bit1: Result Data Available

bit2: Result Data Strobe

bit3 to bit5: Reserved

bit6: Buffer Overflow Error

bit7: General Error

bit8: BUSY

bit9 to bit10: Reserved

bit11: MODE BUSY

bit12: ERR BUSY

bit14 to bit15: Reserved
UINT Bit0: Read Complete

UINT Reserved
UINT Reserved

1

(0x01)

108

(0x6C)
IN/OUT Status UINT

bit0: IN1

bit1: IN2

bit2 to bit3: Reserved

bit4: OUT1

bit5: OUT2

bit6: OUT3

bit7: OUT4

bit8 to bit15: Reserved
110

(0x6E)
Result Data Count

UINT Result Data Ready Count

UINT General Error Code
111

(0x6F)
General Error Code UINT General Error Code

128

(0x80)
Result Data Ready Count UINT Result Data Ready Count

129

(0x81)
Result Data Update Count UINT Result Data Update Count

The function block Get_Attribute_Single is used to realize corresponding parameter data in the
above table, as shown below.

Network Configuration

‑322‑

You can get the returned result count "Result Data Count" (attribute 0x6E) by instantiating the Get_
Attribute_Single function block. The example code is as follows. The AutoID Communication Unit
Object = 16#69 is not an object in the EtherNet/IP standard, but an object developed by KEYENCE to
make N-L20 more user-friendly.

● Generic_Service
In addition to the common services, there are also special types of services provided by some
EtherNet/IP device vendors, such as the KEYENCE NL-20 module, which provides the following
service codes for obtaining device-specific interaction data.

Network Configuration

‑323‑

Instance ID Service code
Service Data

Name Description
Data Type: Data

1

(0x01)

14

(0x0E)
-

Get_Attribute

_Single
Get an attribute item.

16

(0x10)
- 　 Get an attribute item.

75

(0x4B)

UINT: Bank

Number
Read Start Start to read the data.

76

(0x4C)
- Read Stop The read operation stops.

83

(0x53)
- Error Clear Clear the error.

85

(0x55)

UINT: Result

Data Size

UINT: Offset

Get Result

Data

Get the read data.

Response data

UINT: Size of the result data

UINT: Size of the remaining data
cached to NL-20

BYTE[]: Result data

86

(0x56)
-

Sequence

Reset

Clear the following information:

Result Data Ready Count

Result Data Update Count

Main unit statistical information

Buffering data

Sequence bit
90

(0x5A)
-

Read Status

Clear
Clear the "Read Complete" and
"Read Failed" notifications.

The above service data can be obtained through the function block Generic_Service (function block
shown below). The interface data provided by the specified vendor can be obtained by providing
the detailed Class ID, instance ID, and service code.

Read the data of the code scanner through the service code 85 (0x55), and the sample code is as
follows.

Network Configuration

‑324‑

4.11.5 Configuration of PLC as the EtherNet/IP Slave

Inovance medium-sized PLCs support EtherNet/IP local slaves, Class-1 instance ID connection and tag
connection response, and Class-3/UCMM service message tag communication (up to 32 tags). The
specific configuration of the slave is described below.

Select "EtherNet/IP Slave".

Click the master. On the page displayed, select "EtherNet/IP Slave".

Configure an IP address for the slave.

Log in to the PLC gateway from the software, and double-click the Ethernet module. On the "General"
page displayed, set the IP address for the slave. This IP address is the one used to connect the slave to
the EtherNet/IP master.

Network Configuration

‑325‑

Set the slave producer connection.

The EtherNet/IP slaves support both instance ID path and tag path connections and can respond to
connection requests from multiple masters (scanners). As shown in the figure below, there is only one
instance ID path connection by default on the "Producer Tags" page, and multiple connections can be
added via the "Add" button. For the connection path "20 04 24 78 2C 64 2C 6E", configure the instance
ID as 16#78, the input dataset instance ID as 16#64, and the output dataset instance ID as 16#6E.

Each connection must be bound to a data input/output module; otherwise, it will not take effect. After
the data module is added, this page is automatically refreshed and can display the name of the bound
data module and the total size of the data, as shown in the following figure.

Network Configuration

‑326‑

To set the producer tag connection, you can manually enter the producer tag name in the connection
path. The default data of the producer tag is output only, so only the output connection can be bound.

Add an input/output module.

Right-click "EtherNetIPSalve". In the shortcut menu displayed, click "Add Device". On the page
displayed, add an input/output module for the slave. You can combine the modules according to the
need of data parameter transmission. Among the modules, "Custom Input Module" and "Custom
Output Module" are user-defined input and output modules. Other data modules are input and output
modules with fixed byte size. You can add multiple data modules to set the total data size as required.

On the "Custom_Input_Module" configuration page, you can freely bind the producer connections and
modify the data size bytes, as shown in the following figure. In the "Input Assembly" section, you can
customize the parameter name and data type to create user structure parameters flexibly.

Network Configuration

‑327‑

Configure I/O mappings for the data module.

Take "Byte Input Module" and "Byte Output Module" as an example. The PLC automatically assigns the
input/output mappings with data type "BYTE". When the EtherNet/IP slave of the PLC receives the
data, the mapping variables are refreshed in "InputData". As shown in the following figure, the data
type of "byReceiveData" is "BYTE".

When the EtherNet/IP slave of the PLC sends data, then the variable is mapped in "OutputData" to
write the data. As shown in the following figure, the data type of "byWriteData" is "BYTE".

Note
After the slave configuration is selected, the software automatically generates the task configuration. It is recom-
mended to set the task cycle of EIPMasterIOTask in the slave project to be consistent with the RPI, to ensure syn-
chronous data transmission.

Export the EDS file of the slave.

As shown in the following figure, on the "General" page of the EtherNet/IP slave, click "Export EDS File"
to export the added connections, input/output datasets, and slave information.

Network Configuration

‑328‑

If the export page is grayed, the slave data configuration is not refreshed. In this case, close the slave window and
open it again.

Configure the service message tags.

On the "Service Message Tags" page, you can configure the Class-3/UCMM explicit message
communication. After a connection is created, its service tags are displayed, as shown in the following
figure.

When "Setting Type" is set to "Target Read", the device can respond to the read data request initiated
by the EtherNet/IP master (scanner), and the service code is 4C. When "Setting Type" is set to "Target
Write", the device can respond to the write data request initiated by the EtherNet/IP master (scanner),
and the service code is 4D. The tag name, data type, and data size must be consistent with those of the
initiator; otherwise, a communication error may occur.

The update of read and write data for display message communication is refreshed cyclically in the
EtherNet/IP Adapter I/O mapping, and the task refresh period is the period set by the
EIPSlaveServiceTask.

Network Configuration

‑329‑

EIP configuration of global variable list

Background

Access specifications for tag variables are shown in the following table, and access to the entire
structure is not supported.

Data Type Name Data Type Code Data Type
Description

Number of
Supported Array

Dimensions

Support to Structure
Member Access

BOOL C1 TRUE/FALSE 3 Yes
SINT C2 8-bit integer 3 Yes

INT C3 16-bit integer 3 Yes

DINT C4 32-bit integer 3 Yes

LINT C5 64-bit integer 3 Yes

UINT C7 UInt16 3 Yes
USINT C6 UInt8 3 Yes
UDINT C8 UInt32 3 Yes
ULINT C9 UInt64 3 Yes
REAL CA 32-bit floating points 3 Yes

LREAL CB 64-bit floating points 3 Yes

STRING D0 String 0 Yes

BYTE D1 8-bit 3 Yes
WORD D2 16-bit 3 Yes
DWORD D3 32-bit 3 Yes
LWORD D4 64-bit 3 Yes

Both slave service message tag configuration and global variable selecting are supported. The
difference is shown in the following table.

Item Service Message Tag Configuration Global Variable List

Access type Tag name Application + global variable list
name + variable name

Import and export Not supported Supported
Data Type BOOL, STRING, DUT, and multi-

dimensional arrays are not
supported.

See the table.

Network Configuration

‑330‑

Item Service Message Tag Configuration Global Variable List

Read-write access Not supported Supported

Maximum amount of data for a
single access

1400 bytes 1000 bytes

Chinese tag Not supported Supported (symbol configuration
table, set "Use UTF-8 for character
encoding")

Data index Supported Supported

Multi-tag service Supported Supported

Use case scenarios: HMI, EIP host controller API, PLC, and IM/MES.

Procedure

1. Create a global variable and right-click it. On the "Properties" page displayed, select "Link Always"
and click "OK".

2. Set the "Network Public" attribute.

● ReadWrite: The tag variable can be read and written.
● Read-only: The tag variable can only be read.
● Write-only: The tag variable can only be written.

3. Add symbol configuration.

● Method 1: The symbol configuration is automatically added when you compile or download the
program.

● Method 2: Manually add the symbol configuration.

Network Configuration

‑331‑

4. On the "Network Configuration" page, select "EtherNet/IP Slave" and set the IP address of the
EtherNet_A/EtherNet_B network port.

4.11.6 Programming Example for Configuration of PLC as the EtherNet/IP

Slave

General steps for configuring the EtherNet/IP slave project

1. Create a project and select the slave on the "Network Configuration" page.
2. Configure the producer connection (Class 1) or explicit service message connection (Class 3/UCMM)

based on the application requirements.
3. If the slave is configured with producer connections (instance ID/tag), add input/output modules

and bind them to the corresponding connections.
4. Perform variable parameter mapping in the slave input/output modules or in the slave I/O mapping.
5. Compile the user POU program as needed.

Follow the above EtherNet/IP slave configuration steps to create a slave programming example. This
guide tests the communication connection with the AM600 project and the Omron NJ501 EtherNet/IP
master project.

Slave project communicating with the Omron NJ501 master

Test the communication between the Omron PLC EtherNet/IP master and the Inovance AM600 slave
project.

● NJ501 EtherNet/IP master project configuration

1. Create an Omron NJ501 standard project.

2. Under "Configurations and Setup", select "Built-in EtherNet/IP Port Settings". On the "TCP/IP
Settings" window displayed, set the IP address of the master's EtherNet/IP communication port.
Ensure that the IP address belongs to the same network segment as that of the Inovance AM600
slave.

3. Create a global variable.

Network Configuration

‑332‑

4. Set the connection path.

a. Import the EDS file of the Inovance slave.In the "Toolbox" section of the "Connection" page,
right-click a blank area. In the shortcut menu displayed, select "Display EDS Library (L)". In the
displayed EDS library list, click "Install", select the path of the EDS file of the Inovance slave.

b. Add the slave.After the installation is completed, select "Add Target Device" under the toolbox
list. From the drop-down list of "Model name", select the Inovance EtherNet/IP slave imported
from the EDS library. Set the IP address and revision of the node connected to the Inovance
EtherNet/IP slave (the IP address must be in the same network segment as the Omron PLC
master), and then click "Add".

c. Set the connection.As shown in the following figure, set the target device, connection type,
input/output variables, and other parameters.

Note
The tag variables input and output 110 and 100 are the instance IDs of the Inovance slave dataset outputs and in-
puts, respectively.

EtherNet/IP master-slave communication test

After the above settings are made, compile, synchronize and then run the Omron PLC project, and
check whether the communication between the master and slave is normal, as shown in the following
figure.

Modify the value of NJ501 EtherNet/IP tag communication SendVar to see the change of AM600
EtherNet/IP slave receive variable. If the variable value can follow the change of the modified value,
communication is normal.

Network Configuration

‑333‑

Modify the SendVar online value to 199, and the corresponding AM600 mapping variable is also
updated to 199.

Modify the "Output Data" of the AM600 EtherNet/IP slave to 52, and the RecvVar value of NJ501
EtherNet/IP communication is also updated to 52.

4.11.7 Diagnosis of EtherNet/IP Communication State

Diagnosis of EtherNet/IP device communication state

Medium-sized PLC EtherNet/IP devices can be used as masters, slaves, or both masters and slaves.
After the configuration is completed, log in to the device. If a green icon is displayed in front of the
EtherNet/IP device tree, the communication is successful. The state diagnosis in the program can call
variables in the protocol library. The communication state of the EtherNet/IP master can be obtained
through the program "EtherNetIPMaster.eState", the communication state of the slave can be
obtained through the program "EtherNetIPSlave.eState", and the communication state of the remote
slave can be obtained through the program "RemoteSlaveName.eState" (for example, AM400_Series_
PLC_EIP_Adapter.eState).

The following shows an example program.

Network Configuration

‑334‑

VAR

eSlaveState : IodrvethernetIPAdapter.AdapterState;

eMasterState : Iodrvethernetip.ScannerState;

eRemoteSlave: Iodrvethernetip.AdapterState;

END_VAR

eSlaveState :=EtherNetIPSlave.eState; //State of the local slave

eMasterState :=EtherNetIPMaster.eState;//State of the local master

eRemoteSlave := AM400_Series_PLC_EIP_Adapter.eState;//State of the remote slave

//Check whether the local slave state is normal

IF eSlaveState = iodrvethernetIPAdapter.AdapterState.RUNNING THEN

//TODO ; add the user logic

END_IF

//Check whether the local master state is normal

IF eMasterState = iodrvethernetip.ScannerState.RUNNING THEN

//TODO; add the user logic

END_IF

//Check whether the remote slave state is normal

IF eRemoteSlave = IoDrvEthernetip.AdapterState.RUNNING THEN

//TODO; add the user logic

END_IF

Diagnosis codes of EtherNet/IP log errors

When EtherNet/IP is used as a master, you can add slaves (remote slaves) to the master. On both
master configuration page and slave configuration page, the "Device Diagnosis" option is available.
The diagnosis information of the master is used to indicate that the configuration item is faulty, and
does not contain the specific cause of the fault, so there is no fault code on the "Device Diagnosis"
page.

In case of communication sending connection errors, you can find the corresponding device diagnosis
information for the EtherNet/IP component in logs on the software. The diagnosis codes and diagnosis
information for EtherNet/IP as master or slave are the same. See the table below for EtherNet/IP
diagnosis codes.

Diagnosis Information ID Status Code Description

SUCCESS 0 The communication is successful.
DUPLICATE_FWD_OPEN 16#100 The connection request is repeated.
TRANSPORTCLASSTRIGGER_NOT_
SUPPORTED

16#103 The transmission type and trigger type are not
supported.

OWNERSHIP_CONFLICT 16#106 A master conflict occurs.
TARGET_CONNECTION_NOT_
FOUND

16#107 The connection to the target slave is not found.

INVALID_NETWORK_CONNECTION_
PARAMETER

16#108 The network connection parameter is invalid.

INVALID_CONNECTION_SIZE 16#109 The T->O or /O->T size is invalid.

Network Configuration

‑335‑

Diagnosis Information ID Status Code Description

TARGET_FOR_CONNECTION_NOT_
CONFIGURED

16#110 The target slave for connection is not configured.

RPI_NOT_SUPPORTED 16#111 The RPI is not supported.

RPI_NOT_ACCEPTABLE 16#112 The RPI value is not acceptable.
OUT_OF_CONNECTIONS 16#113 The connection type is out of the range.

VENDORID_OR_PRODUCT_CODE_
MISSMATCH

16#114 The vendor/product ID does not match.

PRODUCT_TYPE_MISSMATCH 16#115 The product type does not match.

REVISION_MISSMATCH 16#116 The software version does not match.
INVALID_PATH 16#117 The path is invalid.
INVALID_CONFIGURATION_PATH 16#118 The configuration path is invalid.

NON_LISTEN_ONLY_CONNECTION_
NOT_OPEND

16#119 The non-Listen connection path is not available.

TARGET_OBJECT_OUT_OF_
CONNECTIONS

16#11A The maximum number of connections to the
target device exceeds the limit.

RPI_SMALLER_THAN_PRODUCTION_
INHIBIT_TIME

16#11B The RPI value is smaller than the producer inhibit
time.

TRANSPORT_CLASS_NOT_
SUPPORTED

16#11C The transmission type or trigger parameter is not
supported.

PRODUCTION_TRIGGER_NOT_
SUPPORTED

16#11D The trigger type is not supported.

DIRECTION_NOT_SUPPORTED 16#11E The transmission direction is not supported.

INVALID_OT_FIXVAR_VALUE 16#11F The O->T network connection parameter fixing/
variable identifier is invalid.

INVALID_TO_FIXVAR_VALUE 16#120 The T->O network connection parameter fixing/
variable identifier is invalid.

INVALID_OT_PRIORITY 16#121 The O->T priority is invalid.

INVALID_TO_PRIORITY 16#122 The T->O priority is invalid.

INVALID_OT_CONNECTION_TYPE 16#123 The O->T connection type is invalid.

INVALID_TO_CONNECTION_TYPE 16#124 The T->O connection type is invalid.

INVALID_OT_REDUNDANT_OWNER_
FLAG

16#125 The redundant owner flag is invalid.

INVALID_CONFIGURATION_SIZE 16#126 The configuration size is invalid.

INVALID_OT_SIZE 16#127 The O->T size is invalid.
INVALID_TO_SIZE 16#128 The T->O size is invalid.
INVALID_CONFIG_APPL_PATH 16#129 The configuration path is invalid.

INVALID_CONSUMING_APPL_PATH 16#12A The consumer path is invalid.
INVALID_PRODUCING_APPL_PATH 16#12B The producer path is invalid.

CONFIG_SYMBOL_DOES_NOT_EXIST 16#12C The configuration tag does not exist.

CONSUMING_SYMBOL_DOES_NOT_
EXIST

16#12D The consumer tag does not exist.

PRODUCING_SYMBOL_DOES_NOT_
EXIST

16#12E The producer tag does not exist.

INCONSISTENT_APPL_PATH_
COMBINATION

16#12F The configuration/producer/consumer paths are
inconsistent.

INCONSISTENT_CONSUME_DATA_
FORMAT

16#130 The consumer data formats are inconsistent.

INCONSISTENT_PRODUCE_DATA_
FORMAT

16#131 The producer data formats are inconsistent.

Network Configuration

‑336‑

Diagnosis Information ID Status Code Description

NULL_FWDOPEN_NOT_SUPPORTED 16#132 The connection request of the null configuration is
not supported.

CONNECTION_TIMEOUT_
MULTIPLIER_NOT_ACCEPTABLE

16#133 The connection timeout multiplier is not
acceptable.

MISMATCHED_TO_CONNECTION_
SIZE

16#134 The connection data size does not match.

MISMATCHED_TO_CONNECTION_
FIXVAR

16#135 The connection parameter fixing/variable tag does
not match.

MISMATCHED_TO_CONNECTION_
PRIORITY

16#136 The priority of the connection parameter does not
match.

MISMATCHED_TRANSPORT_CLASS 16#137 The transmission type does not match.

CONNECTION_TIMED_OUT 16#203 Connection times out.
UNCONNECTED_REQUEST_TIMED_
OUT

16#204 The unconnected request times out.

PARAM_ERROR_IN_UNCONNECTED_
REQUEST

16#205 The unconnected request parameter is incorrect.

MESSAGE_TOO_LARGE 16#206 The message length is too large.

UNCONNECTED_ACK_WITHOUT_
REPLY

16#207 The unconnected acknowledge is not responded.

NO_BUFFER_MEMORY_AVAILABLE 16#301 No buffer space is available.

NETWORK_BANDWIDTH_NOT_
AVAILABLE

16#302 The network bandwidth is insufficient.

PORT_NOT_AVAILABLE 16#311 The port is unavailable.

LINK_ADDRESS_NOT_VALID 16#312 The link address of the port data segment is
invalid.

INVALID_SEGMENT_IN_
CONNECTION_PATH

16#315 The connection path contains an invalid data
segment.

4.12 PROFIBUS-DP Bus

4.12.1 Overview

Bus overview

PROFIBUS is an international and open fieldbus standard independent of device manufacturers.
PROFIBUS is widely used by automation in the manufacturing, process, building, traffic, and electricity
sectors. It becomes a European industrial standard in 1996, became an international standard in 1999,
and was approved to be the fieldbus standard of industrial automation in the People's Republic of
China in 2001.

PROFIBUS adopts existing international standards and is based on the Open Systems Interconnection
(OSI) model, as shown in Figure 3-82. Therefore, PROFIBUS meets the open and standard
requirements. In the OSI models, predefined tasks are implemented accurately during transmission.
The physical layer (first layer) defines the physical transmission features. The data link layer (second
layer) defines the bus access protocol. The application layer (seventh layer) defines application
functions.

Network Configuration

‑337‑

PROFIBUS-DP uses the first layer, second layer, and user interfaces. The third to seventh layers are not
described here. This flow structure ensures fast and effective data transmission. The direct data link
mapper (DDLM) provides a service user interface for easy access to the second layer. The user interface
defines the application functions called by users, the system, and different devices, describes the
behaviors of different PROFIBUS-DP devices, and provides the RS485 transmission technique or optical
fibers.

Figure 4-60 PROFIBUS-DP fieldbus model

PROFIBUS-DP is used for field high-speed data transmission. The master reads the input information of
slaves and sends output information to slaves periodically. In addition to periodic transmission of user
data, PROFIBUS-DP also provides aperiodic communication required by smart field devices for
configuration, diagnosis, and alarm handling.

4.12.2 General Process of Using PROFIBUS-DP

The general process of using PROFIBUS-DP is as follows:

1. Design the hardware network structure of PROFIBUS-DP.
2. Activate the PROFIBUS-DP bus in network configuration. The PROFIBUS-DP master is automatically

added after the bus is activated.
3. On the "Network Configuration" page, add PROFIBUS-DP slaves and modules based on the

hardware structure. Before adding a third-party slave, import a GSD file to import the third-party
slave on the "Network Configuration" page. Before adding an AM600 slave, add an I/O module in
hardware configuration. A PROFIBUS-DP slave is a remote DP device.

4. Set the master parameters, slave parameters, and module parameters properly. In normal cases, the
slave node ID is automatically generated, I/O mapping is automatically generated based on the GSD
file, and some special settings need to be modified manually.

When setting the parameters of the master and slave, ensure that the baud rates of the master and
slave are adaptive and that the configured slave node ID matches with the DIP switch setting of the
actual slave node ID.

Network Configuration

‑338‑

4.12.3 PROFIBUS-DP Master Configuration

Master parameter configuration

General

● Node ID: The unique identifier of the master in the PROFIBUS-DP network. The default value is 1,
and the value range is 1 to 126, in the decimal format.

● Highest station address: The maximum station address for token transfer. The default value is 126.
● Watch Dog Control: The watch dog time transferred to the slave, used to determine the master-

slave connection.

Bus Parameters

Baud rate: The baud rate of transmission along the bus. The unit is kbps. Options are 9.6, 19.2, 45.45,
93.75, 187.5, 500, 1500, 3000, 6000, and 12000. The default value is 1500.

Note
Set the baud rate properly based on different communication distances and the number of communicating stations.
The PROFIBUS subnet works properly only with matching parameters of the bus configuration file. You can change
the default settings only if you are familiar with the parameter allocation of the PROFIBUS bus configuration file. It
is recommended that the default bus parameter settings be used.

Stopped on failure

The "Stopped on failure" function determines whether to stop slave operation when a slave or module
is faulty or the configuration is inconsistent. This function is only applicable to AM600 PROFIBUS-DP
slaves.

● Setting list on slaves failure: You can view and set whether to stop operation upon slave failure or
inconsistent configuration.
In the "Stopped On Failure" column, you can set whether to stop slave operation when the
specified slave or module is faulty. If the check box under "Stopped On Failure" is selected, the
slave stops running when it is faulty or when the I/O module with the diagnosis and report function
enabled is faulty.

● Click "OK" or "Cancel" to save or cancel the settings on the "Stop Setting on Failure" page.

PROFIBUS-DP master I/O mapping

For the general description of I/O mapping and instructions on this page, see "I/O mapping."

Status

The state configuration editor for the PROFIBUS-DP bus devices or modules displays state information
(such as "Running" and "Stopped") and the state of the internal bus system.

Information

The following basic information about the currently available device is displayed: Name, Vendor,
Categories, Version, Module Number, and Description.

Network Configuration

‑339‑

4.12.4 PROFIBUS-DP Slave Configuration

To configure a PROFIBUS-DP slave, you mainly need to set the basic slave parameters and the slave
parameters declared in GSD.

Slave parameter setting

General

● Node ID: The unique identifier of a slave in the PROFIBUS-DP network. The value ranges from 1 to
125, in the decimal format. The default value is 2. The node ID must be consistent with the slave
identifier (such as the DIP switch).

● ID number: The unique identifier of the slave, which is determined by the GSD file.
● T_SDR: The minimum response interval of the slave, that is, the minimum interval for the slave to

return a response after receiving data from the master.
● Lock/Unlock: The current state of the slave.

User parameters

User parameters are defined by the GSD file and can be displayed in the decimal or hexadecimal
format. For details, see the guide provided by the device vendor.

Slave diagnosis

The diagnosis function indicates the running state of slave nodes.

Diagnosis explanation:

Figure 4-61 Diagnosis message structure

Network Configuration

‑340‑

Table 4–2 Meaning of station state 1

Bit Meaning Cause and Solution

0 0:
The DP master cannot address the DP
slave, and this bit of the DP slave is
always 0.

Check whether the PROFIBUS address of the DP
slave is correct.

Check whether the bus connector and FOC are
connected.

Check the voltage of the DP slave.

Check whether the settings of the RS485 relay
are correct.

Check whether the DP slave is reset (enabled or
disabled).

1 1:
The DP slave is not ready for data
exchange. Wait until the DP slave is started.

2 1:

The configuration data that the DP
master sends to the DP slave does not
match with the actual configuration of
the DP slave.

Check whether the station type entered in the
configuration software or the DP slave
configuration is correct.

3 1: External diagnosis is available.

Evaluate the identifier-related diagnosis,
module state, and/or channel-related
diagnosis. Bit 3 is reset after all the errors are
fixed.

This bit is reset when a new diagnosis message
is generated in the preceding diagnosis bytes.

4 1:
The DP slave does not support the
requested function.

Check the configuration.

5 1:
The DP master fails to parse the
response of the DP slave.

Check the bus configuration.

6 1:
The DP slave type does not match with
the software configuration.

Check whether the configuration software of
the station type is configured correctly.

7 1:
Other DP masters (not the DP master
currently accessing the DP slave) have
been configured for the DP slave.

This bit is always 1 when the DP slave is
accessed through a programming device or
other DP masters.

The PROFIBUS address of the DP master
configured for the DP slave is located in the
"master PROFIBUS address" diagnosis byte.

Table 4–3 Meaning of station state 2

Bit Meaning

0 1: The DP slave must be reconfigured.

1 1: The slave is in the startup stage.

2 1: This bit of the DP slave is always 1.

3 1: Response monitoring is enabled for the DP slave.

4 1: The DP slave has received the "FREEZE" control command.
5 1: The DP slave has received the "SYNC" control command.
6 0: This bit is always 0.

7 1:
Activation of the DP slave is canceled. That is, the DP slave is removed from current
processing.

Network Configuration

‑341‑

Table 4–4 Meaning of station state 3

Bit Meaning

0 to 6 0: This bit is always 0.

7 1:
The number of channel-specific diagnosis messages exceeds the number of
messages allowed by diagnosis frames.

● The master PROFIBUS address indicates that the PROFIBUS-DP master has been configured for the
DP slave and has the read and write permissions on the slave. If the value is FF, the DP master is not
configured for the DP slave.

● The manufacturer ID indicates the DP slave type. It is declared by the device manufacturer and is
reflected in GSD.

4.12.5 PROFIBUS-DP Module

Modular device and non-modular device

In PROFIBUS-DP slave configuration, you can connect PROFIBUS-DP slave nodes to the following two
types of modular devices:

Modular device: It is connected to a DP slave node and provides an I/O mapping list. The "PROFIBUS-
DP Slave I/O Mapping" dialog box is not required. The data of slave nodes increases as modules are
added. Currently, the AM600 I/O module is a type of modular device.

Non-modular device: The slave node dialog box includes the I/O mapping dialog box. Data cannot be
configured automatically.

AM600 PROFIBUS-DP I/O module

Add the AM600 PROFIBUS-DP I/O module in hardware configuration, and set related I/O parameters
and add I/O mappings to refresh data. For details, see "CPU > I/O module".

4.13 HMI Communication Configuration

4.13.1 Communication Configuration

This drive member reads and writes the data of various registers of Inovance medium-sized PLCs
based on the Modbus TCP/IP protocol through the InoTouch Editor software configuration.

The HMI supports the 01, 31, 03, 33, 05, 35, 06, 36, 0F, 3F, 10, and 40 parameters. For details about the
parameters, see the HMI user guide.

Configuration Item Description

Communication
protocol

The Modbus TCP/IP protocol of the Inovance AM600-series PLC is used.

Communication
mode

One master and one slave; one master and multiple slaves. The drive member is the
master, and devices are the slaves.

Communication
device

Ethernet sub-devices must be attached to the general TCP/IP parent devices to work
properly.

Network Configuration

‑342‑

Hardware connection

Ensure that hardware is connected correctly before configuring communication between the InoTouch
Editor software and devices.

Connection method: Use an RJ45 network cable to directly connect the HMI to the PLC (use a straight-
through network cable or hub switch).

Device communication parameters

Set the client communication parameters of InoTouch Editor.

When communication setup is in progress, select Ethernet and add a device.

● PLC IP addr.: Enter the IP address of the PLC based on the actual setting.
● Port No.: The port used to send and receive data frames by the host computer and slave computer.

The default value is 502. It is recommended that the default value be used. Retain the default
settings of other parameters.

Communication configuration

Set the parameters of the Inovance AM600-ModbusTCP sub-device.

Response delay: The interval between frame sending and reception startup. The default value is 0 ms.

Collection channel

Communication state

Communication State Value Description

Communication normal The current communication is normal.
Command failed The read and write commands of the device fail to be executed.
Check failed An error occurred while checking collected data.

Communication timeout No collected data is returned.

Internal attributes

You can add a channel by using internal attributes. This drive member supports the Modbus TCP
registers of Inovance AM600-series PLC. The following table lists the parameters.

Register Data Type Read
Parameter

Write Parameter Operation Channel Example

[SM area] input coil BT 31 35 and 3F Read-write
"SM read-only
0000" indicates SM
area address 0.

[Q area] output coil BT 01 05 and 0F Read-write

"Q read-write
0001"

indicates Q area
address 1.

Network Configuration

‑343‑

Register Data Type Read
Parameter

Write Parameter Operation Channel Example

[SD area] input
register

16-bit-BCD

32-bit-BCD

16-bit-unsigned

16-bit-signed

32-bit-unsigned

32-bit-unsigned

32-bit-float

33 36 and 40 Read-write
"SD read-only
0002" indicates SD
area address 2.

[M area] Output
register

16-bit-BCD

32-bit-BCD

16-bit-unsigned

16-bit-signed

32-bit-unsigned

32-bit-unsigned

32-bit-float

03 06 and 10 Read-write
"M read and write
0003" indicates M
area address 3.

Function code: [SD area] uses the function code 40 when double-word (32-bit) data is written or
multiple data records are written in batch.

[M area] uses the function code 10 when double-word (32-bit) data is written or multiple data records
are written in batch.

Note
When a channel is added by using internal attributes, the start address is 0 (protocol address), which complies with
the Modbus TCP protocol of Inovance AM600.

4.13.2 Communication Example

Bit variable read and write

A bit status indicator and a bit status switch are provided, as shown in the following figure.

Modify the general attributes of the bit status indicator. Set the address to Q_bit (0:0).

Word variable read and write

Select the numeric value input control, as shown in the following figure.

Network Configuration

‑344‑

Modify the general attributes of the numeric value input control. Set the address to MW0.

4.13.3 Common Faults
Symptom Analysis Solution

Communication
timeout

An error occurs during collection
initialization.

No collected data is returned.

(Incorrect communication hardware
connection and parameter settings)

1. Check whether the parameter settings of network
devices are correct.
2. Check whether the serial port is occupied by other
programs.

3. Check whether the communication cable is
connected correctly.

4. Check whether the data read address exceeds the
specified range.

Command failed The read and write operations failed.

1. Check whether the data read address exceeds the
specified range.

2. Check whether the communication cable is too
long, and perform short-distance test.

3. Check whether onsite interferences are excessive,
and prevent interferences in the surrounding
environment.

Registers and parameters supported by the drive member

Register Read Parameter Write Parameter Parameter Description

[SM area] input coil 31
35

3F

31: Read the input coil status

35: Enforce a single input coil

3F: Enforce multiple input coils

[Q area] output coil 01
05

0F

01: Read the output coil status

05: Enforce a single output coil

0F: Enforce multiple output coils

[SD area] input register 33
36

40

33: Read the input register

36: Pre-configure a single register

40: Pre-configure multiple registers

[M area] Output register 03
06

10

03: Read the holding register

06: Pre-configure a single register

10: Pre-configure multiple registers

Note:

1. This drive member supports the 01, 31, 03, 33, 05, 35, 06, 36, 0F, 3F, 10, and 40 parameters. Other
parameters not used by data communication are not supported.

2. The preceding parameters adopt the hexadecimal format. Parameters 0x0F and 0x10 correspond to
15 and 16 in the decimal format.

Network Configuration

‑345‑

3. The [SM area] input coil uses 3F when writing multiple relays in batch.
4. The [Q area] output coil uses 0F when writing multiple relays in batch
5. The [SD area] output register uses 40 when double-word (32-bit) data is written or multiple data

records are written in batch.
6. The [M area] output register uses 10 when double-word (32-bit) data is written or multiple data

records are written in batch.

Note
When a register channel is added, the start address is 0 (protocol address), which complies with the Modbus proto-
col of Inovance AM600.

Data type table

BTdd Bit (dd range: 00 to 15)

16-bit-BCD 16-bit-BCD
32-bit-BCD 32-bit-BCD
16-bit-unsigned 16-bit unsigned

16-bit-signed 16-bit signed

32-bit-unsigned 32-bit unsigned

32-bit-unsigned 32-bit signed

32-bit-float 32-bit floating point number

32-bit data storage in registers

1. Mapping relationship between the variable name and register address in the PLC project (16-bit
register)

● Variable %MW5 corresponds to register address 5.
● Variable %MD5 corresponds to register address 10.

Variable name prefix: W - word (16 bits); D - double word (32 bits).

2. The addresses of drive device commands and channel collection registers start from 0, which
indicates that the register address is 0.

3. When 32-bit data is read or written, two registers (32 bits) starting from the corresponding register
address are occupied.

Programming Basics

‑346‑

5 Programming Basics

5.1 Overview

Operands are the objects in user programs related to operators, functions, function blocks, or program
operations. They can be used as input, output, and intermediate stored results. Common operands of
CoDeSys include direct addresses, constants, and variables.

Similar to other advanced languages, CoDeSys also provides constants and variables. Constants are
unchanged numeric values. Variables are user-defined identifiers. Variables are stored in user specified
addresses of the %I, %Q, and %M areas. If addresses are not specified, variables are stored in system-
allocated addresses. You do not need to concern the variable storage location.

5.2 Direct Address

5.2.1 Syntax

A direct address, also called fixed address or direct variable, has a direct mapping to a specific address
of the PLC. The address information includes the variable storage location in the CPU, storage size, and
storage position offset.

Syntax: %<storage area prefix><size prefix><number>|.<number>

● <storage area prefix>: The programming system supports the following storage area prefixes:

1. I: input, physical input, sensor
2. Q: output, physical output, activator
3. M: storage location

● <size prefix>: The programming system supports the following size prefixes:

1. X: bit, 1 bit
2. B: byte, 1 byte
3. W: word, 1 word
4. D: double-word, 4 bytes (double word)

● <number>|.<number>
The first number indicates the offset address of the storage area prefix. The number following "."
indicates the specific bit after the address offset when the variable is of the BOOL type.

Example:

%QX7.5 output area with 7-byte offset, sixth bit (bit 5)

%QB17 output area with 17-byte offset

%IW215 input area with 215-word offset

%MD48 memory area with 48-double-word offset

iVar AT %IW10: WORD;//The variable iVar is of the word type and maps to the location with 10-word
offset in the input area.

Programming Basics

‑347‑

Note
● When a variable with the X-type size prefix indicates the BOOL data type, the offset address needs to be precise

to bits.
● The size prefix matches with the data type. A variable with the B-type size prefix must be declared as a 1-byte

data type, such as BYTE, SINT, and USINT. A variable with the W-type size prefix must be declared as a 1-word
data type, such as WORD, INT, and UINT. A variable with the D-type size prefix must be declared as a double-
word data type, such as DWORD, DINT, and UDINT.

5.2.2 PLC Direct Address Storage Area

The direct address storage area varies with PLCs. PLC data is not retained upon power failure for the %
I and %Q areas, but is retained for the %M area.

The AM600, AM610, AM401, and AM402 programming systems provide the 128-KB (byte) input area (I
area), 128-KB (byte) output area (Q area), and 512-KB storage area (M area). The first 480 KB of the
storage area can be used directly, whereas the last 32 KB are used by the system, mainly as soft
elements, and cannot be used directly by users. During programming, users can directly access
addresses or define a variable, map the variable to an address, and then access the address. The
following table lists storage areas and the address ranges they use.

Area Use Size Address Range

I area (%I) 128 KB For users 64 K words %IW0 to %IW65535
Q area (%Q) 128 KB For users 64 K words %QW0 to %QW65535

M area (%M) 512 KB

For users 240 K words %MW0 to %MW245759

SD element 10000 words
%MW245760 to %
MW255759

SM element 10000 bytes %MB511520 to %
MB521519

Reserved 2768 bytes %MB521520 to %
MB524287

The AC800-series programming system provides a 128-KB input area (I area), a 128-KB output area (Q
area), and a 5-MB storage area (M area). The AC800 series does not support SD and SM soft elements
and addresses in the %M can be used without restriction. The following table lists storage areas and
the address ranges they use.

Area Use Size Address Range

I area (%I) 128 KB For users 64 K words %IW0 to %IW65535

Q area (%Q) 128 KB For users 64 K words %QW0 to %QW65535

M area (%M) 5 MB For users 2.5MWords %MW0 to %MW2321439

Programming Basics

‑348‑

5.3 Variable

5.3.1 Overview

Variables can be defined by the POU, automatic declaration dialog box, and the DUT or GVL editor.
Variable types are identified through variable type keywords. For example, VAR and END_VAR identify
local variables.

Variable types include local variable (VAR), input variable (VAR_INPUT), output variable (VAR_OUTPUT),
I/O variable (VAR_IN_OUT), global variable (VAR_GLOBAL), temporary variable (VAR_TEMP), static
variable (VAR_STAT), and configuration variable (VAR_CONFIG).

5.3.2 Variable Definition

Variables can be edited in the declaration editor. The declaration editor is displayed in the text view or
table view. Complex data types such as structures and arrays support variable definitions, array
element comments, and recursive display of addresses of complex data types.

The following figure shows the declaration editor of POU in the text view.

Figure 5-1 Text declaration

The following figure shows the declaration editor of POU in the table view.

Figure 5-2 Table declaration

In the table declaration, you can edit variable attributes. The following table describes items in the
table.

Item Description

Scope The variable type (such as local variable, input variable, output variable, or
temporary variable)

Name The variable name
Address The address of the variable after compilation

Programming Basics

‑349‑

Item Description
Data type The data type of the variable (such as INT or BOOL)

Initialization The initial value of the variable
Persistent Indicate whether the variable is persistent
Constant Indicate whether the defined variable is a constant
Comment The variable comment
Attributes The variable attributes

Variable definition supporting array element comments and instance comments

1. Array element comments
The following figure shows a comment setting page in table declaration mode.

Double-click at a blank area under "Comment".

Set the comments. The following figure shows the text declaration effect (you can make the
declaration directly in text).

● You can edit array element comments in the text view or table view.

Programming Basics

‑350‑

● In the table view, the editing page for the current element and sub-element comments is
displayed in the "Comment" column on the displayed window (the operation is the same as the
initialization operation).

● The edit format of the text editor is as follows:

■ Array: Use the standard comment edit method.
■ Array element: {attribute 'ElemComment':='1(comment of sub-element 1),1(comment of sub-

element 2),n(same sub-element comment)'}.

● In the table view, the comment is null (the "Attributes" column is added by default) when the
array type variables are declared.

● In the table view, only comments of the arrays are displayed. Comments of elements are not
displayed.

● In the "Attributes" column, remove the element comment attribute display (the array element
comments are implemented by attributes which are information marked on the variables).

● When the data length in the table view changes, existing array element comments are saved
accordingly.

● When the array dimension in the table view changes, the array element comments are migrated
and saved according to the smallest sub-index of the expanded dimension.
If the dimension of the array INT_ARRAY:ARRAY[1..2,2..3] changes to ARRAY[1..2,2..3,3..4], the
comments of the original array element INT_ARRAY[1,2] are migrated to the new array element
INT_ARRAY[1,2,3].

If the dimension of INT_ARRAY:ARRAY[1..2,2..3] changes to ARRAY[1..2], the comments of the
original array element INT_ARRAY[1,2] are migrated to the new array element INT_ARRAY[1].

● In the table view, when the data type changes from an array to a non-array, the array element
comments are cleared.

● On the array element comment editing page, up to 1000 elements are displayed. Double-click an
item in the "Data type" column of the array to edit the display range.

Programming Basics

‑351‑

2. Instance comment
A variable declared in PRG (Program) and GVL (Global Variable List) or declared to be of type VAR_
STAT (Static) can be expanded without restriction to edit the comments of the internal members of
the variable, and all the comments of the internal members will be marked on the variable when the
comments are saved, which is known as the instance comment of the variable.

As shown in the following figure, all member comments within a data structure can be marked and
saved on the variable array structure.

● When the internal member is of type FB, only input, output, and input/output variables are
displayed; variables of other types are not displayed.

● In the table, when the data type is changed from non-array to array, the instance comment is
cleared.

● The maximum number of elements displayed for the array type member of a variable is 1000, and
the display range can be adjusted.

3. Comment display
On the initial value editing page, monitoring variable table page, ladder diagram, cursor hovering
display comment, and other functions involving the display of variable comments, the display of
comments is prioritized by the instance comment, and if the variable does not have an instance
comment, the type comment of the variable is displayed.

If the ladder diagram involves the display of the comments of array elements, the array comments
and element comments will be displayed together; however, the same rules of prioritization will be
used for the display.

For example, the following figure shows the comments of the array element data structure [1].a3[1].

Instance comment:

Programming Basics

‑352‑

Due to existence of instance comment, the array comments and element comments defined in the
type are not displayed at this time, as shown in the following figure.

Variable initial value setting

The following figure shows an initial value setting page.

Programming Basics

‑353‑

● In the table view of variable declaration, click a value in the "Initialization" column to directly edit
the initial value. You can also click the "..." icon to expand the menu and edit the value.

● When the initial value setting is different from the default value, the initial value is displayed in
bold.

● The initial value setting page will display members of the variables layer by layer. The intermediate
variables cannot be set directly. Only the initial value of terminal variables can be set. Items in the
"Expression" column for which can set the initial value are displayed in bold.

● Members inside the function block that are not input or output variables are displayed in gray and
cannot be edited.
For example, the newVar member in FB2 is not an input or output variable.

When the newVar member of FB2 type is expanded, the initial value cannot be edited (with a gray
background).

● If there is an array in the expanded item, the maximum number of elements displayed in the array
is 1000. You can double-click the "Data type" cell in the row where the array is located to adjust the
display range.

Address information display of sub-elements in variable definition

The following figure shows an address display page.

Programming Basics

‑354‑

● In the table view of variable declaration, click an item in the "Address" column. If the variable is a
block type that does not contain a function block (such as array, structure, union, or alias), a text
box is displayed after the click operation, which displays the address of the sub-element.

● Enter the address in the "Address" column text box. "Read only" is displayed on the address display
page.

● Modify the address. Then, the modification is synchronized to the variable address.
● The maximum number of elements to be displayed (up to 1000 elements in the array, adjustable

display range).

Identifier

An identifier is the name of a variable. The variable naming conventions are as follows:

● The name cannot contain spaces or special characters.
● The name cannot contain predefined keywords.
● The name is case-insensitive.
● The name length is unlimited.
● The name cannot be defined repeatedly.

A local variable name can be the same as a global variable name. By default, the local variable is used
and can indicate a global variable. A specific variable can also be indicated by a full path variable
name. Example: local variable iVar: = 1; global variable .iVar: = 2; full path variable globlist1.iVar: = 3.

Consider naming suggestions when you name a variable. For example, a variable name must
accurately indicate the meaning and data type of the variable, and the Hungarian notation (variable
name = attribute + type + object description) is recommended.

AT address

An AT address is a direct address. For details, see “5.2.1 Syntax” on page 346.

Programming Basics

‑355‑

Data type

Data types are classified into standard data type and user-defined data type.

1. Standard data type
Standard data types are classified into boolean, integer, floating point, string, and time.

Type Keyword Range Memory Usage

Boolean BOOL TRUE, FALSE, 0, and 1 8-bit

Bit type bit
TRUE, FALSE, 0, and 1, only used in
structures or function blocks

1-bit

Integer

Byte 0 to 255 8-bit
WORD 0 to 65535 16-bit
DWORD 0 to 4294967295 32-bit
LWORD 0 to 264 - 1 64-bit
SINT –128 to +127 8-bit
USINT 0 to 255 8-bit
INT –32768 to +32767 16-bit
UINT 0 to 65535 16-bit
DINT –2147483648 to +2147483647 32-bit
UDINT 0 to 4294967295 32-bit
LINT –263 to +263 - 1 64-bit
ULINT 0 to 264 - 1 64-bit

Floating
point

REAL 1.401e-45 to 3.403e+38 32-bit

LREAL
2.2250738585072014e to 308 -
1.7976931348623158e+308 64-bit

String

STRING

Only ASCII characters are supported.
Chinese characters are not supported.
By default, the maximum length is 80
characters. The part exceeding the
maximum length is truncated. The
maximum character length can be
declared, for example, str:STRING(35):
='This is a String'. A string function
supports up to 255 characters.

Strings are stored in the ASCII
format. The terminator is stored
as one byte.

WSTRING

Only Unicode characters (including
Chinese characters) are supported. By
default, the maximum length is 80
characters. The part exceeding the
maximum length is truncated. The
maximum character length can be
declared, for example, wstr:WSTRING
(35):="This is a WString";.

Strings are stored in the
Unicode format. The terminator
is stored as two bytes.

Time

TIME
Time constant, such as day, hour,
minute, second, and millisecond

32-bit, processed according to
double-word internally

TIME_OF_DAY(TOD) Time constant within one day
32-bit, processed according to
double-word internally

DATE
Date constant, starting from January
1, 1970

32-bit, processed according to
double-word internally

DATE_ADN_TIME(DT)
Date and time constant, starting from
January 1, 1970

32-bit, processed according to
double-word internally

2. User-defined data type

Programming Basics

‑356‑

User-defined data types include array, structure, enumeration, union, alias, subset, reference, and
pointer. In programming software InoProShop of medium-sized PLCs, right-click an application and
choose "Add Object" > "DUT" from the shortcut menu to add the following four user-defined data
types: structure, enumeration, union, and alias.

Array

Syntax: <Array_Name>:ARRAY [<ll1>..<ul1>,<ll2>..<ul2>,<ll3>..<ul3>] OF <elem. Type>

ll1, ll2, and ll3 define the lower limit of the area, whereas ul1, ul2, and ul3 define the upper limit. The
numeric value must be an integer. "elem. Type" indicates the data type of each array element.

Initialization and example

Card_game: ARRAY [1..13, 1..4] OF INT;

arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5];

arr2 : ARRAY [1..2,3..4] OF INT := [1,3(7)]; (*array value 1,7,7,7*)

arr3 : ARRAY [1..2,2..3,3..4] OF INT := [2(0),4(4),2,3]; (*array value 0,0,4,4,4,4,2,3*)

arr1 : ARRAY [1..10] OF INT := [1,2]; (*Array initialization. Uninitialized elements adopt the default value
0*)

Example of array structure initialization

Structure definition:

TYPE STRUCT1

STRUCT

p1:int;

p2:int;

p3:dword;

END_STRUCT

END_TYPE

Array structure initialization:

arr1:ARRAY[1..3] OF STRUCT1:= [(p1:=1,p2:=10,p3:=4723),(p1:=2,p2:=0,p3:=299),(p1:=14,p2:=5,p3:=112)];

Syntax of access union elements:

<Array-Name>[Index1,Index2].

Example:

Card_game [9,2]

Structure

Syntax:

TYPE <structurename> | EXTENDS DUTTYPE:

STRUCT

<declaration of variables 1>

Programming Basics

‑357‑

...

<declaration of variables n>

END_STRUCT

END_TYPE

<structurename> is a type and can be used as a data type. EXTENDS DUTTYPE is optional and indicates
inheritance from the members of DUTTYPE. Variables of the structure name type can be used to access
the members of DUTTYPE. DUTTYPE is of the structure, union, or alias type.

Initialization and example

Polygonline structure definition:

TYPE Polygonline:

STRUCT

Start:ARRAY [1..2] OF INT;

Point1:ARRAY [1..2] OF INT;

Point2:ARRAY [1..2] OF INT;

Point3:ARRAY [1..2] OF INT;

Point4:ARRAY [1..2] OF INT;

End:ARRAY [1..2] OF INT;

END_STRUCT

END_TYPE

Initialization:

Poly_1:polygonline := (Start:=[3,3], Point1:=[5,2], Point2:=[7,3], Point3:=[8,5], Point4:=[5,7], End:= [3,5]);

Syntax of access structure elements:

<structurename>.<variable>

Example:

Poly_1.Start

Enumeration

An enumerated value consists of several constants.

Syntax:

TYPE <identifier>:(<enum_0> ,<enum_1>, ...,<enum_n>) |<base data type>;

END_TYPE

identifier: user-defined enumeration type; enum_n: constant value of the enumeration type. Each
constant can declare its value. If no value is declared, the default value is used. The data type of
enumerated constants is base data type. The value may not be declared and is an integer by default.

Programming Basics

‑358‑

Note
When an enumeration variable exists in multiple libraries, you need to add the library name prefix; otherwise, an er-
ror is reported during compilation.

Union

Syntax:

TYPE <unionname>:UNION

<declaration of variables 1>

...

<declaration of variables n>

END_UNION

END_TYPE

<unionname> is a type and can be used as a data type. All variables of the union type share the same
storage location and are allocated with space same as that of the variable that occupies the largest
space.

Example

TYPE union1: UNION

a : LREAL;

b : LINT;

END_UNION

END_TYPE

Syntax of access array elements:

< unionname >.<variable>

Example

union1.a

Alias

A data type can be expressed by an alias.

Syntax:

TYPE <aliasname>:basetype END_TYPE

"aliasname" indicates the alias type and is used as a data type. "basetype" is a standard or user-
defined data type.

Example

TYPE alias1 : ARRAY[0..200] of Byte; END_TYPE

The initialization and access mode are consistent with the basic type.

Subset

Programming Basics

‑359‑

The subset data type is a subset of the defined basic data type. A subset type can be added by adding a
DUT. A variable can be directly declared as a subset type.

Syntax of DUT objects:

TYPE <name> : <Inttype> (<ug>..<og>) END_TYPE;

name: valid IEC identifier.

Inttype: a data type, such as SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, and DWORD (LINT,
ULINT, and LWORD).

ug: a constant, which must be compatible with the basic type and sets the lower boundary of the range
types. The lower boundary itself is included in this range.

og: a constant, which must be compatible with the basic type and sets the upper boundary of the
range types. The upper boundary itself is included in this basic type.

Example of DUT object declaration

TYPE

SubInt : INT (-4095..4095);

END_TYPE

Example of direct variable declaration

VAR

i : INT (-4095..4095);

ui : UINT (0..10000);

END_VAR

Reference

Reference is the alias of an object. Operating references is equivalent to operating objects.

Syntax:

<identifier> : REFERENCE TO <data type>

identifier: reference identifier. data type: data type of the referenced object.

Example and initialization

ref_int : REFERENCE TO INT;

a : INT;

b : INT;

ref_int REF= a; (* ref_int references a *)

ref_int := 12; (* a is set to 12 *)

b := ref_int * 2; (* b is set to 24 *)

ref_int REF= b; (* ref_int references b *)

ref_int := a / 2; (* b is set to 6 *)

Programming Basics

‑360‑

Note
The bit type cannot be referenced. That is, ref1:REFERENCE TO BIT cannot be defined.

Pointer

A pointer stores the address of an object and can point to any data type (except the bit type).

Syntax:

<identifier>: POINTER TO <data type>;

identifier: pointer identifier. data type: data type pointed to by a pointer.

Pointers are operated by using address operators. Address operators include ADR (variable address
acquisition) and ^ (value of a variable address).

Example and initialization

VAR

pt:POINTER TO INT; (* Declares the pointer pt of the INT type*)

var_int1:INT := 5;

var_int2:INT;

END_VAR

pt := ADR(var_int1); (* Allocates the address of the varint1 variable to the pointer pt *)

var_int2:= pt^; (* Uses the ^ address operator to obtain the value of the pointer*)

pt^:=33; (*Assigns a value to the var_int1 variable corresponding to the pointer*)

Initial value

By default, the initial value of a variable is 0. You can add user-defined initial values by using the
valuation operator ":=" during variable declaration. An initial value is a valid ST expression. An ST
expression consists of operators, operands, and a valuation expression. Operators mainly include
addition (+), subtraction (–), multiplication (*), and division (/). Operands mainly include constants,
variables, and functions. A valuation expression is the operator in the ST expression used to assign
values to variables. Therefore, constants, variables, or functions can be initialized. Ensure that the used
variables have been initialized.

Example:

VAR

var1:INT := 12; (* The initial value of the integer variable is 12*)

x : INT := 13 + 8; (*Defines the initial value of the constant expression*)

y : INT := x + fun(4); (*Includes function call in the initial value*)

z : POINTER TO INT := ADR(y); (*Initializes the pointer by using the address function ADR*)

END_VAR

Programming Basics

‑361‑

Note
● The global variable list (GVL) is initialized before POU local variables are defined.
● If the default value is modified online, the pointer is not initialized during definition and still points to the

variable before online modification.

5.3.3 Variable Type

Variable types include local variable (VAR), input variable (VAR_INPUT), output variable (VAR_OUTPUT),
I/O variable (VAR_IN_OUT), global variable (VAR_GLOBAL), temporary variable (VAR_TEMP), static
variable (VAR_STAT), and configuration variable (VAR_CONFIG).

Declaration syntax of the variable type: <type_key> |attribute_key

variable1;

variable2;

...

END_VAR

type_key: type keyword, which may be VAR (local variable), VAR_INPUT (input variable), VAR_OUTPUT
(output variable), VAR_IN_OUT (I/O variable), VAR_GLOBAL (global variable), VAR_TEMP (temporary
variable), VAR_STAT (static variable), and VAR_CONFIG (configuration variable).

attribute_key: attribute keyword, which may be RETAIN, PERSISTENT, or CONSTANT. It defines the
range of a variable.

Note
● For details about the variables RETAIN and PERSISTENT, see “5.5.3 Persistent Variable Table” on page 372.
● For details about CONSTANT, see “5.4 Constants” on page 368.

Local variable (VAR)

The variables between VAR and END_VAR within POU are local variables and cannot be accessed
externally.

Valuation format:

Local variable:=Value

Example

VAR

iLoc1:INT; (* Local variable*)

END_VAR

Input variable (VAR_INPUT)

The variables between VAR_INPUT and END_VAR within POU are input variables and assigned values in
the call location.

Programming Basics

‑362‑

POU call format:

Local variable:=Value input by the caller

Example

VAR_INPUT

iIn1:INT; (* Input variable*)

END_VAR

Note
Input variables can be modified within POU, even when the CONSTANT attribute is added.

Output variable (VAR_OUTPUT)

The variables between VAR_OUTPUT and END_VAR within POU are output variables. Output variables
can be returned to the caller during the call process for further processing.

POU call format:

Output variable=>variable of the caller-matched type

Example

VAR_OUTPUT

iOut1:INT; (* Output variable*)

END_VAR

Note
● For FUNCTION and METHOD, return values and output variables are supported, but a caller needs to be

allocated for receiving the variables during the call process. Example: fun(iIn1 := 1, iIn2 := 2, iOut1 => iLoc1, iOut2
=> iLoc2);

● The output variables of function blocks can be assigned to the caller after the call process.

I/O variable (VAR_IN_OUT)

The variables between VAR_IN_OUT and END_VAR within POU are I/O variables. I/O variables can be
transferred to the called POU and modified within the called POU. In the actual situation, the variables
transferred to the called POU are referenced by the caller.

Example

VAR_IN_OUT

iInOut1:INT; (* I/O variable*)

END_VAR

Programming Basics

‑363‑

Note
● As the variables transferred to the called POU are referenced by the caller, the I/O variables in function block

instances cannot be accessed directly. That is, <FBinstance>.<InOutVariable> cannot be used directly. The
reason is that input variables are referenced by the caller and have been changed.

● I/O variables cannot be constants or direct variables of the bit type, such as xBit0 AT %I2.0:BOOL. Add the
CONSTANT attribute (VAR_IN_OUT CONSTANT) to declare I/O variables. To use direct variables of the bit type,
you need to add an intermediate variable as an I/O variable and assign the value of the intermediate variable to
the direct variable of the bit type.

Example of a direct variable of the bit type:

VAR_GLOBAL

xBit0 AT %MX0.1 : BOOL;(*Declare a direct variable of the bit type*)

xTemp : BOOL; (*Intermediate variable*)

END_VAR

//Function block with an I/O variable (xInOut)

FUNCTION_BLOCK FB_Test

VAR_INPUT

xIn : BOOL;

END_VAR

VAR_IN_OUT

xInOut : BOOL;

END_VAR

IF xIn THEN

xInOut := TRUE;

END_IF

//Call the function block in the program.

PROGRAM Main

VAR

xIn : BOOL;

I1 : FB_Test;

I2 : FB_Test;

END_VAR

//A compiling error is returned when a direct address variable of the bit type is used.

//I1(xIn:=xIn, xInOut:=xBit0);

//Use the intermediate variable xTemp to transfer the value of xBit0 to the function block and assign
the value of the intermediate variable to xBit0.

Programming Basics

‑364‑

xTemp := xBit0;

I2(xIn:=xIn, xInOut:=xTemp);

xBit0 := xTemp;

I/O constants (VAR_IN_OUT CONSTANT) are read-only. Input variables can be modified in the current
version, even when the constant attribute is added. Therefore, the variable attribute can be changed to
non-modifiable by using an I/O constant.

I/O constant example:

PROGRAM PLC_PRG

VAR

sVarFits : STRING(16);

sValFits : STRING(16) := '1234567890123456';

iVar: DWORD;

END_VAR

POU(sReadWrite:='1234567890123456', scReadOnly:='1234567890123456', iVarReadWrite:=iVar);

//POU(sReadWrite:=sVarFits, scReadOnly:=sVarFits, iVarReadWrite:=iVar);

//POU(sReadWrite:=sValFits, scReadOnly:=sValFits, iVarReadWrite:=iVar);

//POU(sReadWrite:=sVarFits, scReadOnly:='23', iVarReadWrite:=iVar);

FUNCTION POU : BOOL

VAR_IN_OUT

sReadWrite : STRING(16); (* The string can be read and written within the POU *)

iVarReadWrite : DWORD; (*The variable can be read and written within the POU*)

END_VAR

VAR_IN_OUT CONSTANT

scReadOnly : STRING(16); (*The string is read-only within the POU*)

END_VAR

sReadWrite := 'string_from_POU';

iVarInPOU := STRING_TO_DWORD(scReadOnly);

Global variable (VAR_GLOBAL)

The variables between VAR_GLOBAL and END_VAR are global variables. Common variables, constants,
and reserved variables can be declared as global variables. In the AM600 programming software
InoProShop, right-click an application and choose "Add Object" > "Add Global Variable List" from the
shortcut menu to add a global variable list, and add global variables to the list.

Example

Programming Basics

‑365‑

VAR_GLOBAL

iGlobVar1:INT; (* Global variable*)

END_VAR

Note
● If a local variable has the same name as a global variable, the local variable is operated when an operation is

performed on the variable name. You can add the global range operator (.) before the variable name to operate
the global variable, such as ". iGlobVar1".

● Global variables are always initialized before local variables.

Temporary variable (VAR_TEMP)

The variables between VAR_TEMP and END_VAR are temporary variables, which are initialized when
being called.

Example

VAR_TEMP

iTemp1:INT; (*Temporary variable*)

END_VAR

Note
● Temporary variables are declared only in programs and function blocks.
● Temporary variables are used only in declared programs or function blocks.

Static variable (VAR_STAT)

The variables between VAR_STAT and END_VAR are static variables. Static variables are initialized
when being called for the first time. The variable values are returned after the POU is called each time.

Example

VAR_STAT

iStat1:INT; (*Static variable*)

END_VAR

Note
● Static variables are declared only in function blocks, functions, and methods, but cannot be declared in

programs.
● Static variables are used only in the declared POU.

Configuration variable (VAR_CONFIG)

The variables between VAR_CONFIG and END_VAR are configuration variables. Configuration variables
are direct variables that are mapped to the direct variables with indefinite addresses in function
blocks. A variable with an indefinite address can be defined in a function block. The indefinite address
(arbitrary address) is indicated by "*". Add a configuration variable list (by adding a global variable list)

Programming Basics

‑366‑

to add the variables with indefinite addresses in all the function block instances to the configuration
variable list, which defines all the indefinite addresses. This allows you to manage the variables with
indefinite addresses in all the function blocks.

Syntax for variables with indefinite addresses in function blocks:

<identifier> AT %<I|Q|M>* : <data type>

Addresses are finally defined in the variable configuration of the global variable list.

Example

FUNCTION_BLOCK locio

VAR

xLocIn AT %I*: BOOL := TRUE;

xLocOut AT %Q*: BOOL;

END_VAR

Two I/O variables, a local input variable (%I*), and a local output variable (%Q*) are defined.

A global variable list (GVL) is added. The specific addresses declared by instance variables are entered
between the keywords VAR_CONFIG and END_VAR. The instance variables include the complete
instance path of the POU. The specific addresses correspond to indefinite addresses (%I* and %Q*) in
function blocks. The data type must be consistent with that declared by function blocks.

Syntax of configuration variables:

<instance variable path> AT %<I|Q|M><location> : <data type>;.

Example

PROGRAM PLC_PRG

VAR

locioVar1: locio;

locioVar2: locio;

END_VAR

VAR_CONFIG (*Correct variable configuration table*)

PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;

PLC_PRG.locioVar1.xLocOut AT %QX0.0 : BOOL;

PLC_PRG.locioVar2.xLocIn AT %IX1.0 : BOOL;

PLC_PRG.locioVar2.xLocOut AT %QX0.3 : BOOL;

END_VAR

Programming Basics

‑367‑

Note
● Configuration variables are not required in normal cases. The reason is that for I/O address input and output,

variables can be mapped to I/O addresses by using an input assistant or directly entering the instance variable
path on the I/O mapping page of the corresponding module.

● Configuration variables are mapped to variables with indefinite addresses in function blocks or programs.
● A compiling error is returned when only variables with indefinite addresses or configuration variables exist. The

two types of variables must be used in combination.

5.3.4 Variable Import and Export

Variables can be imported and exported from/to an XLS worksheet (.xls) in the format of an Excel file.
You can add, delete, or edit variables and then import the settings to the InoProShop programming
software.

See the following figure.

Add some variables to the variable table. Right-click and select Excel or CSV as the export format. CSV
files are plain text files, whereas Excel files contain format information. CSV files are small, so they are
easy to create, distribute, and read, suitable for storing structured information. CSV files are opened in
Excel by default in the Windows operating system. They are text files in essence. There is no difference
between the Excel and CSV formats in terms of variable editing.

Open the exported file, edit it (add new variables A_6, A_7, A_8, and A_9), and then import it to the
variable table. The following figure shows the effect.

Programming Basics

‑368‑

5.4 Constants

In PLC programming, constants are parameters with unchanged values, such as timer time and
conversion ratio.

Constant declaration syntax:

VAR CONSTANT

<identifier>:<type> := <initialization>;

END_VAR

Example

VAR CONSTANT

c_iCon1:INT:=12;

END_VAR

CoDeSys supports constants of multiple data types, such as boolean, integer, time, and string. The
following table lists specific constants.

Type Description Example

Boolean
The optional values are "TRUE" and "FALSE" (or 1
and 0). 1 indicates "TRUE", and 0 indicates
"FALSE".

TRUE, FALSE, and 1

Bit type

Similar to the boolean type, the bit type is used
only in structures (number of occupied bits) or
function blocks (direct addresses of the boolean
type).

TRUE, FALSE, and 0

Integer

Integer constants support values in the binary,
decimal, octal, and hexadecimal formats. If an
integer value is not in the decimal format, add the
format number and the # symbol before the value.
10 to 15 in the decimal format are indicated by A
to F in the hexadecimal format.

Decimal format: 66

Binary format: 2#101

Octal format: 8#72

Hexadecimal format: 16#3A

Type constants:

INT#22

BYTE#204

Floating point
Floating point constants are expressed by decimal
numbers and exponents in scientific notation.

7.4

2.3e+9

REAL#3.12

Programming Basics

‑369‑

Type Description Example

ASCII string

An ASCII string constant is located between two
single quotation marks and can include spaces
and special characters. A character is expressed by
a byte. Only ASCII characters are supported.
Chinese characters are not supported. By default,
the maximum length is 80 characters. The part
exceeding the maximum length is truncated. The
maximum character length can be declared, for
example, str:STRING(35):='This is a String'. A string
function supports up to 255 characters.

Example of $ used as an escape
character:

'$30': 0, character 0, ASCII character
corresponding to 30 in the
hexadecimal format

$$: $, US dollar character

$': ', single quotation mark

Unicode string

A Unicode string constant is located between two
double quotation marks. A character occupies two
bytes. Only Unicode characters (including Chinese
characters) are supported. By default, the
maximum length is 80 characters. The part
exceeding the maximum length is truncated. The
maximum character length can be declared, for
example, wstr:WSTRING(35):="This is a WString";.

"Unicode string"

Time

Time constants are generally used by time-related
operations and consist of "T#" (or "t#") and a time
value, in the units of days (d), hours (h), minutes
(m), seconds (s), and milliseconds (ms).

t#12h34m15s;

Time Time range within a day; syntax: TOD#time value. TOD#15:36:30.123

Date Starting from January 1, 1970; syntax: d#date. d#2015-02-12

Date and time

Date constants and time constants are collectively
called date and time constant,

which starts from January 1, 1970; syntax: dt#date.
dt#2004-03-29-11:00:00

Note
Constants not of the BOOL, BIT, and string types are indicated in the format "keyword#constant value".

5.5 Persistent Variable

5.5.1 Overview

The persistent variable is only supported in the editor 3.5.11.71 and later versions. In the toolbar, choose "Project" >
"Project Settings". In "Project Settings" dialog box displayed, view the editor version on the "Editing Options" page.

The original value of the persistent variable is retained upon PLC power failure or after the program is
downloaded. This variable is used to define important parameters in the project to prevent the loss of
important parameters due to sudden power failure of the PLC or program download.

Programming Basics

‑370‑

5.5.2 Variable Definition

Define variables

The persistent variable can be defined in Global Variable List (GVL), Program (PRG), Function Block
(FB), and Function (FUN, static variables only), but not in Method (METH), Property (Prop), Structure
(STRUCT), Unions (Union), Enumeration (Enum), and Alias (Alias), which can be defined by both table
and text. The following takes the definition in Program (PRG) as an example.

● Table view
In the table on the programming page of "PLC_PRG(PRG)", select the box next to a variable under
"Persistent" to define the variable as a persistent variable.

● Text view
In the text on the programming page of "PLC_PRG(PRG)", add the keywords "RETAIN PERSISTENT"
or "PERSISTENT RETAIN" to define the variable as a persistent variable.

Variable type

Persistent variables can be set as local variables, input variables, output variables, and static variables,
but cannot be set as I/O variables, temporary variables, constants, and configuration variables.

As an example, to set the variable type in a table in the program (PRG), double-click the "Scope"
column corresponding to the variable row, and then set the supported variable types on the page
displayed.

Variable type

Persistent variables can be defined as any types other than pointers, references, and function blocks
(FB), including nested pointers, nested references, and nested function blocks.

Programming Basics

‑371‑

Variable mapping address

After a variable is defined as a persistent variable, an address mapped to the M area is automatically
generated after compilation, which can be manually edited.

Persistent variables can only be set with addresses in the M area. Addresses in I and Q areas are not supported.

Besides, if the target node "PersistentVars" does not exist in the original device tree, then the target
node "PersistentVars" is generated. If the target node "PersistentVars" exists in the original device tree,
the internal persistent variable is updated and all persistent variables in the project are added to the
object view.

Variable response action

The following table lists response actions of different persistent variables upon execution reset and
power failure.

Action VAR
VAR PERSISTENT RETAIN or
VAR RETAIN PERSISTENT

VAR RETAIN

Power failure Initialization Original value retained Original value retained

Hot reset Initialization Original value retained Original value retained

Cold reset Initialization Original value retained Initialization
Initial value reset Initialization Initialization Initialization
Program
download Initialization Original value retained Initialization

Online
modification

Original value
retained

Original value retained Original value retained

Programming Basics

‑372‑

Note
● Both RETAIN and PERSISTENT RETAIN are retain variables, but their retain characteristics are different.
● The direct variables mapped to the %M address can be declared as persistent variables, whereas the direct

variables mapped to %I and %Q cannot be declared as persistent variables.

5.5.3 Persistent Variable Table

If a persistent variable is defined in the project, a persistent variable table must be generated;
otherwise, the defined variable does not have the persistent function. The persistent variable table can
be generated in the following two ways:

● Manually add: Right-click "Application". In the shortcut menu displayed, choose "Add Object" >
"Persistent Variables" to add a persistent variable table.

● Automatically add: When a persistent variable is declared, the persistent variable table will be
created automatically during compilation.

The persistent variable table has two modes: legacy mode and standard mode (recommended). The
legacy mode is the old mode, and the specific use remains unchanged from the original. The persistent
variable table in standard mode is shown below:

The following table lists options in the toolbar.

Programming Basics

‑373‑

Option Function Description

Refresh

Add persistent variables of an external project to
the persistent variable table and assign addresses
to persistent variables that have not been assigned
with addresses.

Refresh variable recipe data structures.

Detect address legitimacy of all persistent
variables.

-

Saved Areas
Enable mode switching and standard mode storage
area address range settings.

For area address range settings, see “
Address area setting” on page 377

Reset Values
Clear the data in the device memory for persistent
variables in the online state.

-

Repair Conflict
Address

Reallocate addresses for persistent variables with
conflict addresses.

-

The following describes relevant list items:

Item Function Attribute
Name Display the source and variable name of the persistent variable. Not editable

Address Display the address of the persistent variable. Editable
Type Display the type of the persistent variable. Not editable

Initialization

Display the initial value of the persistent variable upon declaration.

In the "Initialization" column, when the menu command "current value
-> initial value" is executed, the online value of the persistent variable is
written to the "Initialization" column and synchronized to the
persistent variable declaration in the project.

Not editable

Comment Display the comments of the persistent variable. Not editable

Recipe
Display and save the recipe value of the persistent variable.

Added as required.
Editable

5.5.4 Persistent Rules

These rules are supported in the firmware of AC700/AC800 1.26.14.0 and later versions, and firmware of AM400/
AM600 1.40.8.0 and later versions.

The rules for the variable value when the attribute related to the persistent variables is changed are as
follows:

● The value of the persistent variable will be initialized to the initial value when the variable name is
changed.

● The original value of the persistent variable will be retained when the variable address, initial value,
comment, variable type, and attributes are changed.

● Variable type changes include changes to the variable type name, variable type member, and
variable type member type.

Programming Basics

‑374‑

■ The value of the persistent variable will be initialized to the initial value when the type name of
the persistent variable is changed.

Note
If you modify the type name of the FB function block without changing the FB function block member name, type,
and instance object name, the original value of the FB member variable will be retained.

■ When the type name of the persistent variable is not changed but its type member is changed:

—— Structure/function block: The original values of the unchanged members will be retained,
and the values of the changed members will be initialized to their initial values.

—— Union/enumeration: The value will be initialized to its initial value when its type size
decreases.

—— Array: The values of array variables will be initialized to their initial values when their base
type is changed (when the base type of an array type variable is a structure and only
structure members are added or deleted, the original values of unchanged structure
members will be retained); when the base type of an array type variable is unchanged, the
original values of the elements with the same index will be retained.

● When the copy data caused by the persistent variable exceeds 200000 lines of code, it will cause the
value of the copied persistent variable to be initialized to the initial value.

5.5.5 Persistent Mode

Mode comparison

To maintain the compatibility of the project with the software version, the old editing mode of the
persistent variable, that is, legacy mode, is retained in the project.

When an old project that contains "persistent variables" is opened, the system can still display and edit
the project according to the legacy mode; if the original project does not have "persistent variables",
the newly created persistent variables will follow the "standard mode".

At present, the persistent variables support standard mode and legacy mode (old mode), and the
differences between the two are shown in the table below:

Option Standard Mode Legacy Mode (Old Mode)

Data source

All from variables with "Persistent Retain"
attribute outside the persistent variable
table or assigned to the M-area persistent
area.

Variables and variables with "Persistent
Retain" attribute outside the table are
defined inside the persistent variable table.

Address mapping
All variables need to be strongly correlated
to the persistent area of the M area.

The variables do not need to be strongly
correlated to the persistent area.

Intermediate insertion
or deletion of variables

Variables are mapped by address, so
insertion or deletion of a variable has no
effect on the saved values of other
variables.

Accidental operations may cause data loss
(such as clearing all data, PLC device
update, and compilation option
modification).

Recipe function The recipe function is built-in. Only external recipe function can be used.

Programming Basics

‑375‑

Note
In the simulation mode, if the persistent variables are in the standard mode, the variable value will be initialized
after the "cold reset" command is executed.

Switch from legacy mode to standard mode

On the "Persistent Areas" tab page in the toolbar, you can switch the mode for persistent variables.
The following figure shows a mode switching page.

When the mode is changed from "Legacy Mode" to "Standard Mode", user-defined persistent variables
in the legacy mode will be saved to the newly generated GVL program. When you compile the program
again or click "Refresh", the system adds the persistent variables in GVL to the data table of the
standard mode and assigns addresses for the variables.

Note
If the mode is switched to "Legacy Mode" again, the original data remains unchanged. However, the newly gener-
ated GVL program is not deleted. Therefore, when the mode is switched to "Legacy Mode" again, you need to delete
the newly generated GVL program manually.

Mode compatibility

For the persistent modes, the compatibility of the PLC firmware and project versions is as follows:

1. If the PLC supports persistent mode switching, after the project is downloaded, the persistent mode
of the PLC is automatically changed to that set in the project.

Note
If the project version does not match the PLC mode, the PLC automatically switches the persistent mode when the
project is downloaded for the first time, which may result in undesired data.

The following table lists PLC firmware versions supporting the persistent mode.

Programming Basics

‑376‑

PLC Model Version Restriction
AM600 1.24.20.0 (included) and later versions

AM401 21.24.20.0 (included) and later versions

AM402 41.24.20.0 (included) and later versions

AM403 81.24.20.0 (included) and later versions

AP700 1.13.30.0 (included) and later versions

AC810/AC801/AC802 1.13.30.0 (included) and later versions

2. If the PLC does not support persistent mode switching, you need to upgrade the PLC firmware or
switch the project persistent mode to the legacy mode.
Jump to the mode switching page: Enter the persistent variable table and open the mode switching
page.

5.5.6 Address Assignment

If a persistent variable is defined in the user program but is not assigned with an address, the system
will automatically assign an address to the variable by clicking "Compile" in the toolbar or "Refresh"
on the persistent page in the standard mode.

Considering the user's Modbus address usage range, the initial address assignment will avoid its
regular usage area (%MB0 to %MB131071) and start from %MB131072. Only when the end address is
used up or no more address can be assigned to the variable, then the address will be assigned from
the %MB0 to %MB131071 range from the start.

For example, the maximum address available is %MB50000, and you want to assign an address for Var,
a Real type variable:

Since the space size of Real type variable is 4 bytes, the start address is calculated as follows. First
select the address "%MB131072" as the start address from the range of "%MB131072 to %MB50000",
and then detect the conflict with the existing assigned addresses. If an address conflict occurs, the
address is discarded, the address is recalculated from the next available address, and the test is
performed again until no address conflict occurs. If a complete area cannot be found in the range "%
MB131072 to %MB50000" to save the variable, then start searching in the range of "%MB0 to %
MB1310721" and select "%MB0" as the start address. Perform address conflict detection in the same
way, until the legitimate address is found.

For address assignment of variables, there are several data types that need to satisfy the four-byte
alignment principle, which means that the initial address of the variable is divisible by four. Variable
types include:

● User-defined data structures.
● Enumeration type.
● Real or LReal type.

Programming Basics

‑377‑

● Array types where the base type data is an array of the above three types.

Address area setting

The address assignment area is the M area of PLC, and the specific address range can be viewed and
set through the "Persistent Areas" option in the toolbar, as shown in the following figure.

Address duplication check

In the standard mode, to ensure the correctness of the data saving of persistent variables, in principle,
each variable should correspond to a unique M-area address. By default, the system will perform
address duplication check for all persistent variables. When two or more variables have conflict
addresses, an error will be indicated in the output window.

If you want duplicated variable addresses, on the "Persistent Areas" tab page in the toolbar, deselect
"address duplication detection", as shown in the following figure.

Programming Basics

‑378‑

Repair conflict addresses

When the persistent variable addresses are conflicting, you can manually modify the variable
addresses. Besides, you can also repair address conflict on the "Conflict Address Repair" tab page of
the toolbar.

The table in the preceding figure displays all variables with conflict addresses. Columns of the table
indicate the variable name, address, type, address range, and suggested address, respectively.

The suggested address is an address repair function for a single variable. To repair all addresses, you
can click "Repair All".

Delete variable addresses in batch

When you need to adjust the persistent area range or want to reassign all variable addresses because
there are too many conflict addresses, you can click "Clear All Variables Address" in the shortcut menu
to clear all variable addresses, and then assign addresses for all variables again through compilation.

Note
When the persistent variable data has been downloaded to the PLC, modification of the address of a persistent vari-
able that already exists in the PLC, either manually or through an operation such as address repair, can result in the
data saved at its original address not being used. Also, if data exists at the newly assigned address, that data will be
applied to the newly associated variable, and unforeseen problems may occur. To ensure the validity of subsequent
data, the initial value must be initialized.

Addresses needing adjustment are as follows:

● Array size change

The array variable "dataArray" has an initial range of 1 to 100 and is assigned the address %
MB131072. The bool type variable "data" is assigned the address %MX131272.0. The addresses of
the two variables are consecutive. When the range of the "dataArray" variable is adjusted to 1 to
200 because of practical needs, the start address is not changed.

Programming Basics

‑379‑

At this time, the address range of the "dataArray" variable is %MB131072 to %MB131471, which is
duplicated with the address %MX131272 of the data variable.

● Data structure member change
Define the data structure variable "dataDUT", where the data structure of DUT is shown below:

Initially, the DUT contains three members with a start address of %MB131072. When subsequent
program adjustments are made and two member variables are added to the DUT data members,
the variable "dataDUT" actually takes up more space and conflicts with the address of the
subsequent dataBool variable.

5.5.7 Recipe Operations

Recipes can hold data for a set of variables and write values as persistent variables.

In the persistent standard mode, you can right-click a recipe entry in the persistent variable table to
perform operations such as "Add persistent data", "Delete persistent data", "Current Value ->
persistent data", "Persistent data -> current value", "Export the persistent data", and "Import the
persistent data".

Add a recipe

In the persistent variable table, select "Add persistent data" from the short-cut menu.

Programming Basics

‑380‑

● Function: This operation is used to add a new recipe column next to the last column of the
persistent variable table. In the "New Persistent Data" dialog box displayed, set a name for the new
recipe column or copy an existing name.

● Enabling condition: Persistent variable tables in the standard mode are available.
● Note: When you add a recipe for the first time, click "Refresh" first; otherwise, a dialog box is

displayed, prompting you to refresh the data.

Delete a recipe

In the persistent variable table, right-click a recipe and select "Delete persistent data" from the
shortcut menu displayed.

● Function: This operation is used to delete the selected recipe.
● Enabling condition: Persistent variable tables in the standard mode are available and a recipe is

selected.

Programming Basics

‑381‑

Current value -> persistent data

In the persistent variable table, right-click a recipe and select "Current value -> persistent data" from
the shortcut menu displayed.

● Function: This operation is used to save the online value of the persistent variable to the selected
recipe.

● Enabling condition: The project is logged in, persistent variable tables in the standard mode are
available, and a recipe is selected.

● Note: The data structure in the initial value column must be consistent with that in the recipe
column; otherwise, a dialog box is displayed, prompting you to refresh the data.

Persistent data -> current value

In the persistent variable table, right-click a recipe and select "Persistent data -> current value" from
the shortcut menu displayed.

Programming Basics

‑382‑

● Function: This operation is used to write the recipe value of the persistent variable in the selected
recipe to the online value column.

● Enabling condition: The project is logged in, persistent variable tables in the standard mode are
available, and a recipe is selected.

● Note: The data structure in the initial value column must be consistent with that in the recipe
column; otherwise, a dialog box is displayed, prompting you to refresh the data.

Export the persistent data

In the persistent variable table, right-click a recipe and select "Export the persistent data" from the
shortcut menu displayed.

Programming Basics

‑383‑

● Function: This operation is used to export the value of the selected recipe to a new file with the
suffix ".txtrecipe", and save this file to the specified position.

● Enabling condition: Persistent variable tables in the standard mode are available, and a recipe is
selected.

Import the persistent data

In the persistent variable table, right-click a recipe and select "Import the persistent data" from the
shortcut menu displayed.

Programming Basics

‑384‑

● Function: This operation is used to import the recipe value in the selected file (with the suffix ".
txtrecipe") at the specified position to the column of the selected recipe.

● Enabling condition: Persistent variable tables in the standard mode are available, and a recipe is
selected.

● Note: Variables in the recipe to be imported must be in the persistent variable table; otherwise, a
mismatch prompt is displayed.

5.5.8 Description

Standard mode

In the standard mode, when the variable structure changes and the variable start address is %
MB131072 (Modbus common address range is %MB0 to %MB131071), the system will save the existing
data of the original persistent variable and initialize new variables. Example:

Define the data structure persistent variable "dtData" as follows.

The data structure of the variable "dtData" is shown below.

After downloading the project to the PLC, the system stores the data of the variable "dtData" upon
power-down.

When a new BOOL type variable "perData3" is added to "DUTData" and the latest program is
downloaded for the first time, the data of this structure variable is changed, as shown below.

Variable address change

When the address of the persistent variable changes, the system copies the data from the original
address to the new address without affecting the persistent variable data change.

Programming Basics

‑385‑

FB persistent variable

FB-type variables do not support persistent characteristics, but FB child member variables can have
persistent characteristics.

In the following function block "FBData", sub-member variables "fbData", "fbData1", and "fbData2"
can have the "PERSISTENT RETAIN" characteristic. However, the FBData-type variable "fbVar" does not
support the "PERSISTENT RETAIN" characteristic.

Programming Languages

‑386‑

6 Programming Languages

6.1 Programming Languages Supported by InoProShop

The programming software supports the following PLC programming languages:

· Ladder diagram (LD)

· Function block diagram (FBD)

· Structured text (ST)

· Sequential function chart (SFC)

· Continuous function chart (CFC)

The LD, FBD, ST, and SFC are based on the IEC 61131-3 standard, and CFC is an expansion of the IEC
61131-3 standard.

The basic edit methods on the programming page are applicable regardless of the selected language,
which greatly facilitates programming.

● Functions of the standard editor are supported, such as the copy (Ctrl+C), paste (Ctrl+V), and delete
(Del) shortcut keys.

● The standard Ctrl and Shift keys can be used to select multiple options.
● The function key F2 can be used to start the input assistant. The system provides input tips or

options based on the specific environment.

6.2 Structured Text (ST)

6.2.1 Overview

The ST is a text-based advanced language and similar to PASCAL or C. The program code consists of
instructions comprising keywords and expressions. Different from the IL, the ST can include multiple
statements during a statement cycle, allowing for complex structure development.

Example:

IF value < 7 THEN

WHILE value < 8 DO

value := value +1;

END_WHILE;

END_IF;

6.2.2 Expressions

An expression is a type of structure. Its calculated value can be used in instructions.

Programming Languages

‑387‑

An expression consists of operators and operands. An operand can be a constant, a variable, a function
call, or other expressions. Example:

● Constant, such as 20, t#20s, and 'string'
● Variable, such as iVar and Var1[2,3]
● Function call, whose value is the return value of a call, such as Fun1(1,2,4)
● Other expressions: such as 10+3, var1 OR var2, (x+y)/z, and iVar1:=iVar2+22

In an expression, operands are evaluated using operators in sequence defined by a particular operator
priority. In an expression, operands are evaluated using operators in sequence defined by a particular
operator priority. Operators with top priority must be first used for evaluation. Other operators with
lower priority are used by priority in descending order. Operators with the same priority must be used
in order from left to right in the expression.

For example, if A, B, C, and D are INT variables and are set to 1, 2, 3, and 4, respectively, A+B-C*ABS(D)
must be –9 and (A+B-C)*ABS(D) must be 0.

When an operator has two operands, the leftmost operand must be evaluated first. For example, in SIN
(A)*COS(B), SIN(A) must be evaluated first, then COS(B), and finally the product of the overall
expression.

The following table lists the operators of the ST language.

Operation Symbol Priority

Parentheses (Expression)

High

↓

Low

In descending order

Function call
Function name (parameter list,
separated by commas)

Exponentiation EXPT
Negation value calculation

Complementing

-

NOT

Multiply

Divide

Modulo

*

/

MOD
Plus

Minus

+

-
Compare <, >, <=, >=

Equal to

Not equal

=

<>
AND AND
XOR XOR
OR OR

6.2.3 ST Instruction

The overall ST program consists of instructions separated by semicolons (;). The instructions consist of
keywords and expressions. The following table lists the ST instructions.

Programming Languages

‑388‑

Instruction Description Example

:=,S=,R= Assign value, set, and reset A:=B; C S= cond0; b1 R=cond1;

Function block call Function block call and output
CMD_TMR :TON (CMD_TMR.Q is the timer output
state)

CMD_TMR(IN := %IX5, PT := 300); A:=CMD_TMR.Q

RETURN Return (exit the current POU) RETURN;

IF Select

D:=B*B;

IF D<0.0 THEN

C:=A;

ELSIF D=0.0 THEN

C:=B;

ELSE

C:=D;

END_IF;

CASE Multiple selection

CASE INT1 OF

1: BOOL1 := TRUE;

2: BOOL2 := TRUE;

ELSE

BOOL1 := FALSE;

BOOL2 := FALSE;

END_CASE;

FOR FOR loop

J:=101;

FOR I:=1 TO 100 BY 2 DO

IF ARR[I] = 70 THEN

J:=I;

EXIT;

END_IF;

END_FOR;

WHILE WHILE loop

J:=1;

WHILE J<= 100 AND ARR[J] <> 70 DO

J:=J+2;

END_WHILE;

REPEAT REPEAT loop

J:=-1;

REPEAT

J:=J+2;

UNTIL J= 101 OR ARR[J] = 70

END_REPEAT;

EXIT EXIT loop EXIT;

CONTINUE
Continue the next execution
loop

CONTINUE;

JMP Jump
label: i:=i+1;

JMP label;
; Empty statement ;

Programming Languages

‑389‑

Valuation

A valuation instruction assigns values to variables. In a valuation keyword, the left part is a variable
and the right part is the value to be assigned by the keyword. Three types of keywords are provided: ":
=", "S=", and "R=".

● ":=" indicates general valuation, in which the right-side value is directly assigned to the left-side
value and the two values are equal.
Example: Var1 := Var2 * 10;

After execution, the value of Var1 is 10 times that of Var2.

● "S=" indicates set valuation, in which the left-side variable is changed to "TRUE" (set) if the right-
side value is "TRUE", until it is initialized using the R= instruction.

● "R=" indicates reset valuation, in which the left-side variable is changed to "FALSE" (reset) if the
right-side value is "TRUE". It is used to reset the variables set by the S= instruction.
Example: a S= b;

Once the value of b changes to "TRUE", the value of a remains "TRUE", even after the value of b
changes to "FALSE".

Function block calls

Syntax: <FB instance name>(FB input variable:=<value and address>|, <more FB input variables:
=<value and address>|...more FB input variables);

Call syntax: A delay function block (TON) is called, and the IN and PT parameters are assigned. The
result variable Q is assigned to variable A.

Note: TON is instantiated through "TMR:TON".

Instantiation syntax: <FB instance name> :<FB variable >;

TMR(IN := %IX5, PT:= T#300MS, Q=> q1, ET=>et1);

A:=TMR.Q;

RETURN

The RETURN instruction indicates exiting the POU when the predefined condition is "TRUE".

Syntax:

RETURN;

Example

IF b=TRUE THEN

RETURN;

END_IF;

a:=a+1;

If b is "TRUE", the statement "a:=a+1;" will not be executed, and POU will be immediately returned.

Programming Languages

‑390‑

IF

The IF keyword is used to determine the condition for executing instructions.

Syntax:

IF <boolean expression1> THEN

<IF_instruction>

{ELSIF <boolean expression2> THEN

<ELSIF_instruction1>

ELSIF <boolean expression n> THEN

<ELSIF_instruction-1>

ELSE

<ELSE_instruction}

END_IF;

The content inside {} is optional.

If <boolean expression 1> is "TRUE", only <IF_instruction> is executed whereas other instructions are
not; otherwise, the boolean condition expressions starting from <boolean expression 2> are calculated
one by one until the value of an expression is "TRUE". Then, the instructions of the expression are
executed. If no expression has the value "TRUE", the instruction corresponding to <ELSE_instruction>
is executed.

Example

IF temp<17

THEN heating_on := TRUE;

ELSE heating_on := FALSE;

END_IF;

Here, heating starts when the temperature is below 17°C; otherwise, heating remains disabled.

CASE

The CASE instruction lists and processes the instructions corresponding to the multiple values of a
conditional variable. Conditional variables must be integers.

Syntax:

CASE <Var1> OF

<value1>: <Instruction 1>

<value2>: <Instruction 2>

<value3, value4, value5>: <Instruction 3>

<value6 .. value10>: <Instruction4>

Programming Languages

‑391‑

...

<value n>: <Instruction n>

ELSE <ELSE Instruction>

END_CASE;

The CASE instruction implements the following processing:

● If the value of the <Var1> variable is <valueI>, <Instruction I> is executed.
● If no value matches with <Var1>, <ELSE Instruction> is executed.
● If the same instruction is executed in multiple variable values, you can write the values one by one

and separate them with commas (,) so that they are executed simultaneously.
● If the same instruction is executed within a variable range, you can write the start and end values

and separate them with two periods (.).

Example

FOR loop

The FOR loop can be used to compile the iterative processing logic.

Syntax:

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>} DO

<instructions>

END_FOR;

The content inside {} is optional.

INT_Var is a counter of the integer type. <Instructions> is executed as long as <INT_Var> is not greater
than <END_VALUE>. Check the condition before executing <Instructions>. <Instructions> is not
executed if <INIT_VALUE> is greater than <END_VALUE>.

<INT_Var> automatically increases by <Step size> each time after <Instructions> is executed. <Step
size> can be any integer. The default value 1 applies if this parameter is not set. Loop stops when
<INT_Var> is greater than <END_VALUE>.

Example

FOR Counter:=1 TO 5 BY 1 DO

Var1:=Var1*2;

END_FOR;

Erg:=Var1;

Assume that the default value of Var1 is 2. The value changes to 32 after FOR loop.

Programming Languages

‑392‑

WHILE loop

Like the FOR loop, the WHILE loop can be used by loop processing. Different from the FOR loop, the
WHILE loop supports loop conditions of arbitrary boolean expressions. The loop is executed once the
loop condition is met; otherwise, it is exited.

Syntax:

WHILE <boolean expression> DO

<instructions>

END_WHILE;

When <Boolean_expression> is "TRUE", <Instructions> is executed, until <Boolean_expression>
changes to "FALSE". <Instructions> is never executed if the initial value of <Boolean_expression> is
"FALSE". If <Boolean_expression> is always "TRUE", <Instructions> is executed without stop. This
results in infinite loop, which is not allowed during programming.

Example:

WHILE Counter<>0 DO

Var1:= Var1*2;

Counter := Counter-1;

END_WHILE

In a sense, the WHILE loop and REPEAT loop functions are more powerful than the FOR loop function
because cycle times do not need to be counted before loop execution. Therefore, only the WHILE loop
and REPEAT loop are required in some cases. However, if the cycle times is clear, the FOR loop is
better.

REPEAT loop

Different from the WHILE loop, the REPEAT loop checks the loop condition after the loop instruction is
executed. This means the loop is executed at least once, regardless of the loop condition.

Syntax:

REPEAT

<instructions>

UNTIL <Boolean expression>

END_REPEAT;

The execution logic is as follows:

<Instructions> is executed until <Boolean expression> is "TRUE". <Instructions> is executed only once if
the initial value of <Boolean expression> is "TRUE". If the value of <Boolean_ expression> is always
"FALSE", <Instructions> is executed permanently, resulting in infinite loop.

Example:

REPEAT

Var1:=Var1*2;

Programming Languages

‑393‑

Counter:=Counter-1;

UNTIL Counter=0;

END_REPEAT;

CONTINUE

The CONTINUE instruction is used to end a FOR, WHILE, or REPEAT loop in advance and start the next
loop.

Example:

FOR Counter:=1 TO 5 BY DO

INT1:=INT1/2;

IF INT1=0 THEN

CONTINUE;

END_IF

Var:=Var1/UBT1L

END_FOR;

Erg:=Var1;

EXIT

The EXIT instruction is used to exit the FOR, WHILE, or REPEAT loop.

JMP

The JMP instruction is used to jump to the code line marked by the specified label.

Syntax:

<label>:

JMP <label>;

<label> is at the start of the program line. The JMP instruction requires a jump target, that is, a
predefined label. When the JMP instruction is reached, the program jumps to the code line marked by
the specified label for execution.

Example:

aaa :=0;

_label11:aaa:=aaa+1;

(*instructions*)

IF (aaa < 10) THEN

JMP _label1;

END_IF;

Programming Languages

‑394‑

The initial value of the variable "aaa" is 0. As long as the value is less than 10, the program jumps to the
code line marked by label 1 for execution. This affects the repeated execution of the program between
the JMP instruction and label.

Such a function can also be implemented by the WHILE or REPEAT loop. Be cautious when using the
JMP instruction because it reduces code readability.

Comment

Structured text can be commented in two ways:

● Single-line comment: Start with "//" and end with "//", for example, "// This is a comment.".
● Multi-line comment: Start with "(*" and end with "*)", for example, "(*This is a comment.*)".

Comments can be added to the ST editor declaration or any part in implementation.

Comment nesting: A comment can be inserted into another comment.

Example:

(*

a:=inst.out; (*to be checked*)

b:=b+1;

*)

6.2.4 ST Editor

6.2.4.1 ST Tool Kit

The following figure shows the "ToolBox" page.

This page provides functions such as ST statement, logic operation, timer, counter, math function,
data process, data conversion, and data shiftment. You can drag an ST, IF, FOR, WHILE, REPEATED,

Programming Languages

‑395‑

CASE, CONTINUE, JMP, EXIT, or RETURN statement and drop it in the programming area, and then the
statement template is automatically inserted.

6.2.4.2 Intelligent Input

● Keyword matching
After you input ST statement keywords, then IF, WHILE, FOR, CASE, and REPEATED statements
containing the keywords are automatically matched. For the formatting template, see appendix
statement template.

As shown in the figure below, after entering IF, statements containing "if" are displayed.

● Shortcut functions of the Tab key

■ Automatically format input and output for function blocks, functions, methods, actions, and
programs.

■ Automatically format input and output for function block instances and their methods and
actions.

■ Automatically format IF, WHILE, FOR, CASE, and REPEATED statements as well as the input
function type names and function block instances. For the formatting template, see appendix
statement template.

Note
Format requirements: When an input is made with the Tab key, the part from the beginning of the line to the cursor
position is used as a keyword as a whole. If no statement matches with the keyword, it will not be automatically
complemented.

6.2.4.3 Folding and Indenting Functions

● Folding can be performed with keywords such as VAR, VAR_INPUT, VAR_GLOBAL, VAR_OUTPUT,
VAR_IN_OUT, VAR_TEMP, VAR_STAT, VAR_ESTERNAL, CASE, FOR, REPEATED, IF/ELSE/ELSIF, WHILE,
STRUCT, UNION, TYPE, __TRY, __CATCH, and __FINALLY.

● If "Smart indent" is selected for "Auto indent", the Tab length increases automatically based on the
keyword. If "Smart indent with code completion" is selected for "Auto indent", an end such as VAR,
FOR, and WHILE is automatically added to the keywords. Keywords can be nested.

● In case of "Smart indent", if the upper line is a keyword, the Tab character is automatically added
after a line break, and if the upper line is not a keyword, the next line is indented the same as the
upper line.

● The block is highlighted. Block highlighting information is displayed between categories such as
brackets, parentheses, WHILE, FOR, IF, ElSE, CASE, REPEAT, STRUCT, UNION, TYPE, and TRY, with
highlighting markers at text boundaries and in text areas.

Programming Languages

‑396‑

6.2.4.4 Page Colors of IEC Text Editor

Each color on the ST page indicates a template. You can set the color through the template or choose
"Tools" > "Options" > "IEC Text editor" > "Theme" to set the color. The color configurations include
basic configuration, IEC61131 type and identifier configuration, online configuration, and font style
configuration.

You can make configuration as needed. The following table lists relevant parameters.

Programming Languages

‑397‑

Type Description

Basic configuration

Mainly set the basic color of the page, mainly containing:

Background color

Foreground color (default text color)

Line highlight color

Text block highlight color

Symbol highlight color

Cursor color

Background color of the selected text in focus state

Background color of the selected text in non-focus state

Default border text color

Border background color

Border expansion background

Border line highlight color

Focus state split line

Non-focus state split line

Folding state color

Incremental search color

Programming Languages

‑398‑

Type Description

IEC61131 types and
identifiers

Mainly set the data type and identifier color, including

BOOL type constants

Time type constants

Integer type constants

Floating point type constants

String type constants

Comment type

Attribute type

Direct Addresses

Global variables

Static variables

Input variables

Output variables

Input/output variables

Constants

Temporary variables

Persistent variables

Retain variables

External variables

Configuration variables

FB

Methods

Actions

Functions

Structures

Enumeration types

Enumerated values

Unions

Interfaces

Operators

Keywords

Errors

Online configuration
Monitoring box background and text

Streaming monitoring box background and text

Font styles Data type and identifier font format, such as bold and underline

Persistent, retain, and constant types and variables are modifier relationships, and only one of the two
can be selected. The priority relationship is as follows: global variables, input, output, input/output
persistent (retain) local, temporary constants static variables, configuration variables, external
variables, and enumerated variables support color settings. Since persistent and constant are
attributes and are juxtaposed with variable types, they need to be displayed in priority control.

Programming Languages

‑399‑

6.3 Ladder Diagram (LD)

6.3.1 Overview

LD is a graphical programming language. Its structure is similar to that of the circuit diagram. LD
contains a series of networks (also called nodes), and each network starts from the vertical line on the
left (the power rail and power flow line). A network consists of contacts, coils, operation blocks
(functions, function blocks, programs, execution blocks, actions, and methods), jump instructions,
labels, and connection lines.

The bus on the left of the network is the power flow line and is always "TRUE". Contacts, operation
blocks, and coils are connected after the bus. Each contact is allocated with a boolean variable. If the
variable is set to "TRUE", the switch is turned on and the condition is transferred along the connection
line from left to right. If the variable is not "TRUE", the switch is turned off. The coil on the right of the
network receives the "On" or "Off" signal transmitted from the left side. "TRUE" or "FALSE" is written to
the boolean variable associated with the coil. The following figure shows the LD edit page.

Note
● ① - variable definition area; ② - LD programming area; ③ - toolbox
● LD supports EXECUTE block nesting used to insert the ST snippet.

Programming Languages

‑400‑

LD mainly includes contacts, coils, operation blocks, branches, and comments. These elements are
inserted, dragged, scribed, and copied and pasted to networks to form the LD execution logic. To set
the page font, operands, and comment display of the LD, choose "Tools" > "Options" > "FBD/LD
editor".

LD provides online commissioning functions such as monitoring, written values, force values, and
breakpoints.

6.3.2 LD Elements

LD elements include network, contact, coil, operation block, execution block, branch, jump, label, and
return.

The input and output of contacts, coils, and operation blocks are related to operands, which can be
variables, constants ("TRUE" or "FALSE"; 1 or 2), and addresses. For details, see the variable definition.

LD elements are displayed under "ToolBox" (choose "View" > "ToolBox"), as shown in the following
figure. The toolbox includes general elements, LD elements, IEC standard operators (such as boolean
operators and math operator), function blocks, and POU defined in the current program.

Programming Languages

‑401‑

Figure 6-1 LD toolbox

Programming Languages

‑402‑

Network

Icon -

The LD consists of a series of networks. All the other LD elements are within networks. Each network is
indicated by a serial number on the left.

You can insert a network title (summary about the network) and comment (detailed description about
the network). Choose "Tools" > "Options" > "FBD/LD editor" > "General" to show or hide the network
title and comment.

You can insert a label below the network title and comment to indicate the jump target.

Use the menu command "Toggle network comment state" to enable or disable the network.

The network decoration area between the network serial number and network content displays the
breakpoint mark and bookmark position.

Contact

Icon -

Contacts are classified into normally open (NO) and normally closed (NC) contacts. Contacts are
boolean variables and used to transfer "ON (TRUE)" and "OFF (FALSE)" values. If the variable value is
"TRUE", the NO contact transfers "ON (TRUE)" to the right; otherwise, it transfers "OFF (FALSE)". The
NC contact transfers reverse values.

You can add the edge signal function to contacts. Right-click a contact and select "Edge Detection"
from the shortcut menu to change the contact to a rising-edge trigger contact or a falling-edge trigger
contact. The rising-edge trigger contact transfers "ON" to the right when the variable value of the
contact changes from "FALSE" to "TRUE". The falling-edge trigger contact transfers "ON" to the right
when the variable value of the contact changes from "TRUE" to "FALSE".

Coil

Icon -

Coils are located at the end of the network. The logical operation results on the left are assigned to coil
variables. Coil variables are only of the BOOL type. "TRUE" indicates "ON" and "FALSE" indicates
"OFF". Parallel coils can only be inserted upward or downward.

Coils are classified into coils, negated coils, set coils, and reset coils. You can switch between the four
coil types by using the right-click menu command or shortcut.

● Coil: Assigns the logical operation results on the left to coil variables directly.

Programming Languages

‑403‑

● Negated coil: Negates the logical operation results on the left and assigns the values to coil
variables.

● Set coil: Sets the value of the coil variable to "ON (TRUE)" if the left-side state value of the coil is
"ON (TRUE)", and keeps the value until the variable is reset to "OFF (FALSE)" by the reset coil.

● Reset coil: Resets the set coil.

Operation block

Icon -

An operation block can be an operator, function, function block, program, action, or method. If the
operation block is of the function block type, a text box is displayed above the operation block box to
display the function block instance.

An operation block includes at least one input and one output. The following figure shows the
components of an operation block.

Operation blocks are classified into common operation blocks and EN/ENO operation blocks.

● EN/ENO operation block: Contains EN input and ENO output, in addition to the input and output
provided by an operation block. The execution logic of the EN/ENO operation block is as follows:
The operation block logic is executed when EN is "TRUE". ENO is "TRUE" after execution. The
operation block is not executed if EN is "FALSE". In this case, ENO is "FALSE". Note that the input
line of the EN/ENO operation bock can only be connected to the EN pin, and the output line can
only be connected to the ENO pin.

● Input and output pins of the operation block: The negation, rising edge, and falling edge signals can
be added to the input pin of the BOOL type. The negation signal can be added to the output pin of
the operation block.

● Multi-input line operation block: The operation block contains multiple inputs that are connected
to the power flow line. The following figure shows an operation block with two input lines. As a
multi-input line operation block provides multiple lines connected to the power flow line, it is only
located in the first branch and cannot be connected to branches in parallel.

Figure 6-2 Multi-input line operation block

Programming Languages

‑404‑

Execution block

Icon -

An execution block can be inserted into the embedded ST. ST statements can be edited within the
block. The execution block can be zoomed in or out. The maximum size is (1000 x 400).

Branch

Icon -

Branches form a non-closed parallel logic.

Label

Icon -

A label indicates a jump location and is at the head of the network. The system jumps to the label
position through jump elements. A jump label is a string and must comply with the naming
conventions.

Jump

Icon -

When the input on the left of a jump element is "TRUE", the system jumps to the specified label
position for execution. The jump element is on the rightmost of the network.

Return

Icon -

When the input on the left of the return element is "TRUE", the current program exits execution
immediately. The return element is on the rightmost of the network.

6.3.3 LD Editor Options

LD editor options are used to control the LD page display, single-key command setting, and print
display mode. Access the LD editor options by choosing "Tools" > "Options" > "FBD/LD editor". The LD
editor provides three tabs: "General", "LD", and "Print".

General

The following figure shows the "General" tab page.

Programming Languages

‑405‑

"General" tab page of the LD editor

View

● Show network title: If this option is selected, you can insert and edit the title of each network of the
LD. The inserted title is displayed above the current network. If no title exists, the title line is not
displayed. A title is inserted by using a menu command.

● Show network comment: If this option is selected, you can edit the comment of each network of
the LD. If a network comment is added, it is displayed below the network title. If no network
comment exists, the comment line is not displayed. A network comment is edited by using a menu
command.

● Show box icon: If this option is selected, the icon defined for the operation block is displayed in the
middle of the block. Icons are defined for standard operands (such as ADD and SUB) and function
blocks (such as TON and TOF). To add images as operation block icons to user-defined functions,
function blocks, or programs, right-click an object and choose "Properties" > "Bitmap", and then
click the area to select project-related bitmap.

● Show operand comment: If this option is selected, you can edit and display the comment of each
operand on the LD page. An operand is a programming concept. Variables, constants, and
addresses are operands. As the LD does not necessarily use variables, when constants or addresses
are used, you can describe them by using operand comments. When editing an operand comment,
select an operand string and right-click it.

● Show symbol comment: If this option is selected, the comments during variable declaration are
displayed for the variables on the LD page. Variable comments come from variable declaration and
cannot be edited.

Programming Languages

‑406‑

Font

Click the sample text. The editor font selection box is displayed, where you can set the font of the LD.
The default font is Microsoft YaHei and the default font size is 9. The font range mainly covers operands
and comments. The execution block font uses the text editor font (ST text and variable declaration
text).

Behaviour

● Placeholder for new operands: not implemented.
● Empty operands for function block pins: If this option is selected, the input and output pins of a

new operation block use empty characters. If this option is not selected, the input and output pins
of the operation block use "???".

Operand Fixed Size Settings

If this option is selected, you can set operand width, operand comment height, and symbol comment
height, as shown in the following figure.

Operand Fixed Size Settings

● Operand width: Sets the number of fixed characters of an operand. The default value is 15.
● Operand comment height: Sets the number of operand comment lines of fixed length. The default

value is 1.
● Symbol comment height: Sets the number of variable comment lines of fixed length. The default

value is 1.

LD option settings

The following figure shows the "LD" tab page.

Programming Languages

‑407‑

Single Key Settings

The single key settings function enables the edit operation through a single key, including single keys
executed on lines and those executed on elements. The single-key commands executed on lines insert
serial elements, whereas the single-key commands executed on elements insert parallel elements.

You can switch element functions when selecting elements, such as negation switching, edge signal
switching, and set/reset switching. Negation switching is applied to contacts and coils and uses the "/"
key. Edge signal switching is applied to contacts and uses space. Set/reset switching is applied to coils
and uses space.

You can set a single key for implementing a function. Each function has a default single-key character.
You can set keys as needed.

Note
The same key cannot be used repeatedly under "Commands on Line" or "Commands on Element", but "Commands
on Line" and "Commands on Element" may share the same key.

Print

The following figure shows the "Print" tab page.

Programming Languages

‑408‑

Layout options

Fit method:

● Poster: Print based on the normal proportion. If the current page is not high enough to display the
entire network, the next page is printed. If the page is wide enough to display the entire network,
the remaining part is printed on the next page.

● Shrink to fit the widest network: The displayed content is compressed during printing so that all the
networks are displayed within the width of the page. If a page is not high enough to display the
entire network, the remaining part of the network is displayed on the next page.

● Avoid cutting of elements: If this option is selected, when an element is displayed between two
pages, the element is placed on the next page for display. This option is available only when
"Poster" is selected for "Fit method".

● Mark connections on adjacent pages: If this option is selected, the connection between two pages is
marked. This option is available only when "Avoid cutting of elements" is selected.

6.3.4 Element Selection

Selection is the basis of the edit operation. You can select elements or lines, select one object at a time
or select multiple objects simultaneously by pressing Ctrl or Shift, and select consecutive or
nonconsecutive objects.

A selected element is highlighted. For example, a selected contact is displayed as . The external
dotted box indicates that the contact is focused. You can select an element and paste it to another
element in parallel mode, or drag and drop it to another element in serial or parallel mode. As multiple
selected elements may not be consecutive, you need to describe the result logic formed by the
selected elements. The selection result logic is intended to keep the original logic consistent. You can
select an element through box select, and select multiple or all elements by pressing Ctrl or Shift.

Programming Languages

‑409‑

Result logic formed by selected elements

● Single-element selection: When you select a contact or coil, only the selected contact or coil is
included. When you select an operation block, the operation block and its line-free input and
output operands are included. As shown in the following figure, when the ADD operation block is
selected, the ADD operation block, inputs a and b, and output c are pasted.

● Multi-element selection: Select the serial connection on a line (including nonconsecutive selection)
and select elements on a parallel line (including nonconsecutive selection) to form parallel results.

Parallel logic formation

● Multi-element selection: If the selected elements span multiple branches, the results also span
branches, and the original logic remains unchanged. If the selected elements span two branches,
the elements are connected serially.

The results span multiple branches if the selected elements come from more than two branches.

Programming Languages

‑410‑

If the selected elements come from two branches, the results of the two branches are connected serially.

● Multi-element selection: If you select the multi-input line operation block and the elements on
multiple input lines, the results are the same as the selected ones. If you only select the elements
on multiple input lines but do not select the operation block, the elements on the input lines are
connected in parallel to form results.

If you select the operation block and input elements, the results are the same as the selected ones.

If you only select input elements but do not select the operation block, a parallel logic is formed.

Box selection

The elements within the rectangle that starts from where the mouse is pressed and ends where the
mouse is released, are selected, as shown in the following figure.

Programming Languages

‑411‑

Note
Box selection is only applicable to single network selection. Selection starts from the blank area where the mouse is
pressed.

Multi-element selection through Ctrl and Shift

Multi-element selection through Ctrl and Shift complies with the standard multi-element selection
method.

● When you press Ctrl, if the current element is not selected, it is added to the selection list. If the
current element is already selected, it is removed from the selection list.

● Press Shift to select elements within the rectangle from the last selected element to the currently
selected element.

Select all

Press Ctrl+A to select all networks.

6.3.5 Standard Edit Commands

The LD supports standard and common edit operations, such as copy, paste, delete, cut, undo, and
restore. Standard edit shortcut keys are used.

Copy

It is used to copy the selected element. The copy result is the selected element. For details, see the
section about element selection.

The following elements of the LD can be copied: network, contact, coil, operation block, string, and
branch line.

The copied elements may be consecutive or not, depending on the selection. The elements to be
copied must be within a single network. If elements across networks are selected, only the data
selected in the focused network is copied.

Paste

It is used to paste the copied elements. The paste rules are as follows:

● Paste on line
When "Paste on line" is selected, the copied element is inserted in the line position to form a serial
relationship.

Programming Languages

‑412‑

● Paste on element
When "Paste on element" is selected, the elements selected in batch form a parallel relationship.
When a parallel relationship is formed, the selected elements must meet the parallel conditions for
the paste operation. That is, the selected elements must be on the same line and consecutive and
cannot span branches, and the start element and end element cannot connect to the branch
internally and externally in parallel.

● Paste at coil position
As no elements exist on the right of a coil, special paste rules must be observed. The rules for jump
elements and return elements are the same as those for coils. Coil is used as an example here.

1. If a coil is selected (parallel element connection is selected), the pasted elements are located in a
new branch below the coil, as shown in the following figure. Select Y5 to paste S0 and Y6. S0 and
Y6 are located in a new branch below the Y5 coil.

2. If a line before the coil is selected (serial line connection is selected), the copied content may
include only one branch or multiple branches, depending on the copied elements.

Only one branch in the copied content

1. If the copied content does not include the coil, the copied elements are connected to the coil
serially.

2. If the copied element includes the coil, the data before the copied coil is inserted at the line
selection position, and the copied coil and the coil after the selection line form a non-closed
parallel connection, as shown in the following figure. Select the connection line before Y5 to paste

Programming Languages

‑413‑

S0, Y6, and Y8. After pasting, S0 and Y6 before Y8 are serially connected to the line before Y5. Y8
and Y5 are connected in parallel through a branch.

Multiple branches in the copied content

1. If the last branch horizontal to the copied content does not include the coil, the copied content is
inserted at the line selection position.

2. If the last branch horizontal to the copied content includes a coil, connect this branch to the coil
after the connection line in parallel mode, and keep other data connected in serial or parallel
mode unchanged, as shown in the following figure. Paste the copied X1, Y0, and X2 to the
connection line before the Y1 coil. Y0 is located below the Y1 coil, and X1 is located on the
connection line before Y1.

● Paste multi-input line operation block
The multi-input line operation block is only located at the non-parallel position of the first branch,
that is, the paste position. If the multi-input line operation block is not included, the connection
elements of the copied operation block starting from the second input line are deleted, as shown in
the following figure. The X0 and X1 contacts of the copied operation block are copied, and X1 is
deleted when being pasted.

● Paste network
You can select one or more networks for the copy and paste operations. Selection is required in
advance.

Programming Languages

‑414‑

● Paste a single branch line
This function is used to add a single branch. It is the same as the function of inserting a branch
upward or downward. You can copy a single branch line and paste it at the branch output position.
The branch line is pasted below the selected branch, as shown in the following figure.

Delete

It is used to delete the selected element. After the current element is deleted, the next element is
selected to ensure operation continuity.

Both elements and lines can be deleted.

● Delete element: When this option is selected, the element is deleted.
● Delete line: When this option is selected, the line as well as its branch lines, vertical lines, and lines

connected to the vertical lines on the left are deleted.
Delete branch line: When this option is selected, after the blank branch line is deleted, this branch is
also deleted.

Delete lines connected to the vertical lines on the left: When this option is selected, the lines
connected to the vertical lines on the left are deleted, and the connection and branch are
disconnected.

Delete vertical line: In principle, after a vertical line is deleted, this line no longer exists. Three
results may occur: The branches are merged, the branch is disconnected, or the branch is moved
left.

1. Branch merging

If both the left and right parts of the selected vertical line are inside a branch, after the vertical
line is deleted, the branches on the two sides will be merged.

Programming Languages

‑415‑

Note that if a bridge circuit is generated after the vertical line is deleted, the upper and lower
branches on the right will be moved to the left and merged, and other branches on the right
will be moved down. As shown in the following figure, x1 and x3 are moved to the left and
merged, while x6 and x7 are moved up.

2. Branch disconnected

If the left part of the selected vertical line is inside a branch, there is a branch in the right
upper part but no in the right lower part, after the vertical line is deleted, the branch on the
left is disconnected.

Note
If a bridge circuit is generated after a vertical line is deleted, undo the deletion.

3. Branch moved to the left

If the right part of the selected vertical line is inside a branch, there is a branch in the left
upper part but no in the left lower part, after the vertical line is deleted, the branch on the
right is moved to the previous vertical line.

Programming Languages

‑416‑

Cut

It is used to copy, paste, and then delete the selected element.

Undo/Restore

Undo: It is used to return to the previous edit state and restore the previously selected element.

Restore: It is used to restore the next edit state and the next selected element.

6.3.6 LD Menu Commands

Menu commands include the shortcut menu commands and the LD commands in the LD toolbox.

Insert network

The "Insert Network" and "Insert Network (below)" menu commands are provided. You can drag a
network in the toolbox to insert a network.

Command execution condition: A network is selected and another network is inserted above or below
the selected network.

Insert Network: icon - ; shortcut key: Ctrl+I, which inserts an empty network above the selected
network.

Insert Network (below): icon - ; shortcut key: Ctrl+T, which inserts an empty network below the
selected network.

Toggle network comment state

Icon - ; Ctrl+O, which switches a network between the comment state and non-comment state.

In the comment state, the code of the entire network is invalid and not executed, and the execution
block cannot be edited.

Command execution condition: A network is selected.

Insert network header information

A network header mainly includes the network title, network comment, and label.

The commands for inserting a network header include "Insert Label", "Edit Network Title", and "Edit
Network Comment".

● Edit Network Title: icon - , which edits the title of the selected network.

Programming Languages

‑417‑

● Command execution condition: A network is selected and "Show network title" is selected.
● Edit Network Comment: icon - , which edits the comment of the selected network.
● Command execution condition: A network is selected and "Show network comment" is selected.
● Insert label: icon - , which inserts a jump label to the selected network to indicate the jump

position of a jump element.
● Command execution condition: A network is selected.

Insert operation block

The following five menu commands are provided: "Insert Box", "Insert Empty Box", "Insert Box with
EN/ENO", "Insert Empty Box with EN/ENO", and "Insert Box Parallel (below)". The commands are used
to insert operators, functions, function blocks, and programs. You can also drag and drop the
operation block or EN/ENO operation block from the toolbox to insert an operation block.

The first four commands are used to insert serial operation blocks, and the last command is used to
insert operation blocks parallel to selected elements.

Insertion position:

1. Select a horizontal line and insert an operation block on the horizontal line.
2. Select an element and insert an operation block to the left of the element.

● Insert Box: icon - ; Ctrl+B, which displays the input assistant for you to select the operation
block to be inserted.

● Insert Empty Box: icon - ; shortcut key: Ctrl+Shift+B, which inserts an empty operation block,
without using the input assistant. You can specify the operation block type in the corresponding
location.

● Insert Box with EN/ENO: icon - ; Ctrl+Shift+E, which displays the input assistant for you to
select the operation block to be inserted. The operation block provides EN/ENO input and
output. The operation block with EN/ENO is executed only when EN is "TRUE". It is not executed
when EN is "FALSE". ENO has the same result as EN.

● Insert Empty Box with EN/ENO: Inserts an empty operation block, without using the input
assistant. The operation block provides EN/ENO input and output.

● Insert Box Parallel (below): Inserts an empty operation block below the selected element. The
selected element can be a contact or operation block.

Insert execution block

Insert Execute Box: icon - , which inserts a serial execution block in the selected location. You can
also drag and drop an execution block from the toolbox.

Insertion position:

1. Select a horizontal line and insert an execution block on the horizontal line.
2. Select an element and insert an operation block to the left of the element.

An execution block can be used to edit ST statements. Click the text area for editing. The execution
block only provides EN/ENO input and output.

Drag to change execution block size: Drag the execution block frame in the editable state to control the
block size, as shown in the following figure.

Programming Languages

‑418‑

Insert input

Insert Input: icon - ; shortcut key: Ctrl+Q, which adds input to a variable-input operation block.

Variable-input operation blocks: ADD, +, MUL, *, SEL, AND, &, OR, |, XOR, MAX, MIN, and MUX.

Insertion position: When an input pin is selected, an input is added before the input pin. When an
operation block is selected, the added input pin is located at the end.

Insert coil

Three menu commands are provided: "Insert Coil", "Insert Set Coil", and "Insert Reset Coil". You can
also insert coils by dragging and dropping "Coil", "Set coil", and "Reset coil" from the toolbox.

● Command execution condition: The selected position cannot be located on the parallel branch or
at the input position of the multi-input line operation block.

● Insert Coil: icon - ; shortcut key: Ctrl+Shift+A, which outputs a coil at the current position.
● Insertion position:

1. Select a horizontal line or element and insert a coil on the horizontal line or at the left of the
element. The coil and line are processed by a non-closed branch.

2. If coil, return, or jump is selected, a new coil is inserted below the selected element.

The default variable of the inserted coil is "???". You need to enter the required variable or constant.
You can use the input assistant (press F2) to select an input from the variable list.

● Insert Set Coil: icon - , which inserts a set coil at the current position. The operation is the same
as "Insert Coil".

● Insert Reset Coil: icon - , which inserts a reset coil at the current position. The operation is the
same as "Insert Coil".

Insert contact

The following four menu commands are provided: "Insert Contact", "Insert Negated Contact", "Insert
Contact Parallel (below)", and "Insert Contact Parallel (above)". You can also insert a contact by
dragging and dropping "Contact" or "Negated contact" from the toolbox.

Programming Languages

‑419‑

● Insert Contact: icon - ; shortcut key: Ctrl+K, which inserts an NO contact at the current position
in serial mode.
Insertion position:

1. Select a horizontal line and insert a contact on the horizontal line.
2. If a network is selected, the new contact is inserted at the end.
3. If an element is selected, the new contact is inserted on the left of the element.

The default variable name of the contact is "???". Click the variable or constant required by text input.
You can use the input assistant (press F2) to select an input from the variable list.

● Insert Negated Contact: icon - , which inserts an NC contact at the current position in serial
mode. The operation is the same as "Insert Contact".

● Insert Contact Parallel (below): icon - ; shortcut key: Ctrl+R, which inserts an NO contact below
the selected element in parallel mode. The selected element can be a contact or operation block.

● Insert Contact Parallel (above): icon - ; shortcut key: Ctrl+P, which inserts an NO contact above
the selected element in parallel mode. The operation is the same as "Insert Contact Parallel
(below)".

Insert branch

Two menu commands are provided: "Insert Branch" and "Insert Branch above". You can also insert
branches by dragging and dropping "Branch" from the toolbox. The inserted branch is a non-closed
line.

● Insert Branch: icon - ; shortcut key: Ctrl+Shift+V, which inserts a branch at the selected line
position.
Insertion position:

1. If a line is selected, the branch is inserted below the line.
2. If a contact or coil is selected, the branch is inserted before the selected element.

As shown in the following figure, each selected position indicates a branch.

Figure 6-3 Branch label

Programming Languages

‑420‑

● Insert Branch above: icon - , which adds a branch above the selected branch. A branch line is
selected before this command can be executed.

Jump and return

Two menu commands are provided: "Insert Jump" and "Insert Return". Jump and Return are used to
control the program execution sequence. In normal cases, programs are executed from top down and
from left to right based on the network sequence. To add a jump or return element, drag and drop
"Jump" or "Return" from the toolbox.

Like coils, the jump and return elements must be located on the rightmost side. Therefore, the rules for
inserting jump and return elements are the same as those for inserting coils. For details, see the "Insert
Coil" command.

● Insert Jump: icon - ; shortcut key: Ctrl+L, which inserts a jump element to jump to the specified
label position.
The jump position is marked by a label in the network. That is, jump across networks is supported.
Jump is executed only when the pre-jump input condition is met.

● Insert Return: icon - , which inserts a return element. When the input condition is met, the
current POU executes the return command and returns results to the caller POU.

Negation

Icon - ; shortcut key: Ctrl+N, which negates the operation block input, operation block output, jump
condition, return condition, contact value, or coil.

The negation command can be executed at the following two positions:

1. Element negation: The main elements are contact and coil. A slash (/) is added to the contact and
coil after negation.

2. Line negation: The main elements are operation block input line, operation block output line, coil
input line, jump input line, and return input line. A circle is added on the line.

The following figure shows the negation position.

Programming Languages

‑421‑

Figure 6-4 Negation position

The negation state is switched back when the negation command is executed again.

Detect edge

Icon - ; shortcut key: Ctrl+E, which adds the edge trigger function to contacts, operation block input
lines, coil input lines, jump element input lines, and return element input lines.

Rising edge detection is equivalent to the R_TRIG function block, and falling edge detection is
equivalent to the F_TRIG function block.

The edge detection command can be executed at the following two positions:

1. Contact edge detection: Select a contact to run the edge detection command. The edge detection
function is added to the contact. indicates the rising edge, and indicates the falling edge.

2. Add edge detection to line: The edge detection command of the execution block is applicable to the
operation block input line, coil input line, jump element input line, and return element input line.
The edge signal symbol is added to the line. The rising edge detection symbol is , and the falling
edge detection symbol is . The edge detection function is added only to input lines of the BOOL
type.

Set and reset

Icon - ; shortcut key: Ctrl+M, which adds the set or reset output function. Set output is displayed as
S, and reset output is displayed as R. The command can be executed multiple times and switches
among set, reset, and normal output.

The set/reset command can be executed at the following two positions:

1. Coil selection. This command sets or resets a coil. Set coil: Reset coil:
2. Select the BOOL-type output line (non-main output) of the operation block and configure the set or

reset function, as shown in the following figure.

Programming Languages

‑422‑

Set output connection

Icon - ; shortcut key: Ctrl+W, which modifies the pin of the main output when the operation block
contains multiple outputs. An operation block has only one main output, which is linked to subsequent
elements, as shown in the following figure.

Select the output pin to be modified and run this command to modify the output connection.

Figure 6-5 Output connection modification

Modify the input and output pin display

The following two menu commands are provided: "Update parameters" and "Remove unused FB call
parameters".

Update parameters: icon - ; shortcut key: Ctrl+U, which updates the input and output parameters of
the selected operation block. When the input or output parameters of the operation block are
changed, run the "Update parameter" command to update the parameters.

Remove unused FB call parameters: icon - , which deletes the input and output pins of the unused
operation block. That is, when the input or output of the operation block is "???" or empty, the input or
output is not displayed.

Batch update block calls

When an LD editor is used, if any input or output parameter of any operation block in the editor
changes, click "Batch update block calls" in the toolbar. Then the input and output parameters of the
operation block in the current editor are updated in batch. When this command is executed, the
system checks parameters of all operation blocks in the current editor before updating them.

Example:

Modify the input and output parameters of FBConVerTVa: Delete input parameters Time1, Time2,
Time3, and Alway1 and output parameters Signal1 and Signal2.

Before update:

Programming Languages

‑423‑

After update:

Note
When the "Batch update block calls" command is executed, the system updates input, output, and input/output pin
of operation blocks that can be updated in the editor for which LD is activated in batch based on the latest input,
output, and input/output parameter definitions. Block operations that can be updated include PRG, FB, FUN, Ac-
tion, and Meth.

Update block calls

Right-click a POU node (only containing functions, function blocks, function block methods, and
programs) in the device tree. In the shortcut menu displayed, select "Update block calls" to update
input and output pins of operation blocks calling this POU in all LDs (not supported for ST) of the
project.

After "Update block calls" is selected, the system searches for POUs that call this POU and recalculates
their pins. If update is required, the system displays a modification confirmation window, listing all

Programming Languages

‑424‑

POUs to be modified. Click "OK" to perform the update or click "Cancel" to cancel the update. If no
POU needs to be updated, this window is not displayed.

Example:

1. Right-click "FBConvertVa" in the device tree. In the shortcut menu, select "Update block calls". The
system lists POUs requiring update in B9_Manage.PRecord, B6_Action.SVacuo2, and A6_Action.SV_
Action.

2. In the dialog box displayed, click "OK".
The input and output pins of all operations blocks (B9_Manage.PRecord, B6_Action.SVacuo2, and
A6_Action.SV_Action) that call FBConvertVa are updated.

Programming Languages

‑425‑

Note
Only pins of operation blocks of the selected POUs are updated. If an FB function block with multiple Actions is se-
lected, those calling the FB and calling the FB actions are updated together (because the input and output of Ac-
tions are the same as those of the FB function block by default).

Convert to LD language

View as ladder logic: shortcut key Ctrl+2. Convert FBD/IL to LD language: As FBD and IL are no longer
supported, use this command to convert FBD and IL in the LD language for old projects.

Jump to network

Go To...: Jumps to the specified network. Specify the target network number in the "Network number
(1-5) or label:" text box.

Edit Operand Comment

Edit Operand Comment: Edits the comment of the selected operand.

Command execution condition:

● FBD/LD is selected, and "Show operand comment" is selected.
● An operand string is selected.

Operand is a logical concept. Input variables, constants, and addresses are operands. Examples are
operation block input variable, contact union variable, coil union variable, and operation block
instance.

Select an operand string and run this command. The "Edit Comment" dialog box is displayed, as
shown in the following figure. Edit the operand comment.

Programming Languages

‑426‑

Toggle parallel mode

Toggle Parallel Mode: Switches the parallel mode of a parallel branch. The parallel mode is divided
into the sequential parallel branch and the short-circuit-type parallel branch.

● The sequential parallel bracket uses a single line. The output of a single branch is subjected to the
OR operation to obtain the branch output result, as shown in the following figure. Branch results
are obtained through OR.

● The short-circuit-type bracket uses double line. The branch output result must consider whether
each branch includes a non-operation block.
The branch of the non-operation block is used as a condition. If a result of the branch is "TRUE", the
branch with an operation block is not executed. It can be considered as an operation block of the
contact short circuit type. As shown in the following figure, the first "Move" branch instruction is
executed only when the results of the X1 and X2 branches are not "TRUE".

The branch of the non-operation block must meet the following conditions:

1. The branch only includes a contact or operator block.
2. The contact does not include the edge signal.
3. The operator block is not of the EN/ENO type, and its input line does not contain the negation or

edge signal.

Note
Branches of the short circuit type are not recommended considering the branch complexity.

Set Branch Start/End Point

Set Branch Start/End Point: icon - ; shortcut key: Ctrl+D.

The "Set Branch Start/End Point" command is used to connect the start and end connections,
functioning as the line drawing function.

To connect two points, set a start point (displayed the start point, indicating the start point of the
connection), select an end point, and then execute this command. The system automatically connects
the two points. For the specific connection logic, see the line drawing function.

Programming Languages

‑427‑

6.3.7 Single-Key Command

A single-key command enables fast editing by using a single-character shortcut key. The single-key
command can be executed on a line or an element. Run a single-key command on a line to insert a
serial element. A single-key command on an element is used to insert parallel elements or switch the
element function.

To set a character for each command, choose "Options" > "FBD/LD" > "LD".

Single-key commands on lines

● Insert Contact: The default single key is C.
● Insert Negated Contact: The default single key is "/".
● Insert Coil: The default single key is Q.
● Insert Reset Coil: The default single key is R.
● Insert Set Coil: The default single key is S.
● Insert Empty Box: The default single key is F.
● Insert Empty Box with EN/ENO: The default single key is E.
● Set/Reset/edge signal switching: The default single key is space. It is used to switch the BOOL-type

input and output lines of the operation block. When a BOOL-type input line of the operation block
is selected, delay signal switching is performed. When a BOOL-type output line of the operation
block which is not the main output line is selected, "Set/Reset" switching is performed.

Single-key commands on elements

● Insert Contact Parallel: The default single key is C. The selected element can be a contact or
operation block.

● Insert Box Parallel: The default single key is F. The selected element can be a contact or operation
block.

● Insert EnEnoBox Parallel: The default single key is E. The selected element can be a contact or
operation block.

● Insert Coil: The default single key is Q. The selected element can be a coil, return element, or jump
element.

● Negated Switch: The default single key is "/". Select a contact to switch between NO and NC. Select
a coil to switch negation.

● Switch element set/reset/edge signal: The default single key is space. Select a contact to switch
among the rising edge signal, falling edge signal, and normal signal. Select a coil to switch among
set coil, reset coil, and normal coil.

6.3.8 Line Drawing Function

This function connects the start and end points of a line. To use this function, meet the following
conditions:

● The start and end points must be on the same line and can be selected (power flow line excluded).
● Dragging the input and output pins of an operation block can swap their positions. Areas

(approximately 11 pixels) around pins of operation blocks are used for such dragging and therefore
lines cannot be drawn in these areas.

Programming Languages

‑428‑

Line drawing functions are divided by result into parallel line connection (a parallel branch added),
branch closing, and branch splitting.

Parallel line connection

When the start point and end point of a line are on the same branch, a contact is automatically
connected to the start and end points in parallel, as shown in the following figure.

● If a line is drawn inside a branch, a contact is automatically connected between the start and end
points in parallel.

● If you draw a line starting of the end point of a disconnected line to another line, the disconnected
line is closed.

● If you draw two adjacent lines, one up and one down, the up and down branches are split.

● The start point and end point must meet the conditions of parallel connection. That is, the start
point and end point cannot span the inside and outside of the parallel branch, cannot span
branches, and cannot span from the input to the output of the multi-line operation block.

● The start and end point cannot span a disconnected branch.

Branch closing

When the start point of a line is the end line of a disconnected branch and the other end is connected
to a line that can be closed, the current disconnected branch is closed, as shown in the following
figure.

Programming Languages

‑429‑

● The branch closing function allows spanning a disconnected branch.

● If the disconnected branch only has an end point, an empty contact is automatically added when
the branch is closed.

①: An empty contact is automatically added.

● If the branch of the hierarchy corresponding to the disconnected branch is closed, the disconnected
branch can only be closed with the right vertical line.

①: The branch of the hierarchy corresponding to the disconnected branch is closed.

②: The disconnected branch can only be closed with the right vertical line.

Branch splitting

When the start and end points of a line are on two adjacent branches, the parts at two sides of the
start and end points are split into two branches in parallel.

● If no element exists at the left or right side of the start or end point, an empty contact is
automatically added at the side without element.

Programming Languages

‑430‑

①: No element at the right

②: Added empty contact

● Disconnected branches cannot be split.

①: Disconnected branch

6.3.9 Drag and Drop

The LD supports the drag and drop operation on elements. You can drag the elements in the toolbox
and drop them onto the network, and drag and drop elements on the LD page or across pages.

When you drag and drop an element, the LD page displays the available positions. The available
positions are displayed in the following three modes:

● Diamond: . You can drag and drop an element onto the current position and insert it in serial
mode.

● Upper and lower triangles: . You can insert a parallel element above or below the current
element.

● Upper and lower arrows: . You can add a network in the upward or downward direction.

When you drag and drop an element to the insertion position, each figure changes to green inside, for
example, , indicating the insertion position. The following figure shows the drag and drop process.

Programming Languages

‑431‑

① Insert a parallel connection. ② After dragging, the color changes

to green to indicate the insertion

position.

③ Insert a contact.

Drag and drop elements from the toolbox

You can drag and drop elements from the toolbox to the LD editor.

The toolbox provides basic instructions, expansion instructions, motion control, high-speed I/O,
CANopen axis control instructions, communication instructions, and POUs. You can customize types
and instructions, or add instructions to the toolbox.

LD elements are provided in basic instructions.

POUs mainly contain the program, function block, function, method, and action defined in the current
project. Up to 200 POUs can be displayed. If this limit is exceeded, POUs are not displayed, to avoid
content disorder.

When you drag and drop elements, the available positions are displayed. Observe the following rules:

● You can drag and drop contacts to contacts and operation blocks (including execution blocks) for
parallel connection, and to lines for serial connection.

● You can drag and drop operation blocks to contacts and operation blocks (including execution
blocks) for parallel connection, and to lines for serial connection.

● You can drag and drop coils to non-parallel closed branches and input lines of non-multi-line
operation blocks for serial connection. You can also drag and drop coils above or below other coils,
return elements, and jump elements.

Drag and drop elements on the edit page

On the LD page, you can drag and drop the selected element from one position to another. You can
drag and drop elements within the current edit page or to another LD edit page.

You can select one or more elements for the drag and drop operation.

The drag and drop operation is divided into normal drag and drop and copy-type drag and drop (press
Ctrl for drag and drop). During normal drag and drop, after the selected element is dragged and
dropped, it is deleted from the original position. During copy-type drag and drop, after the selected
element is dragged and dropped, it is still retained at the original position.

The drag and drop function is implemented in the standard manner.

The drag and drop rules for one or more selected elements are the same as those of the paste
operation by the standard edit command.

6.3.10 Graphic Display Tool

The LD graphic display tools are used to control the LD display mode, including the selection tool, drag
and drop tool, magnifier tool, and zooming tool. By default, the LD adopts the selection tool. The
graphic display tools are displayed in the lower right corner of the LD page, as shown in the following
figure.

Programming Languages

‑432‑

● Selection tool
The selection tool is the default displayed tool. In selection tool mode, the cursor is displayed as .
You can select elements for editing.

● Drag and drop tool
In drag and drop tool mode, the cursor is displayed as . You can perform the drag and drop
operation in areas.

● Magnifier
In magnifier mode, the cursor is displayed as . Content is magnified with the cursor at the center,
as shown in the following figure.

● Zooming tool
The zooming tool displays the zoom scale of the current page and allows you to set the zoom scale,
as shown in the following figure.

Programming Languages

‑433‑

Click "...". The "Zoom Scale" dialog box is displayed. Enter a zoom scale, as shown in the following
figure.

6.3.11 LD Debugging

The LD provides powerful debugging functions. In addition to the existing monitoring table, the LD also
provides online monitoring, operand writing, mandatory value writing, breakpoint, and single step
debugging.

Monitoring

In online mode, the LD page displays the execution results of lines, elements, and operand variables in
specific forms, as shown in the following figure.

● Line monitoring

1. BOOL-type lines are displayed in blue in the bold form in the conducting state (the value is
"TRUE"); otherwise, they are displayed in black in the bold form.

2. Non-BOOL-type lines (operation block input, output integer variable, time-type variable, and
floating point variable) are displayed as fine lines. When the value is 0, they are displayed as black
fine lines. When the value is not 0, they are displayed as blue fine lines.

● Element monitoring

1. When the contact is energized, the NO contact is displayed as , or the NC contact is displayed
as ; When the contact is not energized, the NO contact is displayed as , or the NC contact
is displayed as .

Programming Languages

‑434‑

2. When the coil is energized, the normal coil is displayed as , or the negated coil is displayed as
. When the coil is not energized, the normal coil is displayed as , or the negated coil is

displayed as .
3. The logic of the EN/ENO operation block is executed only when EN is "TRUE". To allow you to

understand the execution state of the EN/ENO operation block (whether it is enabled), we
differentiate the text of the operation block type. If the operation block is executed (EN is
"TRUE"), the operation block type is displayed in black text. If the operation block is not executed,
the operation block type is displayed in gray text (the block is disabled), as shown in the following
figure.

Figure 6-6 Operation block executed Operation block not executed

● Variable monitoring

1. Monitored variables are displayed in different widths, depending on the specific type, to reduce
space usage. For variable-length elements such as strings and enumerated elements (the
enumeration name is displayed), the default length is 12 characters. If the displayed content is
incomplete, "..." is displayed, and the complete content is displayed in a prompt. For fixed-length
elements such as integers and floating point numbers, content is displayed based on the
maximum length.

2. You can drag and drop monitored variables to the monitored variable list.
3. To change the variable display mode, choose "Debug" > "Display Mode".

Note
Functions and methods are executed instantly, resulting in only temporary data. Therefore, functions and methods
cannot be monitored directly after login. To monitor functions and methods, you need to add breakpoints to the
functions and methods to interrupt execution before monitoring, as shown in the following figure.

Mandatory value writing

You can write preparatory values to contacts, coils, and variables of the LD. Then, run the "Write
values" or "Force values" command in the "Debug" menu to write or enforce values to variables.
Before writing or enforcing values, you need to write preparatory values, as shown in the following
figure.

Programming Languages

‑435‑

● For contacts, coils, and BOOL-type variables, double-click the element or variable value position to
switch between the "TRUE" and "FALSE" preparatory values. For example, you can double-click in
the middle of a contact or coil to switch the preparatory value.

● Double-click the value position of a non-BOOL variable. The "Prepare Value" dialog box is
displayed. Enter a preparatory value, as shown in the following figure.

● After a mandatory value is written, the identifier is added before the value to indicate it is a
mandatory value.

● To release a mandatory value, choose "Online" > "Unforce values".

Breakpoint

The LD supports the breakpoint function. After a breakpoint is added, program execution
automatically stops at the breakpoint, and you can debug the program. Operations such as jump-in,
skip, jump-out, and run-to-cursor are supported.

After a breakpoint is added, the breakpoint position (element) is marked by a rectangular box in light
red. When program execution reaches the breakpoint, the breakpoint position is marked by a
rectangular box in yellow. If a breakpoint exists in the network, a circle is displayed in the network
decoration area, as shown in the following figure.

Programming Languages

‑436‑

The LD is graphical and a breakpoint can be added only at a position with a logical statement. Logical
statements exist only in limited areas of the LD for optimized performance. That is, breakpoints can be
added only in limited areas. For example, breakpoints cannot be added at the contact position or non-
EN/ENO operator block position.

Breakpoints exist in places with possible variable value change, program branches, POU call position,
and places where output variables are assigned values. Choose "View" > "Breakpoints" to open the
"Breakpoints" dialog box and view all possible breakpoint positions.

Breakpoints can be added at the following positions:

● Network start position, which is the position of the first possible breakpoint in the network. When a
breakpoint is added to a network, it is added to the first breakpoint position.

● Operation blocks not including the EN/ENO operator, such as FB, action, program call, and
execution block.

● Coil, return, and jump element positions.

6.3.12 LD Data Update

For InoProShop V1.4.0 and earlier versions, such as InoProShop V0.0.9.10, InoProShop V1.1.0,
InoProShop V1.2.0, InoProShop V1.2.60.0, and InoProShop V1.2.70.1, the accessed LD data must be
updated before you can use the functions of the optimized LD version.

LD data can be updated in the following two ways:

● In the "Project Version Information" dialog box that is displayed when a project is opened, click the
LD/FBD tab. Select all the update marks shown in the following figure, and then click "OK".

● Choose "Project" > "Project Version Information". In the "Project Version Information" dialog box
displayed, click the LD/FBD tab. Select all the update marks, and then click "OK".

Programming Languages

‑437‑

If the LD data is not updated, update description is displayed in the first network.

Note
LDs must be updated before use.

Diagnosis

‑438‑

7 Diagnosis

7.1 Overview

Diagnosis aims to quickly locate errors while the PLC is running so that you can find solutions based on
error information and states. The InoProShop diagnosis page can be accessed and displayed only
when you log in to the PLC.

The InoProShop programming system can diagnose various communication devices and generate
messages indicating faults, disconnection state, and other errors based on the running state of
devices.

Modules involved in fault diagnosis include CPU module, Modbus module, Modbus TCP module,
EtherCAT module, CANopen module, CANlink module, and PROFIBUS-DP module.

The InoProShop programming system allows you to obtain diagnosis information through the
configuration diagnosis, list of diagnosis information, list of device self-diagnosis information, or
diagnosis programming interface.

All diagnosis information is parsed and obtained through diagnosis codes. Diagnosis codes correspond
to diagnosis programming interfaces.

7.2 Configuration Diagnosis

7.2.1 Overview

Configuration can be classified into network configuration and hardware configuration. The
corresponding diagnosis can be classified into network configuration diagnosis and hardware
configuration diagnosis. In configuration, the diagnosis state of each communication module is
displayed through different icons: "Running", "Stopped", "Disconnected", and "Faulty".

: Running state: The device is running without faults.

: Stopped state: The device is stopped.

: Disconnected state: The device is disconnected or the device does not exist.

: Faulty state: The device is faulty and cannot run.

The device state is displayed on the configuration page.

7.2.2 Network Configuration Diagnosis

You can configure a PLC bus system, activate the bus, and add slaves on the "Network Configuration"
page. Log in to the system and access the "Network Configuration" page. The diagnosis state of each
communication device is displayed, as shown in the following figure.

Diagnosis

‑439‑

Figure 7-1 Network configuration diagnosis

After login, the state of each slave or CPU is displayed on the "Network Configuration" page:
"Running", "Faulty", or "Disconnected". For details about network configuration, see hardware
configuration.

7.2.3 Hardware Configuration Diagnosis

Hardware configuration is mainly used to add expansion modules corresponding to the bus, including
local I/O hardware configuration, EtherCAT hardware configuration, and CANopen hardware
configuration. CANlink, Modbus, and Modbus TCP modules are displayed only on the "Network
Configuration" page. You can double-click a network configuration sub-node or slave module to access
the "Hardware Configuration" page, or select another hardware configuration mode on the "Hardware

Diagnosis

‑440‑

Configuration" page. The hardware configuration diagnosis is similar to the network configuration
diagnosis. The following figure shows CANopen hardware configuration diagnosis.

Figure 7-2 CANopen hardware configuration diagnosis

7.3 Fault Diagnosis

Fault diagnosis displays all device fault information, provides details about faults and troubleshooting,
and provides diagnosis details under special circumstances.

After the device is connected, you can choose "Tools" > "Troubleshooting" to access the "Fault
Diagnosis" page. The following figure shows the "Fault Diagnosis" page.

Diagnosis

‑441‑

Three tabs are provided on this page:

● RealTime Diagnosis: Displays all faults of the device to which you have logged in.
● History Fault: Displays all history faults of the device to which you have logged in.
● User Event: Displays all history operation records made by users to the device to which you have

logged in.

RealTime Diagnosis

1. Click "RealTime Diagnosis". The "RealTime Diagnosis" page is displayed.
2. On this page, you can set a filter to display modules of which fault information you want to display.

● From the drop-down list of "Module", select a module type. Options are "All", "CPU Module",
"Modbus Module" "Modbus TCP Module", "Local Module", and "EtherCAT Module". The default
option is "All".

● In the text box, enter the name of a faulty module or keywords in fault information, and then click
"Filter".

The fault information list displays relevant information such as the module name, fault information,
and action based on the selected module type or keywords.

Note
● To refresh the module fault information list, click "Refresh". The latest module fault information is displayed in

the list.
● To clear the module fault information list, click "Clear".
● To export module fault information from the list, click "Export".

Diagnosis

‑442‑

3. In the fault information list, click a fault record. The "Detail" and "Deep Diagnosis" tabs are displayed
in the lower part of the page, through which you troubleshoot the fault based on the diagnosis
information.

● Click "Detail". On the tab page displayed, the fault reason, solution, and more information are
displayed.

● Click "Deep Diagnosis". On the tab page displayed, the diagnosis information of complex faults is
displayed.

Note
The "Deep Diagnosis" tab is available for some faults of EtherCAT, such as the GL10 and GL20 modules.

4. (Optional) In the "Action" column, click the link to jump to the corresponding page.

History Fault

1. Click "History Fault". The "History Fault" page is displayed.
At the top of the page, the number of faults of different fault levels is displayed. Fault levels include
"Exception", "Error", and "Warn".

Note
If no fault information is displayed, click "Refresh".

2. Set a filter to display modules of which fault information you want to display.

● Click the corresponding fault level button to display or hide information of faults of this level.

Diagnosis

‑443‑

● From the drop-down list of "Component", select a module type. Options are "All", "CPU Module",
"Modbus Module" "Modbus TCP Module", "Local Module", and "EtherCAT Module". The default
option is "All".

● In the text box of "Time", enter a start time and an end time. In the text box of "Search", enter
keywords in the fault information, and then click "Filter".

The fault information list displays relevant information such as the fault level, occurrence time, event
ID, device location, fault information, and action based on the module level, module type, time
range, or keywords entered.

Note
● To refresh the module fault information list, click "Refresh". The latest module fault information is displayed in

the list.
● To export module fault information from the list, click "Export".

3. In the fault information list, click a fault record. The fault details are displayed in the lower part of
the page, including the cause and solution. Troubleshoot the fault based on such information.

4. (Optional) In the "Action" column, click the link to jump to the corresponding page.

User Event

1. Click "User Event". The "User Event" page is displayed.
At the top of the page, the number of events of different levels is displayed. Event levels are classified
into "Event" and "Information". The information level is not displayed by default.

Note
If no event information is displayed, click "Refresh".

Diagnosis

‑444‑

2. Set a filter to display events of which information you want to display.

● Click "Event" to display or hide information of events of the "Event" level.
● From the drop-down list of "Component", select the type of events you want to display. The

default option is "All".
● In the text box of "Time", enter a start time and an end time. In the text box of "Search", enter

keywords in the event information, and then click "Filter".

The event information list displays relevant information such as the event level, occurrence time,
event ID, component location, event information, and action based on the event level, component
type, time range, or keywords entered.

Note
● To refresh the event information list, click "Refresh". The latest event information is displayed in the list.
● To export event information from the list, click "Export".

3. (Optional) In the "Action" column, click the link to jump to the corresponding page.

7.4 Online Diagnosis

7.4.1 Overview

Online diagnosis is used to display the diagnosis information of programs, devices, and systems in real
time after the PLC is connected. This function helps quickly locate and fix errors to ensure normal
device running.

7.4.2 Diagnosis Procedure

General procedure

Scan devices and select a communication device. Wait for login and enable diagnosis information
monitoring. After receiving the diagnosis information, refresh the data.

Scan procedure

Communication channels for the diagnosis function are divided into standard communication
channels and diagnosis communication channels. Standard communication channels are existing
communication channels and support all communication functions. Diagnosis communication
channels are channels used for diagnosis when the PLC failed to communicate through standard
communication channels during a system runtime error but can communicate with the network.

During device scanning, the system enables both the standard and diagnosis communication
channels, and displays all devices scanned by standard communication channels as well as devices
that are not scanned by standard communication channels but can be displayed in diagnosis
communication channels.

Diagnosis

‑445‑

After you select a device, the system performs communication based on the communication channel
of the device. Currently, diagnosis communication channels only support online diagnosis and login
state switching. The following table lists communication functions supported by different
communication channels.

Communication Function Standard Communication Channel Diagnosis Communication Channel

Program download Supported Not supported

Online modification Supported Not supported

Monitoring Supported Not supported

Log refreshing Supported Not supported

Online diagnosis Supported Supported

Login state switching Supported Supported

7.4.3 Scanning Devices

Click "Scan network". On the "Select Device" page displayed, device scanning is enabled for both
standard and diagnosis communication channels and the detected devices are displayed on the page,
as shown in the following figure.

Information in black indicates the scanning results of standard communication channels, while
information in light green indicates the scanning results of diagnosis communication channels. If a
detected device is in a diagnosis communication channel, click "Diagnosis" to upload the diagnosis
logs and troubleshoot the problem accordingly.

Note
● Only the latest version (5) supports the device diagnosis and scanning function.
● Diagnosis communication channels do not support USB-based communication.

Diagnosis

‑446‑

When a device detected by a diagnosis communication channel is selected, the communication mode
in the status bar is displayed as "Diagnostic communication". After you log in to the PLC and
communication is established between the device and the PLC, the system starts diagnosis
communication, "Under diagnosis..." is displayed next to the node on the device tree, and the system
gets the diagnosis data.

If a fault occurs on a device under a diagnosis channel before communication, the fault information
may not be displayed. To view the fault information, view the history diagnosis information.

7.4.4 Logging in to PLC

If the software is connected to the PLC, after you click , the system starts diagnosis and the
"Diagnosis" page is displayed, as shown in the following figure.

The following table lists the tabs on this page and their descriptions.

Parameter Description

Exception/error/warning/information Displays and filters information of different levels.

Clear Clears the displayed diagnosis information. If new
diagnosis information is generated after the clearing
operation, the system displays the latest information.

Export Exports all the diagnosis information to a CSV file.

History DIAG INFO Displays the diagnosis information generated before
login.

System DIAG INFO Displays system diagnosis information that needs to
upload exceptions among the diagnosis information.

Show All Displays all the diagnosis information.

Offline Diagnosis Imports diagnosis information from the saved CSV file
in the offline state.

The following table lists the parameters on this page and their descriptions.

Parameter Description

Severity Displays the information level.

Time Displays the information occurrence time.

Information ID Displays the event ID in the information.

Diagnosis

‑447‑

Parameter Description

Position Displays the fault occurrence position. When a
diagnosis information supports jumping, the
information in the "Position" column is underlined.
Double-click the line to jump to the corresponding
position. When an exception file exists and needs to be
uploaded, you can double-click the line to upload the
exception file.

Description Describes the symptoms and causes of the faults.

Help Displays the fault solution or handling procedure.

In the online state, you can export all the online diagnosis information to a CSV file. Then, you can
import the saved information on the "Diagnostic information" page to display all the diagnosis
information. The following page shows the "Diagnostic information" page.

7.5 List of Device Self-Diagnosis Information

7.5.1 CPU Diagnosis

No diagnosis page is available for a CPU. You can check diagnosis information on the list of diagnosis
information.

For CPU diagnosis codes and diagnosis information, see “9.8.2 CPU Diagnosis Code” on page 509.

7.5.2 EtherCAT Diagnosis

EtherCAT diagnosis is used to record and describe bus errors, including master diagnosis, slave
diagnosis, slave module diagnosis, and slave servo drive diagnosis. EtherCAT diagnosis only parses
errors of Inovance slaves. For details about diagnosis methods, see “7.3 Fault Diagnosis” on page 440.
Error IDs are listed in “9.8.7 EtherCAT Diagnosis Code” on page 515.

Diagnosis

‑448‑

In some application scenarios, error IDs are displayed on the touchscreen. You only need to assign the
variable "m_LastError" (the EtherCAT bus error ID) and the EtherCAT slave error ID to a variable
associated with the HMI address. "HMI_LastError" and "HMI_IS620N_SlaveError" are word variables
associated with the HMI address. The bus error ID and slave error ID diagnosed for EtherCAT are
displayed on the touchscreen.

AM600 EtherCAT slave diagnosis

The following table lists the CANopen Emergency frame formats corresponding to the EtherCAT AM600
slave.

Emergency Error Code
Error

Register
Manufacturer-Specific Code

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

BaseInfo SlaveError 0x80
InterCommEr-
ror ConformenceError IOModulePosError

Note
The error register value 0x80 indicates the "Emergency" frame of the slave.

"BaseInfo" is not in use. For other diagnosis codes and diagnosis information, see “ ” on page . If the
device is diagnosed in this format, the data is parsed into corresponding diagnosis information.
Otherwise, the data is parsed into a message "Device faulty".

7.5.3 I/O Diagnosis

The I/O module can be added to the CPU, CANopen AM600 slave, PROFIBUS-DP AM600 slave, or
EtherCAT AM600 slave. They share the same diagnosis information. For diagnosis codes and diagnosis
information, see “9.8.3 I/O Module Diagnosis Code” on page 512.

For descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis
information.

7.5.4 PROFIBUS-DP Diagnosis

The PROFIBUS DP diagnosis refers to the PROFIBUS-DP slave diagnosis. Data is included in the
diagnosis array. Each slave has a "Slave Diagnosis" page, as shown in the following figure, on which
slave diagnosis information is displayed. For non-AM600 modules of the slave, diagnosis information is
displayed on the "Slave Diagnosis" page. For the I/O module of the AM600 PROFIBUS-DP slave,
diagnosis information is displayed on the diagnosis page of the I/O module. For details, see “7.5.3 I/O
Diagnosis” on page 448.

The PROFIBUS-DP channel diagnosis can be classified into defined channel diagnosis and GSD file-
defined channel diagnosis. For details, see "PROFIBUS-DP Diagnosis Overview".

Diagnosis

‑449‑

● Master address: Indicates the address of the master, which corresponds to the 4th byte in the
diagnosis array.

● ID: Indicates the slave-defined ID, which corresponds to the 5th and 6th bytes in the diagnosis
array. The GSD file also defines the ID.

● Hex format: Diagnosis array data is displayed in hexadecimal format.
● Standard diagnosis: Indicates state diagnosis and identifier diagnosis included in the basic

diagnosis and expanded diagnosis of slaves. For details, see "PROFIBUS-DP Diagnosis Overview".
● Channel diagnosis: Indicates the channel diagnosis included in the expanded diagnosis of slaves, in-

cluding defined channel diagnosis and GSD file-defined channel diagnosis. For details, see "PROFI-
BUS-DP Diagnosis Overview".

The following table shows the diagnosis array structure.

Table 7–1 Diagnosis array structure

First Six Bytes
Indicating Basic

Diagnosis Information
(Mandatory)

Alarm or State
Information Block (4-63

Bytes) (Optional)

Flag Module Diagnosis
Information Block (Optional)

Channel Diagnosis
Information Block (3 Bytes
per Channel) (Optional)

1——————————-
————————————6 basic diagnosis information

7———-
———————————————————————————244 expanded diagnosis information

A data unit (DU) contains a minimum of 6 bytes and a maximum of 244 bytes.

1. Basic diagnosis information

Diagnosis

‑450‑

2. Expanded diagnosis information
Expanded diagnosis includes state diagnosis, identifier diagnosis, and channel diagnosis.

● State diagnosis
7th byte

8th byte

When bit 7 is 1, it indicates state diagnosis information, and bits 0 to 6 correspond to the
following state information types, respectively.

0: Reserved

1: Indicates that the byte corresponding to state details is followed by state information.

2: Indicates that the byte corresponding to state details is followed by module state information
(affecting the bytes following the 9th byte).

3 to 31: Reserved

32 to 126: Indicates that the byte corresponding to state details is followed by special
manufacturer data.

127: Reserved

9th byte: Indicates the slot number of the slave reporting an error, ranging from 0 to 254.

10th byte: Indicates detailed features of a state.

Diagnosis

‑451‑

Byte following the 11th byte: Indicates a user data byte.

If the 8th byte corresponds to state type 2, that is, module state information, the 9th byte is 0;
that is, the slave slot number is 0. Therefore, bytes following the 11th byte are no longer user data
bytes. The following describes the structure and definition.

12th byte: Indicates the state of modules 5 to 8.

Subsequent bytes can be arranged based on the preceding rule until information on all modules
is entered.

● Identifier diagnosis

Diagnosis

‑452‑

If the number of modules exceeds 8, you can continue using bytes that follow to specify flag byte
numbers (or module numbers).

● Channel diagnosis
Each piece of channel diagnosis information contains 3 bytes. Channel diagnosis includes
diagnosis information for multiple channels. The following table shows the structure of diagnosis
information for one channel.

Head Byte Diagnosis Data Byte Relating to Channel

10×××××× 2 bytes (3 bytes if the head byte is included)

The head byte specifies the type of channel diagnosis information and the number of a faulty
module. The following describes the structure and definition of the head byte.

7.5.5 Modbus RTU Diagnosis

Modbus RTU supports buses of Modbus serial ports 0 and 1. Modbus serial port 0 or 1 can serve as a
Modbus master or Modbus slave.

When a Modbus serial port serves as a master, you can add slaves (remote) to the master. On both
master configuration page and slave configuration page, the "Device Diagnosis" option is available.
Master diagnosis information is used to identify slave configuration faults without fault causes.
Therefore, no fault codes are displayed on the "Device Diagnosis" page. On the "Device Diagnosis"
page for a slave, fault information corresponding to specific configuration items is displayed.

Diagnosis

‑453‑

When a Modbus serial port serves as a slave, a "Device Diagnosis" page is available, on which master-
slave communication faults are displayed. For details, see the list of device self-diagnosis information.

The diagnosis codes and diagnosis information for a Modbus serial port remain unchanged whether it
serves as a master or a slave. For details, see “9.8.6 Modbus Diagnosis Code” on page 514.

7.5.6 Modbus TCP Diagnosis

An AM600 PLC can serve as a Modbus TCP master or a Modbus TCP slave.

When a Modbus TCP device serves as a master, you can add slaves (remote) to the master. On both
master configuration page and slave configuration page, the "Device Diagnosis" option is available.
Master diagnosis information is used to identify slave configuration faults without fault causes.
Therefore, no fault codes are displayed on the "Device Diagnosis" page. On the "Device Diagnosis"
page for a slave, fault information corresponding to specific configuration items is displayed.

When a Modbus TCP device serves as a slave, a "Device Diagnosis" page is available, on which master-
slave communication faults are displayed. For details, see the list of device self-diagnosis information.

The diagnosis codes and diagnosis information for a Modbus TCP device remain unchanged whether it
serves as a master or a slave. For details, see “9.8.6 Modbus Diagnosis Code” on page 514.

7.5.7 CANlink Diagnosis

No "Device Diagnosis" page is available for CANlink devices. However, you can enable the monitoring
function on the CANlink network management page to check the online state and running state of the
slave. For details, see "CANlink Network Management".

You can check the state of CANlink stations through soft elements. For details, see “4.9.4 CANlink
Network Configuration” on page 271.

After logging in to the PLC, you can view CANlink diagnosis information from the list of diagnosis
information. For CANlink diagnosis codes and diagnosis information, see “4.9.2 CANlink3_en.0 网络组
成” on page 269.

For descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis
information.

7.6 Diagnosis Programming Interface

7.6.1 Overview

The diagnosis interface library "CmpHCDiagnose" only supports PLCs of the AM400 and AM600 series.
The CANopen diagnosis function block "GET_CANOPEN_SALVE_DIAGNOSE" is not applicable to
software of 1.3.0 or later versions. To diagnose slave states, you need to add the "CmpHCCiA402"
library and call the "GET_STATE" interface.

Diagnosis

‑454‑

The "SysHCPlcInfo" library can get master fault diagnosis information and system hardware and
software information, and supports Modbus and Modbus TCP diagnosis for PLCs of the AM400/AM600/
AC800 series.

7.6.2 Overview

A diagnosis programming interface allows you to obtain diagnosis information from user programs.
You can check diagnosis information for modules in user programs and take action based on the
information.

A diagnosis programming interface exists in library form. You can add it on the "Library Manager" page,
as shown in the following figure.

Programming interfaces include diagnosis programming interfaces corresponding to CANlink,
CANopen, CPU, Modbus, Modbus TCP, and PROFIBUS-DP modules, respectively. Each diagnosis
corresponds to one function block so that you can obtain corresponding diagnosis codes.

User-defined diagnosis results and diagnosis states are defined in "DataType". "HC_enumERROR"
indicates whether diagnosis succeeds, as shown in the following table.

Enumerator Value (Decimal) Description

NO_ERROR 0 No error
WRONG_PARAMETER 1 Parameter error
UNKNOWN_DEVICEID 2 Unknown device ID
INVAILD_DEVICEID 3 Invalid device ID
INVAILD_IO_POS 4 Invalid I/O position

UNSUPPORT_DIAGNOSE 5 Unsupported diagnosis

TIME_OUT 6 Timeout
INTERNAL_FB_ERROR 7 Internal function block error
UNKNOWN_ERROR 8 Unknown error
INVAILD_IP 9 Invalid IP address

Diagnosis

‑455‑

7.6.3 CPU Diagnosis Programming Interface

CPU diagnosis programming interface

Obtaining CPU Diagnosis Data: GET_CPU_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE
Indicates the enabling bit,
triggered by level.

Output parameter

xDone BOOL FALSE
Indicates whether the
diagnosis result is
obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the
diagnosis result is
obtained.

sCPUDiagnoseData HC_tagDIAGNOSE_DATA_
CPU

Indicates CPU diagnosis
data.

The "HC_tagDIAGNOSE_DATA_CPU" data is structure data, as shown in the following table. For details
about the correlation between the diagnosis code and diagnosis information, see “9.8.2 CPU Diagnosis
Code” on page 509.

Name Type

SDCardError BYTE
FlashError BYTE
SystemError BYTE
InterCommError BYTE
ConformenceError WORD
IOModulePosError WORD
FunctionErrorCode WORD

Example

PROGRAM POU

VAR

get_cpu_diag: GET_CPU_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

sCPUDiag: HC_tagDIAGNOSE_DATA_CPU;

END_VAR

Diagnosis

‑456‑

CPU local I/O expansion module

Obtaining CPU I/O Diagnosis Data: GET_CPU_IOMODULE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE
Indicates the enabling bit,
triggered by level.

byModulePos BYTE (1..16) 0
Indicates the obtained I/O
position.

Output parameter

xDone BOOL FALSE
Indicates whether the
diagnosis result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the
diagnosis result is obtained.

sIODiagnoseData HC_tagDIAGNOSE_DATA_IOMODULE Indicates I/O diagnosis data.

The "HC_tagDIAGNOSE_DATA_IOMODULE" data is structure data, as shown in the following table. For
details about the correlation between the diagnosis code and diagnosis information, see “9.8.3 I/O
Module Diagnosis Code” on page 512.

Structure Member Type Description

ModuleError BYTE Indicates the module error.
ChannelError ARRAY[0..3] OF BYTE Indicates the channel error.

Example

PROGRAM POU

VAR

get_cpu_iomodule_diag: GET_CPU_IOMODULE_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

byModulePos: BYTE (1..16);

sIODiag: HC_tagDIAGNOSE_DATA_IOMODULE;

END_VAR

Diagnosis

‑457‑

7.6.4 CANopen Diagnosis Programming Interface

To diagnose the communication state of a CANopen slave, add the "CmpHCCiA405" library to the
library manager and call the "GET_STATE" interface to get the state.

7.6.5 PROFIBUS-DP Diagnosis Programming Interface

PROFIBUS-DP slave diagnosis programming interface

Obtaining DP Slave Diagnosis Data: GET_DP_SLAVE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE
Indicates the enabling bit,
triggered by level.

bySlaveID BYTE (1..125) 0
Indicates the obtained slave
address, ranging from 1 to 125.

Output parameter

xDone BOOL FALSE Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR Indicates whether the diagnosis
result is obtained.

sSlaveDiagnoseData HC_tagDIAGNOSE_DATA_
SLAVE_DP

Indicates DP slave diagnosis data.

The "HC_tagDIAGNOSE_DATA_SLAVE_DP" data is structure data, as shown in the following table. For
details about the correlation between the diagnosis code and diagnosis information, see “9.8.4
PROFIBUS-DP Diagnosis Code” on page 513.

Structure Member Type Description

Length BYTE Indicates the diagnosis data length.

ExtDiagData ARRAY[0..243]OF BYTE Indicates diagnosis data.

Example

PROGRAM POU

VAR

get_dp_slave_diag: GET_DP_SLAVE_DIAGNOSE;

Diagnosis

‑458‑

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

bySlaveID: BYTE (1..125);

sSlaveDiagData: HC_tagDIAGNOSE_DATA_SLAVE_DP;

END_VAR

PROFIBUS-DP slave I/O diagnosis programming interface

Obtaining DP Slave I/O Diagnosis Data: GET_DP_IOMODULE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE
Indicates the enabling bit,
triggered by level.

bySlaveID BYTE (1..125) 0
Indicates the slave address,
ranging from 1 to 125.

byModulePos BYTE (1..16) 0
Indicates the diagnosed I/O
position.

Output parameter

xDone BOOL FALSE
Indicates whether the
diagnosis result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the
diagnosis result is obtained.

sIODiagnoseData HC_tagDIAGNOSE_DATA_IOMODULE Indicates I/O diagnosis data.

The "HC_tagDIAGNOSE_DATA_IOMODULE" data is structure data, as shown in the following table. For
details about the correlation between the diagnosis code and diagnosis information, see “9.8.3 I/O
Module Diagnosis Code” on page 512.

ModuleError BYTE
ChannelError ARRAY [0..3] OF BYTE

Example

PROGRAM POU

VAR

Diagnosis

‑459‑

get_dp_iomodule_diag: GET_DP_IOMODULE_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

bySlaveID: BYTE (1..125);

byModulePos: BYTE (1..16);

sIODiagData: HC_tagDIAGNOSE_DATA_IOMODULE;

END_VAR

7.6.6 CANlink Diagnosis Programming Interface

Obtaining CANlink Diagnosis Data: GET_CANLINK_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE
Indicates the enabling bit,
triggered by level.

byStationID BYTE (1..63) 0
Indicates the obtained
station node ID, ranging
from 1 to 63.

Output parameter

xDone BOOL FALSE
Indicates whether the
diagnosis result is
obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the
diagnosis result is
obtained.

sCanlinkDiagnoseData HC_tagDIAGNOSE_DATA_CANLINK Indicates CANlink station
diagnosis data.

The "HC_tagDIAGNOSE_DATA_CANLINK" data is structure data, as shown in the following table. For
details about the correlation between the diagnosis code and diagnosis information, see “9.8.5 CANlink
Diagnosis Code” on page 513.

Diagnosis

‑460‑

Structure Member Type Description

IsUsed BOOL Indicates whether it is used.
IsMaster BOOL Indicates whether it is the master.
StationStatus WORD Indicates the CANlink station state.
CfgFrameError WORD Indicates the configuration frame

error.
CmdFrameError WORD Indicates the command frame error.

Example

PROGRAM POU

VAR

get_canlink_diagnose:GET_CANLINK_DIAGNOSE;

Enable: BOOL;

StationId: BYTE (1..63);

eError: HC_enumERROR;

canLinkDiagData: HC_tagDIAGNOSE_DATA_CANLINK;

xDone: BOOL;

END_VAR

7.6.7 Modbus Diagnosis Programming Interface

Modbus local slave diagnosis programming interface

Obtaining Modbus Local Slave Diagnosis Data: GET_MODBUS_SLAVE_DEVICE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE Indicates the enabling bit, triggered by level.

byComID Byte (0..1) 0
Indicates the serial port number for the local
slave, ranging from 0 to 1.

Output parameter

xDone BOOL FALSE Indicates whether the diagnosis result is
obtained.

Diagnosis

‑461‑

Obtaining Modbus Local Slave Diagnosis Data: GET_MODBUS_SLAVE_DEVICE_DIAGNOSE

eError HC_enumERROR NO_ERROR Indicates whether the diagnosis result is
obtained.

byDiagData Byte

Indicates the diagnosis code. For details about
the correlation between the diagnosis code and
diagnosis information, see "Modbus Diagnosis
Code".

Example

PROGRAM POU

VAR

get_Modbus_slave_dev_diag: GET_Modbus_SLAVE_DEVICE_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

byComId: Byte (0..1);

byDiagData: Byte;

END_VAR

Modbus remote slave diagnosis programming interface

Obtaining Modbus Remote Slave Diagnosis Data: GET_MODBUS_SLAVE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE Indicates the enabling bit,
triggered by level.

byComID Byte (0..1) 0 Indicates the serial port
number for the master,
ranging from 0 to 1.

bySlaveID Byte (1..247) 0 Indicates the slave address,
ranging from 1 to 247.

Output parameter
xDone BOOL FALSE Indicates whether the

diagnosis result is obtained.

Diagnosis

‑462‑

Obtaining Modbus Remote Slave Diagnosis Data: GET_MODBUS_SLAVE_DIAGNOSE

eError HC_enumERROR NO_ERROR Indicates whether the
diagnosis result is obtained.

sDiagData HC_tagDIAGNOSE_DATA_SLAVE_
Modbus

Indicates slave diagnosis
data.

The "HC_tagDIAGNOSE_DATA_SLAVE_Modbus" data is structure data, as shown in the following table.
For details about the correlation between the diagnosis code and diagnosis information, see “9.8.6
Modbus Diagnosis Code” on page 514.

Name Type

ChannelNum Byte

DiagData Byte

Example

PROGRAM POU

VAR

get_Modbus_slave_diag: GET_Modbus_SLAVE_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

byComId: Byte (0..1);

bySlaveId: Byte (1..247);

sDiagData: HC_tagDIAGNOSE_DATA_SLAVE_Modbus;

END_VAR

7.6.8 Modbus TCP Diagnosis Programming Interface

Modbus TCP local slave diagnosis programming interface

Obtaining Modbus TCP Local Slave Diagnosis Data: GET_MODBUSTCP_SLAVE_DEVICE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE Indicates the enabling bit, triggered by level.

Output parameter

Diagnosis

‑463‑

Obtaining Modbus TCP Local Slave Diagnosis Data: GET_MODBUSTCP_SLAVE_DEVICE_DIAGNOSE

xDone BOOL FALSE Indicates whether the diagnosis result is
obtained.

eError HC_enumERROR NO_ERROR Indicates whether the diagnosis result is
obtained.

byDiagData Byte

Indicates the diagnosis code. For details about
the correlation between the diagnosis code
and diagnosis information, see "Modbus
Diagnosis Code".

Example

PROGRAM POU

VAR

get_Modbus TCP_slave_dev_diag: GET_Modbus TCP_SLAVE_DEVICE_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

byDiagData: BYTE;

END_VAR

Modbus TCP remote slave diagnosis programming interface

Obtaining Modbus TCP Remote Slave Diagnosis Data: GET_MODBUSTCP_SLAVE_DIAGNOSE

Parameter Type Initial Value Function
Input parameter

xEnable BOOL FALSE
Indicates the enabling bit,
triggered by level.

strSlaveIP STRING(15) ''
Indicates the remote slave
IP address.

Output parameter

xDone BOOL FALSE
Indicates whether the
diagnosis result is
obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the
diagnosis result is
obtained.

sDiagData HC_tagDIAGNOSE_DATA_
SLAVE_MODBUS

Indicates slave diagnosis
data.

Diagnosis

‑464‑

The "HC_tagDIAGNOSE_DATA_SLAVE_MODBUS" data is structure data, as shown in the following
table. For details about the correlation between the diagnosis code and diagnosis information, see
“9.8.6 Modbus Diagnosis Code” on page 514.

Name Type

ChannelNum Byte

DiagData Byte

Example

PROGRAM POU

VAR

get_Modbus TCP_slave_diag: GET_Modbus TCP_SLAVE_DIAGNOSE;

Enable: BOOL;

eError: HC_enumERROR;

xDone: BOOL;

sDiagData: HC_tagDIAGNOSE_DATA_SLAVE_MODBUS;

strSlaveIP: STRING(15);

END_VAR

7.6.9 EtherCAT Diagnosis Programming Interface

EtherCAT diagnosis is used to record and describe bus errors, including master diagnosis, slave
diagnosis, slave module diagnosis, and slave servo drive diagnosis. EtherCAT diagnosis only parses
errors of Inovance slaves. For details about diagnosis methods, see “7.3 Fault Diagnosis” on page 440.
Error IDs are listed in appendices to this guide.

In some application scenarios, error IDs are displayed on the touchscreen. You only need to assign the
variable "m_LastError" (the EtherCAT bus error ID) and the EtherCAT slave error ID to a variable
associated with the HMI address. "HMI_LastError" and "HMI_IS620N_SlaveError" are word variables
associated with the HMI address. The bus error ID and slave error ID diagnosed for EtherCAT are
displayed on the touchscreen.

Diagnosis

‑465‑

7.6.10 CPU Stop Control

Description of function blocks

Stopping Application Program: STOP_APPLICATION

Parameter Type Initial Value Function
Input parameter

xExecute BOOL FALSE
Indicates the enabling bit of the function block,
triggered by rising edges.

Output parameter

xDone BOOL FALSE Indicates execution complete output.

Function block example

PROGRAM POU

VAR

stop_app: STOP_APPLICATION;

xExecute: BOOL;

END_VAR

7.6.11 Axis Diagnosis

Error code

The axis diagnosis function is used to record and describe faults occurred during axis initialization,
startup, and running, such as slave communication errors and axis internal errors during axis running
(including soft limits, servo alarms, and improper function block uses). For error IDs of axis diagnosis,
see appendices to this guide.

Axis faults are classified by severity into errors, warnings, and information.

● Error (serious): Including running errors with axis stopped, axis moving, interruption during
running, bus errors, servo faults, function block running errors, and SDO communication errors.

● Warning (general): Including running errors without axis stopped, errors caused by input of motion
instructions such as "standstill", "errorstop", and "poweroff", and other internal errors that do not
affect the action function or the current state.

● Information (record): Including startup records and records about other key processes.

Diagnosis

‑466‑

Diagnosis page

The following table describes the diagnosis result structure "SMC_DIALOGRESULT" (quick diagnosis).

Variable Member Data Type Initial Value Variable Description

DeviceType UINT - SoftMotion

uiModleID UINT - Axis ID
tTimeStamp TIME 0 Running time stamp

ErrorID SMC_ERROR - Error ID
eErrorClass SMC_ERRORCLASS - Fault level (serious,

medium, and minor)
eErrorType SMC_ERRORTYPE - Error type
StErrorInstance STRING(60) - Error source

strErrorNotes STRING(60) - Error description

strErrorShooting STRING(255) - Solution

The following figure shows the diagnosis function block.

● Function
The axis real-time diagnosis information is saved in the diagnosis result structure "SMC_
DIALOGRESULT".

● Input and output parameters
The following table lists input and output variables.

Input/Output
Variable

Name Data Type Value Range Initial Value Description

Axis Axis AXIS_REF_SM3 - - Mapped to the
axis, that is, an
instance of
AXIS_REF_SM3.

The following table lists input variables.

Input Variable Name Data Type Value Range Initial Value Description

Enable Execution
condition

BOOL TRUE, FALSE FALSE The diagnosis
function of the
function block is
enabled when a
high level signal
is input.

The following table lists output variables.

Diagnosis

‑467‑

Output Variable Name Data Type Value Range Initial Value Description

Valid Compliant BOOL TRUE, FALSE FALSE "TRUE" is
output when the
instruction is
executed.

Busy Executing BOOL TRUE, FALSE FALSE It is set to
"TRUE" when
the current
instruction is
being executed.

Error Error BOOL TRUE, FALSE FALSE It is set to
"TRUE" when an
error occurs.

ErrorID Error code DWORD - 0 The error code is
output when an
error occurs.

stDialogResult Diagnosis result SMC_
DIALOGRESULT

- - Diagnosis result
structure

FAQ

‑468‑

8 FAQ

8.1 CPU Utilization Too High

8.1.1 CPU Usage Definition

0% to 89%: The PLC runs stably. Logic execution, bus synchronization, I/O refresh, data
synchronization, and data saving are all guaranteed with time.

90% to 100%: The PLC runs less stably. Main impacts:

● It is difficult to ensure the EtherCAT operation stability, and EtherCAT slave disconnection and
synchronization loss may occur.

● The PLC may enter the false state and you cannot scan or log in to the PLC.
● Data cannot be stored at power-off.
● The CANopen, CANlink, Modbus, and Modbus TCP modules are subjected to data refresh and

disconnection.
● Online modification or download of a PLC program may slow down and possibly fail.
● There is a risk of slow or failed refresh of monitored PLC variable values.

Note
CPU usage is defined for PLCs of the AM600 and AM400 series but not the AC800 and AP700 series.

8.1.2 Analysis Procedure

1. Check the CPU usage of the PLC.
Log in to the PLC and check the CPU usage based on the background status bar, as shown in the
figure below.

2. Check the task execution time and calculate the proportion of the execution time in the task.
Log in to the PLC, access the "Task Configuration" page, click the "Monitor" tab, and check the
average cycle time of each task.

Note
If the page has been displayed before login, when you re-access the page after login, you need to right-click the task
and choose "Reset" to restore the initial calculation status.

As shown in the figure above, the cycle periods for both the EtherCAT and MainTask tasks are 4 ms,
and the proportion of the MainTask task is about 89% (3575/4000). This indicates that the MainTask
task occupies excessive execution logic.

FAQ

‑469‑

3. Optimize programs within tasks.
Locate a program with too long execution time, and then find the code segments that take a long
time to execute in the program.

Identify a program that consumes too much CPU time, usually by assessing the impact of removing
programs under tasks. If the task execution time significantly decreases after a program is removed
from a task, it suggests that the program may need to be optimized.

After identifying the program, locate the code segment that takes a long time to execute by
assessing the impact of removing code from the program.

8.1.3 Common Optimization Methods

● Increase the task scan cycle.
After the task scan cycle is increased, the program execution count within the task decreases,
leading to less CPU usage.

● Optimize code for batch data processing.
Programs often involve loops for processing data in batches. Consider processing batches of data
over multiple cycles, especially for tasks like initialization code or logic with low real-time
requirements.

● Introduce additional IF conditions.
Without additional conditions, program blocks and functions will be executed continuously in each
cycle. Introduce IF conditions to determine when a block or function should be executed based on
specific criteria. Consider to introduce IF conditions in ST and convert operation blocks to EN/ENO
types in LD.

● Upgrade the PLC to a higher-performance PLC.

8.2 Abnormal PLC Running

8.2.1 Overview

Inovance medium-sized PLCs of the AM and AC series are developed using a compiled language
designed based on the international standard IEC 61131-3.

A compiled language, unlike an interpreted language (commonly used in small PLCs), requires a
specific compilation process to compile the program into machine language files before program
execution. During runtime, the compilation results are used directly without the need of
reinterpretation. Programs of compiled languages are flexible in coding and efficient in execution, but
demand relatively higher programming skills from developers (having a background in C/C++ is
beneficial).

When writing programs, users need to be cautious about unauthorized pointer access, division by zero,
array out-of-bounds, implicit data type conversion, infinite loops, global variable protection, and other
avoidance measures. Failure to address these faults may lead to PLC operation failures and even
system breakdown.

FAQ

‑470‑

This document focuses on the main causes, locating steps, and solutions for operation failures of user
programs on PLCs, such as download failure and system breakdown.

8.2.2 Symptoms

Note
● After identifying the fault, it is recommended to manually remove all implicit check functions, as these functions

consume a portion of CPU resources.
● The firmware version for the AM series PLC must be V1.22.0.0 or above. The InoProShop version for the

programming software must be V1.3.2 or above.

● The AM series LED display stops refreshing (normally showing "00"), and the AC series LCD display
shows the message "Runtime crash".

● The programming software cannot scan the corresponding PLC device. After the PLC is powered on
again and operates normally for a while, the PLC cannot be scanned again.

● After program downloading or login to the PLC that operates for a period, the information display
bar shows the program as "Stopped" with an error message "Program loaded - EXCEPTION," as
shown in the figure below.

● After program downloading or login to the PLC that operates for a period, a prompt box pops up,
displaying "No source code available for this object because it is in the compiled library
'cmphcutils, 1.3.0.0 (inovance)'. Do you want to browse for the original library in order to display
the source code?", as shown in the figure below.

8.2.3 Cause Analysis and Solutions

Unauthorized Pointer Access

Unauthorized pointer access includes null pointer access (the address value pointed to by the pointer
is 0x00000000) and pointer access to unauthorized areas (the address pointed to by the pointer
conflicts with the internal address of the operating system).

FAQ

‑471‑

The PLC operating system cannot execute a null pointer (the address 0x00000000 is a startup address
for some microcontroller systems, leading to a soft restart of the microcontroller). Null pointers are
relatively easy to locate.

Pointer access to unauthorized areas may conflict with other programs running in the system, causing
execution failure. It is more challenging to identify the reasons for such pointers. It is recommended for
novice users to use arrays rather than pointers.

● Locating steps
In the user program device tree, right-click "Application" and choose "Add Object" > "POU for
implicit checks". In the "Add POU for implicit checks" dialog box, select "Pointer Checks", as shown
in the figure below.

After "Pointer Checks" is added, the programming software automatically adds the "CheckPointer"
function under the "Application" device tree, and you can manually add debug code to the
function.

Each time the user program calls a pointer, the system automatically executes the implicit check
function "CheckPointer" once. By adding program breakpoints inside the function, you can
pinpoint the specific location where a null pointer is being used in the user program (refer to the
appendix for breakpoint debugging methods).

Log in to the PLC, right-click "CheckPointer := ptToTest;" where code is added to add and activate a
breakpoint, and manually start to run the PLC (during debugging, switch the PLC run switch to
"STOP" for the AM series, and set "Program Startup Running" on the small screen for the AC series).
Currently, this method can only pinpoint the situation where the pointer is 0.

● Solution

FAQ

‑472‑

Add a non-zero check condition for pointer calls in the user program.

Array Out-of-bounds

Array out-of-bounds can be categorized as out-of-upper bounds and out-of-lower bounds. Calling an
out-of-bounds array in the program may result in the values of adjacent variables being overwritten by
the out-of-bounds array values.

In the program, the memory layout of POU variables and arrays in the system is roughly indicated by
the relationship between "bySum", "abyBuff", and "byCount", as shown in the figure below.

In the variable definition area, "byBuff[1]" is adjacent to the variable "bySum", and "byBuff[4]" is
adjacent to "byCount". If the user program writes data to "byBuff[0]" and "byBuff[5]", the values of
"bySum" and "byCount" may be overwritten by the values of "byBuff[0]" and "byBuff[5]", sharing the
same memory address (during compilation, the system has already allocated memory addresses for all
variables). Due to the optimization algorithm for memory address allocation, the addresses of
variables may be contiguous or non-contiguous. Generally, it is more likely that the upper bound of an
array is contiguous with memory addresses of variables.

For example, "iIndex" is used as an array variable. When "iIndex" is equal to 5 and "byBuff[iIndex]" is
set to 212, "byCount" changes to 212 because the address pointed to by "byCount" is contiguous with
the address of "byBuff[5]".

However, when "iIndex" is equal to 0 and "byBuff[iIndex]" is set to 212, "bySum" changes to 0 because
the address pointed to by "bySum" is not contiguous with the address of "byBuff[0]".

● Locating steps
The steps are similar to those of locating the pointer failure. In the user program device tree, right-
click "Application" and choose "Add Object" > "POU for implicit checks". In the "Add POU for

FAQ

‑473‑

implicit checks" dialog box, select "Bound Checks". Then the system automatically adds the
"CheckBounds" function under the "Application" device tree.

Log in to the PLC, and add and activate breakpoints at the code lines "CheckBounds := lower;" and
"CheckBounds := upper;". Perform single-step debugging (F10) to locate the failure in the user
program and check whether the current array variable is within the defined range. For example,
"abyBuff[5]" is not within the defined range of "byBuff[1..4]".

● Solution
There is no direct solution. The fault must be addressed in code.

Division by Zero

Causes of division by zero include uninitialized variables, variable initialization after being called, and
global variables being set in multiple tasks or POUs.

● Locating steps
In the user program device tree, right-click "Application" and choose "Add Object" > "POU for
implicit checks". In the "Add POU for implicit checks" dialog box, select "Division Checks".

The system automatically adds the "CheckDivDInt", "CheckDivLInt," "CheckDivLReal", and
"CheckDivReal" functions under the "Application" device tree.

Log in to the PLC, add and activate breakpoints at the code lines "CheckDivDInt:=1;", "CheckDivLInt:
=1;", "CheckDivLReal:=1;", and "CheckDivReal:=1;" for the four functions. Perform single-step
debugging (F10) to locate the failure in the user program (refer to the previous debugging steps of
pointer failure for specific operations).

● Solution
Add a condition check of "division by zero" in the code where the operation takes place. For 32-bit
variables, a threshold value of 10E-6 (0.000001) is commonly used. For 64-bit variables, the
precision is adjusted as needed, with a minimum of 10E-15, as shown in the figure below.

Implicit Data Type Conversion

Assignments between signed and unsigned variables with the same data width may lead to
unexpected values if forced, potentially causing program execution failure when variables are
referenced in other program segments, as shown in the figure below.

● Locating steps
None

FAQ

‑474‑

● Solution
During the compilation process, the user program will generate warning information. Pay attention
to the specific content of the compilation warning information and ensure that the data types on
both sides of assignment operation are the same.

Infinite Loop

If the for, while, and repeat loop conditions are improperly used, the system will continuously execute
the code segments within the loop body, causing the failure to execute code outside the loop body, for
example, failure in LED display refresh and communication between the PLC and programming
software. In the case of EtherCAT tasks, an infinite loop program could disrupt the data retention upon
power failure, leading to the loss of retained data.

● Locating steps
Introduce a count variable in the for, while, or repeat loop. When the count variable reaches a
certain value, the loop should exit. Log in to the PLC and add a breakpoint at the loop exit position
"EXIT". If the loop count value exceeds the expected value, the program will run to the breakpoint.
For details about how to use breakpoints, see the user guide.

As shown in the figure below, the variable "udiCnt" specifies the loop execution count. After the
code within the while loop body is executed 100001 times, the program runs to the "EXIT" point.

● Solution
Follow the locating steps provided above, or add a timer within the loop body. When the timer
reaches a specific time limit, the program should exit the loop.

Function Block Instance Calling in Multiple Tasks

Internal variables of a function block instance retain their values of the first execution after the second
execution within a scan cycle (similar to static variables in C/C++). When tasks A and B simultaneously
call the same function block instance (including methods, actions, attributes, and transitions), a
situation may arise where the function block instance of task A is interrupted by task B that has a
higher priority. If task A resumes after task B completes, values of internal variables within the function
block instance may not match the values before the interruption, potentially affecting the normal
execution of the function blocks in tasks A and B.

● Locating steps
None

● Solution
There is no direct solution. The fault must be prevented during the initial code design phase.

FAQ

‑475‑

Global Variable Calling in Multiple Tasks

When both tasks A and B writes data to the same variable, a situation may arise where task A is writing
data to the global variable but task B that has a higher priority preempts CPU resources and writes
values of global variables. If task A resumes after task B completes, the values of global variables may
not match the values before the preemption, potentially affecting the normal execution of the function
blocks.

Example: "wTemp" is a global variable consisting of 2 bytes, with "wTempH" and "wTempL" as the
higher byte and lower byte of "wTemp", respectively. When task A completes writing data to
"wTempL" but has not written data to "wTempH", task B with higher priority preempts CPU resources.
After task B writes data to both "wTempL" and "wTempH", it releases the CPU resources and task A
continues to write data to "wTempH". Since "wTempL" has been modified by task B, the value of
"wTemp" in task A may not be within the expected range.

● Locating steps
None

● Solution
Only one task can write data to global variables. This fault must be addressed during the code
design phase. (Inovance medium-sized PLCs can potentially address this type of faults using mutex
semaphores. However, this is only suitable for advanced developers with deep understanding of
operating systems. Ordinary users should not attempt this without proper knowledge, as misuse
can lead to PLC breakdown.)

Others

For user program breakpoints, single-step, and other debugging methods, see the user manual. The
relevant content can be found in the user manual.

8.3 Failure to Obtain Folders

Symptoms

When you attempt to check folders on the "Device" page of the InoProShop software, the "Get
directory-entries failed!" message pops up.

Cause Analysis

A user logs in to the PLC as the default user "Everyone". Before configuration on the "Users and
Groups" page, the Everyone user has the administrator privileges to access folders. After configuration
on the page, the Everyone user no longer has the privileges.

Solution

1. On the "Device" page, click "Users and Groups".

FAQ

‑476‑

2. In the "Groups" area, select "Administrator" and click "Edit". The "Edit Group Administrator" dialog
box is displayed.

3. Select "User Everyone" and click "OK" to add the "Everyone" user to the "Administrator" group.
4. Click "Download" for the configurations to take effect.

Appendix

‑477‑

9 Appendix

9.1 Communication Protocols for Communication Ports

9.1.1 Overview

The medium-sized PLCs are provided with Mini-USB ports, serial communication ports, Ethernet ports,
EtherCAT ports, Mini-SD card slots, CAN communication ports, PROFIBUS DP communication ports,
high-speed I/O interfaces, and local bus expansion interfaces.

9.1.2 Mini-USB Port and Built-in Communication Protocol

The Mini-USB port is used to download PLC user programs and monitor and debug the system.
Therefore, the port has a specific communication protocol, and you do not need to select one. As long
as a USB drive is installed on the PC, you can use InoProShop to download or monitor user programs
of the medium-sized PLCs on the PC at any time.

As the built-in download protocol for the Mini-USB port is a proprietary protocol of Inovance, you
cannot download programs of medium-sized PLCs through third-party programming software.

After the InoProShop programming software is installed for the first time, the USB drive is
automatically installed. To install different versions of InoProShop on one PC, you need to install them
in different directories.

9.1.3 COM Communication Ports and Built-in Protocols

COM0 and COM1 ports are basic ports of a PLC for external communication. They are integrated on one
DB9 physical port, mainly used for RS485 or Modbus communication.

The following table lists protocols supported by COM0 and COM1 ports as well as definitions of set
units.

COM0/COM1
Protocol

Half/Full
Duplex Mode

Communica
tion Format

Baud Rate Data Bit Stop Bit Parity Bit

Modbus-RTU
master

Half duplex Fixed
4800 bps

9600 bps

19200 bps

38400 bps

57600 bps

115200 bps

7-bit

8-bit

1-bit

2-bit

None

Odd

Even

Modbus-RTU slave Half duplex Fixed 8-bit

RS485 free protocol Half duplex Unfixed 8-bit

Modbus-ASCII
master

Not
supported - - - - -

Modbus-ASCII slave
Not
supported - - - - -

The following describes these COM communication protocols.

● Modbus master protocol

Appendix

‑478‑

As a control host, the PLC usually uses this protocol to communicate with AC drives, servos, and
other slave computers, or to read data from smart meters and sensors. PLCs communicate with
each other through the Modbus protocol, improving the flexibility of communication.

● Modbus slave protocol
A host computer uses the Modbus slave protocol to read internal data from PLCs that serve as
slaves. When you set the port as a Modbus slave on the PLC, the PLC automatically processes and
responds based on the communication instruction from the host computer.

● Free communication protocol
Protocols other than PLC built-in communication protocols are called "free communication
protocols". To enable communication through a free protocol, programmers must fully understand
the frame structure definition of the protocol. Programmers prepare data strings to be sent (stored
in the register) in user programs in advance based on the slave communication protocol and
required communication operations. The system automatically sends the data in the specified
register area to serial ports successively. Then, the serial ports receive the data and save the
received data in specified areas. Upon receipt of data of the specified length, the serial ports notify
user programs through system flags so that user programs can parse received data based on the
protocol.

The register can be operated through the AM600 series free communication protocols. That is, user
programs can directly access the communication buffer to process the sent and received data in
the buffer, implementing communication through user-defined protocols. You need to configure
and prepare for serial communication during programming so that communication can be
conducted based on requirements. Related tasks include configuring the data sending and
receiving mode of serial ports, baud rate, bits, parity bit, software protocols, and timeout
conditions; preparing data for the sent and received data buffer; processing sending and receiving
labels.

9.1.4 CANopen Communication Protocol

The CANopen communication protocol adopts the function block to read and write SDOs/PDOs,
implementing communication. This protocol assigns communication variables (object dictionary data
in the protocol) to corresponding input parameters of the function block and triggers execution
conditions to access slave data. The AM600 series PLCs can function as the CANopen master only.

9.1.5 CANlink Communication Protocol

The CANlink communication protocol presets communication variables, communication frequency,
and trigger conditions in a configuration table to implement communication. When a PLC serves as the
CANlink master, it can be connected to various Inovance remote expansion modules, MD380 or MD500
AC drives, IS620 servos, and other slaves. When a PLC serves as the CANlink slave, it can be connected
to other devices.

The CANlink3.0 communication protocol provides the following communication frames:

● Communication frames triggered in timed or conditional mode are used to exchange
communication data between ordinary slaves.

Appendix

‑479‑

● Synchronous trigger frames are used to control multiple highly real-time devices that can be
controlled synchronously, for example, synchronous position control of multiple servos.

● Heartbeat frames are used to monitor the communication status of each CANlink slave to promptly
respond to exceptions of the control system, avoiding further losses.

9.1.6 Ethernet Ports and Communication Protocols

The Ethernet port mainly provides the following two functions:

● Download PLC user programs and monitor and debug the system (like the Mini-USB port).
● Implement Ethernet communication using the TCP/IP Modbus communication protocol or free

communication protocols.

You can configure communication parameters and address registers in the background for the Modbus
protocol. The PLCs can access register values in user programs to exchange data with remote Modbus
devices. Free communication protocols implement data exchange only by operating the function block
of standard sockets.

9.1.7 EtherCAT Port and Communication Protocol

The EtherCAT port is used for full duplex communication with a baud rate of 1 Mbps in the linear
topology through the standard EtherCAT protocol. The maximum communication distance between
slave nodes is 100 m. The master supports synchronization events and DC mode. The maximum task
jitter of the AM600 system is 120 μs (typical value).

9.1.8 High-Speed I/O Interface

The high-speed I/O interface has high-speed pulse control and high-speed pulse counting functions.

● The high-speed pulse control function is used to control pulse servo drives and stepper drives.
● The high-speed pulse counting function is used to collect A/B-phase, single-phase, CW/CCW pulse

signal frequency and counting.

9.1.9 Mini-SD Card Slot

The Mini-SD card slot is mainly used to upgrade the underlying PLC firmware (unavailable to external
users) and PLC user programs (available to external users).

9.1.10 Local Bus Expansion Interface

A PLC can be directly connected to the I/O module through a local bus expansion interface. The PLC
updates addresses of I/O module data mapped to the PLC based on the internal bus cycle.

You can access the mapped addresses to operate the I/O module.

Appendix

‑480‑

9.1.11 PROFIBUS-DP Port

The PROFIBUS-DP port and CAN port are integrated on one DB9 hardware port. Currently, the DP
function is used only on the AM610 series and reserved for other products.

9.2 Soft Elements

Soft elements are global variables predefined on the programming system, which can be used directly.
As direct variables, soft elements are mapped to the M area (%M) and are retentive at power failure
(RETAIN). The AM600 programming system includes SD soft elements and SM soft elements. SD soft
elements are INT direct global variables. SM soft elements are BOOL direct global variables.

The M area (%M) has a capacity of 512 KB, the first 480 KB of which is for users and the last 32 KB is for
the system. Do not use the address directly. The first 30,000 bytes of the 32 KB space are used for SD
and SM soft elements to implement special functions, such as CANlink, CANopen, high-speed I/O
instructions, and Modbus, as detailed in the following table. You can access the soft elements.

SD Range Function SM Range Function

0 to 7999
Register elements for users: 0 to 7000
for CANlink (CANlink configuration,
compatible with small-sized PLCs)

0 to 7999

Bit elements for users:

0 to 3071 and 8000 to 8511 for CANlink
(CANlink configuration, compatible
with small-sized PLCs)

0 to 7999 indicates Modbus/Modbus
TCP-triggered variables, which are
used by slaves.

8000 to 8999
Register elements for the system:
CANlink and CANopen 8000 to 8999

Bit elements for the system: CANlink
and CANopen

9000 to 9999
Register elements for the system:
high-speed I/O interface only 9000 to 9999

Bit elements for the system: high-
speed I/O interface only

Note
● The system is automatically reset after Modbus-triggered variables are set.
● You can read but not write system soft elements. Otherwise, a system error may occur.

For details about how to use soft elements, see descriptions of CANlink soft elements, Modbus soft
elements, and Modbus TCP soft elements.

Appendix

‑481‑

9.3 Cheat Sheet of Basic Instructions
Type Description Name Category

Arithmetic operation
instruction

Addition ADD Function
Multiplication MUL Function
Subtraction SUB Function
Division DIV Function
Remainder MOD Function

Data processing
instruction

Valuation MOV Function
Batch data transmission BMOV Function
One-to-many data transmission FMOV Function
Obtaining the status of specific
data bit

BON Function

Sum of ON bits SUM Function
Conversion from byte to word BTOW Function
Conversion from word to byte WTOB Function
Byte swap SWAP Function
Data exchange XCH Function

Word logic instruction

AND operation AND Function
OR operation OR Function
XOR operation XOR Function
NOT operation NOT Function

Bit logic instruction

(CmpHCUtils)

Rising edge output PLS Function block
Falling edge output PLF Function block
Alternate output ALT Function block
Bit data output BOUT Function
Bit data setting BSET Function
Bit data reset BRST Function

Shift instruction

Shift left SHL Function
Shift right SHR Function
Rotation left ROL Function
Rotation right ROR Function
Rotation right with carry RCR Function
Rotation left with carry RCL Function
Copy bit data left SFTL Function
Copy bit data right SFTR Function
Copy word data left WSFL Function
Copy word data right WSFR Function
Data read (FIFO) SFRD Function
Data write (FIFO) SFWR Function

Selection instruction

Either one SEL Function
Maximum value MAX Function
Minimum value MIN Function
Limit LIMIT Function
One from multiple MUX Function

Appendix

‑482‑

Type Description Name Category

Comparison instruction

Greater than GT Function
Less than LT Function
Greater than or equal to GE Function
Less than or equal to LE Function
Equal to EQ Function
Not equal to NE Function

Basic mathematical
operation instruction

Absolute value ABS Function
Square root SQRT Function
Natural logarithm LN Function
Common logarithm LOG Function
Exponent EXP Function
Sine SIN Function
Cosine COS Function
Tangent TAN Function
Arcsine ASIN Function
Arccosine ACOS Function
Arctangent ATAN Function
Exponential EXPT Function
Conversion from angle to radian RAD Function

Auxiliary mathematical
operation instruction

(Util library)

Differential DERIVATIVE Function block
Integral INTEGRAL Function block
Integral statistics STATISTICS_INT Function block
Real number statistics STATISTICS_REAL Function block
Variance VARIANCE Function block

Type conversion
instruction

Note: The following data
types are supported: BYTE,
WORD, DWORD, LWORD,
SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT,
REAL, LREAL, STRING,
WSTRING, TIME, TIME_OF_
DAY(TOD), DATE, and
DATE_ADN_TIME(DT).

Boolean conversion BOOL_TO_<TYPE> Function
Byte conversion BYTE_TO_<TYPE> Function
Date conversion DATE_TO_<TYPE> Function
Long integer conversion DINT_TO_<TYPE> Function
Date time conversion DT_TO_<TYPE> Function
Double word conversion DWORD_TO_<TYPE> Function
Integer conversion INT_TO_<TYPE> Function
Word conversion WORD_TO_<TYPE> Function
Real number conversion REAL_TO_<TYPE> Function
Short integer conversion SINT_TO_<TYPE> Function

Character conversion STRING_TO_<TYPE> Function
Clock conversion TIME_TO_<TYPE> Function
Time conversion TOD_TO_<TYPE> Function
Long unsigned integer
conversion

UDINT_TO_<TYPE> Function

Address operation
instruction

Address ADR Function
Address content ^ Function
Bit address BITADR Function
Index INDEXOF Function
Data size SIZEOF Function

Call instruction Call CAL Function
Initialization instruction Initialization INI Function

Appendix

‑483‑

Type Description Name Category

String processing
instruction

(standard library)

String length LEN Function
Left string LEFT Function
Right string RIGHT Function
Middle string MID Function
String concatenation CONCAT Function
String insertion INSERT Function
Character deletion DELETE Function
String replacement REPLACE Function
String finding FIND Function

Bistable instruction

(standard library)

Setting-prior bistable trigger SR Function block

Reset-prior bistable trigger RS Function block
Trigger instruction

(standard library)

Rising edge inspection trigger R_TRIG Function block
Falling edge inspection trigger F_TRIG Function block

Counter

(standard library)

Incremental counter CTU Function block
Decremental counter CTD Function block
Incremental/decremental
counter

CTUD Function block

Timer instruction

(standard library)

Timer TP Function block
Power-on delay timer TON Function block
Power-off delay timer TOF Function block
Real-time clock RTC Function block

BCD conversion
instruction

(Util library)

BCD-to-integer conversion BCD_TO_INT Function

Integer-to-BCD conversion INT_TO_BCD Function

Bit/byte operation
instruction

(Util library)

Bit extraction EXTRACT Function
Bit packing PACK Function
Bit unpacking UNPACK Function block
Bit valuation PUTBIT Function

Controller instruction

(Util library)

PD controller PD Function block
PID controller PID Function block
PID controller PID_FIXCYCLE Function block

Signal generator
instruction

(Util library)

Pulse signal generator BLINK Function block

Cyclic signal generator GEN Function block

Robot operation
instruction

(Util library)

Characteristic curve CHARCURVE Function block
Integral speed limit RAMP_INT Function block
Real number speed limit RAMP_REAL Function block

Analog processing
instruction

(Util library)

Hysteresis HYSTERESIS Function block

Upper/lower limit alarm LIMITALARM Function block

Appendix

‑484‑

Type Description Name Category

PLC system information
instruction

(SysHCPlcInfo library. For
details, see help
information about
instruction use.)

Obtaining the system hardware
information

SysHC_HWInfo Function block

Obtaining the system software
information

SysHC_SWInfo Function block

Obtaining the CPU information SysHC_CPUInfo Function block
Obtaining the CPU-related fault
diagnosis information

SysHC_CPUDiagnose Function block

Obtaining the fault diagnosis
information about the
ModbusRTU slave

SysHC_
ModbusRtuDeviceDiagnose Function block

Obtaining the fault diagnosis
information about the access
from the ModbusRTU master to
slave

SysHC_
ModbusRtuSlaveDiagnose Function block

Obtaining the fault diagnosis
information about the
ModbusTCP slave

SysHC_
ModbusTcpDeviceDiagnose Function block

Obtaining the fault diagnosis
information about the access
from the ModbusTCP master to
slave

SysHC_
ModbusTcpSlaveDiagnose Function block

Setting the network information SysHC_NetworkConfig Function block
Obtaining the network
information

SysHC_NetworkInfo Function block

Obtaining the path information
of the USB flash drive

SysHC_UDiskPath Function block

Obtaining the Boot version GetBootVersion Function
Obtaining the PLC version GetPLCVersion Function
Obtaining the device name GetProductName Function
Obtaining the runtime version GetRuntimeVersion Function
Obtaining the SN GetSerialNumber Function
Saving the RETAIN information SysHC_SaveAllRetains Function

Time and date

(CmpHCUtils)

Setting the current system clock SetSystemDate Function block
Obtaining the current system
clock and time zone

GetSystemDate Function block

Obtaining the operation time of
the system, in milliseconds,
microseconds, or nanoseconds

GetSystemTime Function block

Table and range

(CmpHCUtils)

Dead zone control BZAND_TAB Function
Mean calculation MEAN_TAB Function
Zone control ZONE_TAB Function
Full data reset ZRST_TAB Function
Obtaining the table coordinates SCL_TAB Function
Sorting the table data SORT_TAB Function
Ramp RAMP_TAB Function block
Data summarization and
calculation

WSUM_TAB Function

Appendix

‑485‑

Type Description Name Category

Communication
instruction

(CmpHCUtils)

Creating a communication
service on the TCP server

TCP_Server Function block

Creating a communication
service on the TCP client

TCP_Client Function block

Creating a TCP connection and
connecting to the server TCP_Connect Function block

Receiving TCP communication
data

TCP_Receive Function block

Sending TCP communication
data

TCP_Send Function block

Creating a UDP communication
connection

UDP_Peer Function block

Receiving UDP communication
data

UDP_Receive Function block

Sending UDP communication
data

UDP_Send Function block

Filter instruction

(CmpHCUtils)

Limiting filter LimitingFilter Function block
Median filter MedianFilter Function block
Arithmetic average filter ArithmeticAverageFilter Function block
Recursive average filter RecursiveAverageFilter Function block
Median average filter MedianAverageFilter Function block
Limiting average filter LimitingAverageFilter Function block
First-order lag filter FirstOrderLagFilter Function block
Weighted recursive average filter WeightRecursiveAverageFilter Function block
Debounce filter DebounceFilter Function block
Limiting debounce filter LimitingDebounceFilter Function block
Obtaining the operation time of
the system, in milliseconds,
microseconds, or nanoseconds

GetSystemTime Function block

Queue (CmpHCUtils) FIFO queue FIFO Function block

9.4 PLC Programming Software Upgrade

9.4.1 Version

● The programming software InoProShop V1.1.0 and earlier versions are incompatible with the latest
version in terms of persistent variable, hard disk partition, high-speed I/O function, and EtherCAT
bus I/O module. It is recommended to upgrade the software to the latest version. In addition,
versions (earlier than V1.3.2) not mentioned in this section are not recommended. Contact local
vendors if necessary.

● Slave files, for example, EtherCAT description file (.xml), CANopen description file (.eds), and
PROFIBUS DP description file (.gds), must match the slave firmware version. If you have any
questions, contact local vendors. Slaves not installed for V1.3.2 by default can be supported by
installing corresponding device files.

● For details about how to use the AM400, AM600, and AC800 series, see hardware manuals or contact
vendors.

Appendix

‑486‑

9.4.2 Upgrade Method

● Application software installation
A Windows 7 or Windows 10 operating system is required, and the memory must not be less than 4
GB. It is recommended to use a 64-bit instead of a 32-bit Chinese-English operating system.

Install the software based on the wizard or set the installation path during installation as required.
The default installation path is C:\Inovance Control\InoProShop.

Note
Do not install the software in the same folder with other versions.

● User project
When you open a project in an earlier version, the "Project version information" window is
displayed. If you do not want to update the project, select "Not update" to edit or use it directly.
However, the ladder diagram must be updated.

You can open the "Project version information" window using either of following methods:

■ Open an existing project to pop up the window automatically.
■ Choose "Project" > "Project version information".

Two project update modes are supported:

1. Full update: In the "Project version information" window, select "Set All to Latest Version" and
then click "OK".

2. Partial update: In the "Project version information" window, select the options to be updated and
then click "OK".

Note
The ladder diagram must be updated.

Online firmware upgrade

PLC (CPU module) upgrade

1. Choose "Tool" > "InoProShop Tool" > "Scan Network" and select a device.

Appendix

‑487‑

2. Choose "Upgrade" > "PLC Firmware Upgrade" and click "Upgrade".

EtherCAT module upgrade

1. Choose "Device" > "General", select "Enable Expert Settings", and then choose "Download" > "Run".

Appendix

‑488‑

2. Choose "Device" > "Online" and then click "Bootstrap" in the "State Machine" section. After the
device enters the Bootstrap state, click "Download" in the "FoE" section. In the dialog box that is
displayed, find and select the corresponding firmware file with the extension .bin to start upgrade.

Library upgrade

See "How do I add a compiled library to a project?" in FAQs.

EtherCAT device file upgrade

1. Choose "Device" > "General", select "Enable Expert Settings", and then choose "Download" > "Run".

Appendix

‑489‑

2. Choose "Device" > "Online" and then click "Write E2PROM XML" in the "E2PROM access" section. In
the dialog box that is displayed, find and select the corresponding XML file to start upgrade.

9.4.3 FAQs

How do I check the version?

Double-click "Device (XXX)" in the device tree, click "Upgrade", and then click "Get PLC Information".

Appendix

‑490‑

What can I do if the target system does not match the connected device?

Figure 9-1 Target system not matching the connected device

Cause: The PLC version in InoProShop is V3.5.11.10, while the actual PLC version is V3.5.10.20. The
device version in InoProShop cannot be later than the actual version.

● Solution 1: Upgrade the PLC firmware to match the PLC device version (V3.5.11.10).

1. Right-click "Device (XXX)" and select "Update device". On the window that is displayed, select
"Display all versions (for experts only)" to find the corresponding version and click "Update
Device". If no matching version is found from the device list, you can select a version carrying the
same first three numbers.

As shown in the following figure, the version "3.5.10.20" does not exist in the list. In this case,
you can select "3.5.10.40" (carrying the same first three numbers) and update the device.

Appendix

‑491‑

Figure 9-2 Updating the PLC version

2. Rescan and select the corresponding device. No error is reported.
3. Click "Upgrade" and upgrade the firmware in online mode in the "Firmware Upgrade" section.

Figure 9-3 Online firmware upgrade

4. After the firmware is upgraded, upgrade the PLC to V3.5.11.10 as described in Step 1. Then, you
can use the latest version of PLC and its firmware.

● Solution 2: Degrade the device to match the firmware version.
Take Step 1 in Solution 1. However, device files of PLCs of earlier versions can be used only with IEC
libraries that match the PLC versions.

When an IEC library is added to the project, as the latest version of the IEC library is added by
default, a compilation error may occur during program compilation because the library version
does not match the PLC version. In this case, you can change the IEC library version manually.

What can I do if a compilation error occurs when I add programming software of the lat-
est version to a library?

Use V1.3.2 to open a project created by software in versions earlier than V1.3.0 (V1.2.0 as an example),
add the IEC library CmpBasic and use the MC_ResetDrive function block. A compilation error occurred.

Appendix

‑492‑

Figure 9-4 Compilation error occurred while adding a library

Cause: The version of specific libraries that the CmpBasic library depends on (SM3_Basic and
IODrvEtherCAT libraries) does not match the version of dependent specific libraries in Library Manager.
The IODrvEtherCAT version that CmpBasic (V1.8.0.0) depends on is V3.5.11.10, while the version
referenced by the project is V3.5.10.0. The SM3_Basic version that CmpBasic (V1.8.0.0) depends on is
V4.2.2.0, while the version referenced by the project is V4.2.1.0.

Solution:

1. Double-click "Library Manager" to display the Library Manager page. Select CmpBasis from the
library list. The library version is V1.8.0.0.

2. On the Library Manager page, select "Properties". In the window that is displayed, select 1.6.0.0
(project created by V1.2.0) from the "Specific version" drop-down list in the "Version" section, which
is the IEC library version matching the PLC, and then click "OK".

Figure 9-5 Updating the IEC library manually

Appendix

‑493‑

3. Compile the project, as shown in the following figure.

Figure 9-6 Updated IEC library and compilation information

Note
The major cause for library incompatibility is that the version of the system library that the library depends on does
not match the version of the system library included in the previous project. Common libraries include IODrvEther-
CAT and SM3_Basic.

How do I add a compiled library to a project?

The following section uses the compiled library CmpBasic. compiled-library of V1.11.0.0 and software
tool of V1.2.60 as an example. The operations are applicable to other versions of software tool.

1. Install a compiled library.

a. Open a project and double-click "Library Manager".
b. On the "Library Manager" page, click "Library repository". In the dialog box that is displayed, click

"Install".

Appendix

‑494‑

c. Find the compiled library (CmpBasic.compiled-library V1.11.0.0) and open it.

2. Add the library to the project.

a. On the "Library Manager" page, click "Add library". In the dialog box that is displayed, click the
Add sign before "Miscellaneous".

Appendix

‑495‑

b. Select CmpHCBasic and click "OK". By default, the latest version is added to the project.

3. Select the library version manually.

a. On the "Library Manager" page, select the library CmpBasic to be updated and click "Properties".

Appendix

‑496‑

b. In the dialog box that is displayed, select a version from the "Specific version" drop-down list in
the "Version" section. (Confirm that the library version matches the software tool. Otherwise, the
system reports a compilation error when you use the library).

Note
● To add a library to the project or update a library, choose "Build" > "Clear all" first.
● After the library is compiled, log in and download it again (a PLC error may be caused by online download).

9.5 PLC User Program Upgrade

9.5.1 Upgrade Using the InoProShop

Procedure:

1. Choose "Tools" > "InoProShop Tool" to access the "InoProShop Tool" page.
2. Click "Help" to open the help manual.
3. Upgrade the PLC user program. For details, see the help manual.

9.5.2 Upgrade Using an SD Card

Prerequisites: A TF card (≤ 32 GB) is available.

Procedure:

1. Open a compiled project and choose "Build" > "Pack Boot Project".

2. On the "User program packager" page, click "Pack" to pack the user program.

Appendix

‑497‑

3. The Application.userprg file is generated in the directory for storing the user program. Copy this file
to the root directory of the SD card.

Note
The file cannot be identified if it is stored to other directories of the SD card.

4. When the PLC is powered off, insert the SD or TF card into the SD card slot of the PLC.
5. When the DIP switch is set to Stop, power on the PLC. The user program starts upgrade

automatically.
In this case, the LED flashes 0 alternatively. This process lasts for approximately 20 seconds.

6. The upgrade process is completed when the LED stops flashing 0 alternatively. Remove the SD or TF
card, and then power off and restart the PLC. The user program update is completed.

7. When the DIP switch is set to Run, upload and run the upgraded user program.

9.6 AM400 or AM600 High-Speed I/O Wiring

The CPU module of the AM400, AM600, and AM610 systems supports the high-speed I/O data
processing function. The module has a built-in high-density port that provide 16 channels of high-
speed inputs. The first six channels support 24 V single ended input or differential input, while the

Appendix

‑498‑

latter 10 channels support 24 V single ended input. The following section describes how to wire the
high-speed I/O signal interfaces and adapter terminals.

The following figure shows the high-density port (screenprint: CN5).

II
I

0 1 2 3 7654

30 1 4 5 6 72

4 5 6 73210RUN
ERR

SF

BF
CANRUN
CANERR

RUN STOP

C
N

4 E
therC

A
T

C
N

3 E
therN

E
TC

N
2 C

A
N

C
N

1 R
S

485

C
N

5

12

40 39

MFK

40 39

2 1

CN5

Figure 9-7 High-speed port on the CPU module of the AM600 and AM610 systems

You need to connect the internal circuits and complete external wiring for the port based on actual
needs.

Appendix

‑499‑

Note
To avoid wiring errors, connect the high-speed DI pins of the first six channels by referring to the application exam-
ple below.

Appendix

‑500‑

If adapter wiring is completed using the SIRON T024-K adapter terminals, refer to the mappings
between the terminal numbers and CN5 pin numbers of the module, as shown in the following figure.

The following components in the preceding figure can be purchased from Inovance: ① high-density
expansion cable; ② connecting plug (required for customized cable); ③ adapter terminal block. The
order information is as follows.

No. Part Number Description

① 15300119
40-pin FCN-to-MIL high-density expansion cable (500 mm, including two 40-
pin FCN connecting plugs)

② 15050180
40-pin FCN connecting plug (If you do not purchase a high-density
expansion cable, you can purchase this plug to make a cable by yourself.)

③ 15020452 40-pin MIL-to-screw wiring terminal block

SIRON T024-K adapter terminal block

Appendix

‑501‑

Note
The pin definition and wiring instructions for the high-density port on the CPU module are described above. Read
the information carefully before you perform wiring operations.

Application example

The first 4 channels of the high-speed I/O interface support single ended and differential signals. Pay
attention to wire them correctly. The following uses Xn0 as an example to describe the wiring.

1. Wiring for 24 V level input of the PNP type

2. Wiring for 24 V level input of the NPN type

Appendix

‑502‑

3. Wiring for 5 V level input of differential signals

9.7 High-Speed I/O Compatibility

9.7.1 Introduction to Earlier and Latest UIs

CmpHCBuiltinIo and CmpHSIO represent the high-speed I/O function block libraries for earlier versions
and the latest version, respectively.

InoProShop in V1.2.0 (temporary version: 1.1.60.0), AM600 firmware in V1.19.70.0, and FPGA in A624
and later versions support the latest high-speed I/O function block library.

Appendix

‑503‑

Figure 9-8 UI for high-speed I/O function block library in earlier versions

Figure 9-9 UI for high-speed I/O function block library in the latest version

● The latest version of high-speed I/O device can only be used with the latest version of high-speed I/
O library. The earlier version of high-speed I/O device can only be used with the earlier version of
high-speed I/O library.

Appendix

‑504‑

● To use functions of the latest version of high-speed I/O device, you need to upgrade both PLC
firmware and FPGA.

● The latest and earlier high-speed I/O functions are compatible (except the homing function). If the
latest high-speed I/O device is mixed with the earlier high-speed I/O device (the latest high-speed I/
O project with an earlier PLC high-speed I/O device or an earlier I/O project with the latest PLC high-
speed I/O device), a message is displayed reminding you to switch the PLC, as shown in the
following figure. You need to switch the version of high-speed I/O device and restart the PLC.

● If you do not want to switch the PLC, you can switch the version of high-speed I/O device for the
project on the "Update Device" page.
As shown in the following figure, the earlier high-speed I/O device is V0.0.0.10, and the latest I/O
device is V0.0.0.20.

● If you use earlier software tool (for example, V1.1.0 or V0.0.9.10) to download an earlier high-speed
I/O project to the PLC with the latest version of firmware (later than V1.19.70.0), the error indicating
version not matched is reported.
Solution: Install the latest version of software tool, and use it to open and download an earlier
project (the high-speed I/O function not used) to the PLC with the latest version of firmware. In this
case, no error is reported.

9.7.2 High-Speed I/O Diagnosis

High-speed I/O device of the latest version

Basic format:

Library + function block + error code

3 3-bit

Appendix

‑505‑

● Library: The default library of the high-speed I/O device is 0.
● Function block: Function blocks are numbered from 01.
● Error code: The error code starts from 01. Common error codes are listed in the following tables. An

error code less than 500 indicates a major error, whereas an error code greater than 500 indicates a
function block error. For example, in the error code 14506, 14 indicates HC_WriteParameter, and
506 indicates a parameter error. In the error code 31520, 31 indicates MC_WriteParameter_P, and
520 indicates a parameter error.

Table 9–1 List of counter error codes
Error Code Definition Description

001 ERR_COUNTERID_INVALID
The entered channel number is invalid. The value
range is from 0 to 7.

003 ERR_CNT_OVERFLOW A counter overflow or underflow error occurs.

004 ERR_COUNTER_NOT_CHOSEN
No high-speed function is selected. Select one in the
programming software.

007 ERR_COUNTER_NOT_ENABLED HC_Counter is disabled.

101
ERR_WRITEINTERRUPTPARAMETER_
UNVALIAD

The write interrupt parameter is invalid.

102 ERR_INTERRUPT_NOT_CHOSE Interrupt Input is not selected in the programming
software.

501
ERR_SETCOMPARE_IMREFRESHCYCLE_
OVERFLOW

The comparison value ImRefreshCycle exceeds 30000.
The value range is from 0 to 30000.

502
ERR_SETCOMPAREM_NUMBERS_
OVERFLOW

The value range of HC_SetCompareM number is from
1 to 100.

503 ERR_PREWR_VALUE_OVERFLOW The preset value is out of range.

504 ERR_AVERAGE_PARA_UNVALIAD
The set average frequency and average rotational
velocity are invalid.

505 ERR_ROTATION_PULSES_UNIT_UNVALIAD The set number of pulses per rotation is invalid.

506 ERR_WRITEBOOlPARAMETER_UNVALIAD The set parameter HC_WriteBoolParameter is invalid.

507 ERR_READBOOLPARAMETER_UNVALIAD The obtained parameter HC_ReadBoolParameter is
invalid.

508 ERR_MEASURE_WIDTH_OVERFLOW The measured width is invalid.

509
ERR_SETCOMPAREM_IMREFRESHCYCLE_
OVERFLOW

The comparison value ImRefreshCycle exceeds 30000.
The value range is from 0 to 30000.

510 ERR_PRESET_TRIGGERTYPE_OVERFLOW The preset parameter is invalid.

511 ERR_WRITEPARAMETER_UNVALIAD The set parameter HC_WriteParameter is invalid.

513 ERR_FUNC_COUNTERID_INVALID
The special function channel number is invalid. The
value range is from 0 to 3.

514
ERR_COUNTER_NOT_CHOSE_EXETERNAL_
X

External Trigger is not selected in the programming
software.

515 ERR_CNT_FORMAT_NOT_RING
The ring counting type is incorrect. Select a correct
type in the programming software.

516 ERR_RING_DOWNVAL_BEYOND_UPVAL
The lower limit for ring counting is equal to or greater
than the upper limit.

517 ERR_SAMPLE_VALUE_LESS
The sampling time is too short. The value range is
from 10 to 65535, in ms.

518 ERR_RING_VALUE_OVERFLOW The ring counting is out of range.

Appendix

‑506‑

Table 9–2 List of high-speed axis error codes

Error Code Definition Description

001 ERR_NOT_POWER MC_Power is disabled.

002 ERR_UP_SOFTWARE_LIMIT
The current position is beyond the software stroke
limit (Up).

003 ERR_DOWN_SOFTWARE_LIMIT
The current position is beyond the software stroke
limit (Down).

004 ERR_AXIS_FUNC_UNUSED
The high-speed axis is disabled. Enable the axis in the
programming software.

005 ERR_INPUT_CHANNAL_NUM_INVALID The axis number is invalid. The value range is from 0
to 3.

006 ERR_DEST_POS_OVER_SOFT_UP_LIMIT The target position is beyond the upper software
limit.

007
ERR_DEST_POS_OVER_SOFT_DOWN_
LIMIT

The target position is beyond the lower software limit.

010 ERR_POS_DECPOINT_OVERLOW
Invalid deceleration point: In position mode, when the
device is repositioned, the deceleration length is
greater than the actual distance.

011 ERR_VEL_DECPOINT_OVERLOW
Invalid deceleration point: When you switch from the
velocity mode to the position mode, the deceleration
length is greater than the actual distance.

012 ERR_POS_PLSNUM_OVERLOW The maximum PLSNUM positioning length
2147483647 is exceeded.

013 ERR_POS_DECPOINT2_OVERLOW
An error occurs while recomputing the deceleration
point.

501 ERR_ACC_SET_OVERFLOW The acceleration exceeds the maximum value set by
MC_WriteParameter_P.

502 ERR_ACC_SET_LOW The acceleration is below the minimum value set by
MC_WriteParameter_P.

503 ERR_DEC_SET_OVERFLOW The deceleration exceeds the maximum value set by
MC_WriteParameter_P.

504 ERR_DEC_SET_LOW The deceleration is below the minimum value set by
MC_WriteParameter_P.

505 ERR_VEL_SET_OVERFLOW
The set velocity is out of range. Set the velocity in the
programming software or through MC_
WriteParameter_P.

506 ERR_VEL_SET_LOW The set velocity is too low.

508 ERR_VEL_LESS_THAN_STARTVEL
The velocity is lower than the startup offset velocity.
Set the startup offset velocity in the programming
software.

509 ERR_STARTVEL_SET_LOW The starting velocity is too small.

510 ERR_FBD_MOVEMODE_INVALIAD The motion mode of the function block is invalid.
511 ERR_WASNT_STANDSTILL The axis is not in Standstill state.
512 ERR_WASNT_DISABLED The axis is not in Disabled state.
513 ERR_IN_ERRORSTOP The axis is not in ErrorStop state.

514 ERR_NOT_READY_FOR_MOTION The axis is not ready to run.

515 ERR_INVLALID_VELOCITY_MODE The velocity mode is invalid.

516 ERR_INVLALID_POSTION_MODE The position mode is invalid.

520 ERR_AXIS_WRITEPARAMETER_UNVALIAD The MC_WriteParameter_P parameter is invalid.

521 ERR_AXIS_READPARAMETER_UNVALIAD The MC_ReadParameter_P parameter is invalid.

Appendix

‑507‑

Error Code Definition Description

522 ERR_HOME_MODE_UNVALIAD
The homing mode is invalid. Select a valid mode in
the programming software.

523
ERR_AXIS_WRITEPARAMETER_HOME_
MODE_UNVALIAD

The homing mode is invalid.

Errors are classified into axis errors and function block errors.

Conditions for setting the axis to ErrorStop state:

● An axis error occurs.
● A function block occurs when the axis is in DiscreteMotion, ContinuousMotion, or Homing state.

High-speed I/O device of earlier versions

High-speed I/O diagnosis information is displayed on the high-speed I/O self-diagnosis page. For
descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis information.

You can obtain high-speed I/O diagnosis information through high-speed I/O soft elements. High-
speed I/O diagnosis results include channel errors, channel alarms, axis errors, axis alarms, and other
faults. The diagnosis states and diagnosis codes of channel errors, channel alarms, axis errors, and axis
alarms are indicated by soft elements. The diagnosis state indicates whether diagnosis information
exists, and the diagnosis code indicates the error code. The following table shows soft elements,
diagnosis codes, and diagnosis information corresponding to each type.

● Channel error
The following table lists the relationship among the channel number, error flag soft element, and
error diagnosis code soft element.

Channel Number Error Flag Soft Element Error Diagnosis Code Soft Element

0 SM9030 SD9007
1 SM9080 SD9017
2 SM9130 SD9027
3 SM9180 SD9037
4 SM9230 SD9047
5 SM9380 SD9057
6 SM9330 SD9067
7 SM9380 SD9077

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

1001 The channel type does not match.

1002 A counter overflow occurs.
1003 A pulse width measurement overflow occurs.
1011 The lower limit of the ring counter exceeds the upper limit.

1012 The counter type does not match.

1013 The high-speed counting function is not used.

1014 The high-speed counter function does not match.

1015 The preset value is out of range.

1016 The average parameter is invalid.

1017 The set number of pulses per rotation is invalid.

● Channel alarm

Appendix

‑508‑

The following table lists the relationship among the channel number, alarm flag soft element, and
alarm diagnosis code soft element.

Channel Number Alarm Flag Soft Element Alarm Diagnosis Code Soft Element

0 SM9031 SD9008
1 SM9081 SD9018
2 SM9131 SD9028
3 SM9181 SD9038
4 SM9231 SD9048
5 SM9381 SD9058
6 SM9331 SD9068
7 SM9381 SD9078

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

1501 A sampling value overflow occurs.

● Axis error
The following table lists the relationship among the axis number, error flag soft element, and error
diagnosis code soft element.

Axis Number Error Flag Soft Element Error Diagnosis Code Soft Element

0 SM9405 SD9105
1 SM9425 SD9125
2 SM9445 SD9145
3 SM9465 SD9165

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

2001 Indicates the hardware limit in the forward direction.
2002 Indicates the hardware limit in the reverse direction.
2003 The stop upon startup command is ON.
2004 Indicates the software limit in the forward direction.
2005 Indicates the software limit in the reverse direction.
2006 The running CPU module switches to the Stop state.

2007 Drive module ready is OFF.
2008 Zero signal is ON.

2009 Mechanical homing is not executed.

2010 A retry error occurs.
2011 ABS transmission times out.
2012 Indicates sum of ABS transmission.
2013 A speed 0 error occurs.

2014 The acceleration/deceleration setting times out.

2015 The deceleration stop setting times out.

2016 Movement during velocity/position switchover control is out of range.

2017 Velocity/position switchover is disabled.

2018 The current value is changed when the axis is not in Stop state.

2019 The acceleration/deceleration time is set to 0.
2020 The axis is not stopped upon startup.

2021 An axis stop command is received upon startup.

● Axis alarm

Appendix

‑509‑

The following table lists the relationship among the axis number, alarm flag soft element, and
alarm diagnosis code soft element.

Axis Number Alarm Flag Soft Element Alarm Diagnosis Code Soft Element

0 SM9406 SD9106
1 SM9426 SD9126
2 SM9446 SD9146
3 SM9466 SD9166

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

2501 The velocity is out of range.

2502 Target position change is disabled.

2503 Velocity change is disabled.

● Other faults
Other faults indicate diagnosis of invalid input parameters of the high-speed I/O function block. The
diagnosis data cannot be obtained through soft elements. You can check the data on the high-
speed I/O self-diagnosis page and the diagnosis information list page. The following table lists
diagnosis codes and diagnosis information.

Diagnosis Code Diagnosis Information

1018 The channel number of the high-speed input function block is invalid.

1019 The input parameter of the high-speed input function block is invalid.

2022 The channel number of the high-speed output function block is invalid.

2023 The input parameter of the high-speed output function block is invalid.

9.8 Diagnosis Code and Diagnosis Information

9.8.1 Overview

Each diagnosis code has a name, which matches the type name of the corresponding diagnosis
programming interface. For details, see “ Diagnosis Programming Interface” on page 453.

9.8.2 CPU Diagnosis Code

Name Diagnosis Code Diagnosis Information

SDCardError 1 SD card error
FlashError 1 Flash error
SystemError 0x40 High-speed I/O interface board connection error

Appendix

‑510‑

Name Diagnosis Code Diagnosis Information

InterCommError

0x11
No I/O expansion module (inter-board communication error: read
check failure)

0x12
No I/O expansion module (inter-board communication error: write
check failure)

0x13
No I/O expansion module (inter-board communication error: ACK
being high level)

0x14
No I/O expansion module (inter-board communication error: ACK
being low level)

0x21
Actual number of I/O expansion modules below configured value
(inter-board communication error: read check failure)

0x22
Actual number of I/O expansion modules below configured value
(inter-board communication error: write check failure)

0x23
Actual number of I/O expansion modules below configured value
(inter-board communication error: ACK being high level)

0x24
Actual number of I/O expansion modules below configured value
(inter-board communication error: ACK being low level)

0x31
Actual number of I/O expansion modules above configured value
(inter-board communication error: read check failure)

0x32
Actual number of I/O expansion modules above configured value
(inter-board communication error: write check failure)

0x33
Actual number of I/O expansion modules above configured value
(inter-board communication error: ACK being high level)

0x34
Actual number of I/O expansion modules above configured value
(inter-board communication error: ACK being low level)

0x41
I/O expansion module type error (inter-board communication
error: read check failure)

0x42
I/O expansion module type error (inter-board communication
error: write check failure)

0x43
I/O expansion module type error (inter-board communication
error: ACK being high level)

0x44
I/O expansion module type error (inter-board communication
error: ACK being low level)

Appendix

‑511‑

Name Diagnosis Code Diagnosis Information

ConformenceError

(Each bit indicates one
module fault.)

1
I/O module corresponding to slot 1 inconsistent with actual I/O
module configuration

2
I/O module corresponding to slot 2 inconsistent with actual I/O
module configuration

4
I/O module corresponding to slot 3 inconsistent with actual I/O
module configuration

8
I/O module corresponding to slot 4 inconsistent with actual I/O
module configuration

16
I/O module corresponding to slot 5 inconsistent with actual I/O
module configuration

32
I/O module corresponding to slot 6 inconsistent with actual I/O
module configuration

64
I/O module corresponding to slot 7 inconsistent with actual I/O
module configuration

128
I/O module corresponding to slot 8 inconsistent with actual I/O
module configuration

256
I/O module corresponding to slot 9 inconsistent with actual I/O
module configuration

512
I/O module corresponding to slot 10 inconsistent with actual I/O
module configuration

1024
I/O module corresponding to slot 11 inconsistent with actual I/O
module configuration

2048
I/O module corresponding to slot 12 inconsistent with actual I/O
module configuration

4096
I/O module corresponding to slot 13 inconsistent with actual I/O
module configuration

8192
I/O module corresponding to slot 14 inconsistent with actual I/O
module configuration

16384
I/O module corresponding to slot 15 inconsistent with actual I/O
module configuration

32768
I/O module corresponding to slot 16 inconsistent with actual I/O
module configuration

IOModulePosError (Each
bit indicates one
module fault. As fault
information is displayed
on the I/O module, the
diagnosis information is
not displayed but
flagged.)

1 I/O module corresponding to slot 1 faulty

2 I/O module corresponding to slot 2 faulty

4 I/O module corresponding to slot 3 faulty

8 I/O module corresponding to slot 4 faulty

16 I/O module corresponding to slot 5 faulty

32 I/O module corresponding to slot 6 faulty

64 I/O module corresponding to slot 7 faulty

128 I/O module corresponding to slot 8 faulty

256 I/O module corresponding to slot 9 faulty

512 I/O module corresponding to slot 10 faulty

1024 I/O module corresponding to slot 11 faulty

2048 I/O module corresponding to slot 12 faulty

4096 I/O module corresponding to slot 13 faulty

8192 I/O module corresponding to slot 14 faulty

16384 I/O module corresponding to slot 15 faulty

32768 I/O module corresponding to slot 16 faulty

Appendix

‑512‑

Name Diagnosis Code Diagnosis Information

FunctionErrorCode

(Each bit indicates one
bus fault, which is only
flagged.)

0x01 DP bus faulty

0x02 EtherCAT bus faulty

0x04 CANopen bus faulty

0x08 CANlink bus faulty

0x10 Modbus TCP faulty

0x20 Modbus serial port 0 faulty

0x40 Modbus serial port 1 faulty

0x80 High-speed I/O faulty

Note
As EtherCAT is implemented through CODESYS, the PLC cannot obtain EtherCAT diagnosis information directly, and
EtherCAT bus flags are invalid currently.

9.8.3 I/O Module Diagnosis Code

Name Module Type Diagnosis Code Diagnosis Information

BaseInfo All 64 System shut down upon fault

ModuleError (Each bit
indicates one module
fault.)

AI
2 No external load voltage

4 Analog chip connection error

AO

2 No external load voltage

4 Analog chip connection error

8 Analog chip overheated

ChannelError[i]

(Each array element
indicates one channel
diagnosis code, and each
bit indicates one fault.)

AI

2 Overflow
4 Underflow
8 Above the upper limit

16 Below the lower limit
32 Disconnected

AO

2 Overflow
4 Underflow
8 Current disconnected
16 Voltage short-circuited

32 Digital to Analog Converter (DAC)
channel hardware fault

Appendix

‑513‑

9.8.4 PROFIBUS-DP Diagnosis Code

Name Diagnosis Code Diagnosis Information

ExtDiagData[0]

(Each bit indicates one fault.)

0x02 Unready to exchange data

0x04 Incorrect configuration

0x08 Expanded diagnosis information existing on
the slave

0x10 The requested function not supported by the
slave

0x20 Invalid slave response

0x40 Incorrect parameter

0x80 Locked by different masters

ExtDiagData[1]

(Each bit indicates one fault.)

0x01 Resetting the parameter

0x02 A static diagnosis

0x08 Activated watchdog monitoring

0x10 Processing slave data in latch mode

0x20 Processing slave data in synchronous mode

0x80 The slave not activated by the master

ExtDiagData[2]

(Each bit indicates one fault.)
0x80 Diagnosis data overflow

ExtDiagData[3] (master address) - -

ExtDiagData[4] and ExtDiagData[5]

(slave ID)
- -

Note
The first 6 bytes correspond to the basic diagnosis, and the following diagnosis data bits correspond to the ex-
panded diagnosis. For details, see "DP Diagnosis".

9.8.5 CANlink Diagnosis Code

Name Diagnosis Code Diagnosis Information

CmdFrameError (diagnosis code:
remainder when divided by 100)

1 Invalid command code
2 Abnormal command code address
3 Value out of allowable range

4 Invalid command code operation

5 Invalid command code length

6 Command code timeout

CfgFrameError

(diagnosis code: remainder when
divided by 100)

1 Incorrect configuration code

2 Incorrect configuration index

3 Incorrect configuration information

5 Incorrect configuration data length

6
Configuration frames failing to
respond

Appendix

‑514‑

9.8.6 Modbus Diagnosis Code

Name Diagnosis Code Diagnosis Information

DiagData

0x70 Incorrect Modbus slave address
0x71 Incorrect data frame length, serial port 0 (COM0)

0x72 Invalid data address
0x73 CRC error
0x74 Unsupported command code

DiagData

0x75 Reception timeout

0x76 Invalid data value
0x77 Buffer overflow
0x78 Frame error
0x79 Serial port protocol error

0x7C Address error
0x7D No data received
0x7E Incorrect data returned by the slave

0x80 Incorrect Modbus slave address
0x81 Incorrect data frame length, serial port 1 (COM1)

0x82 Invalid data address
0x83 CRC error
0x84 Unsupported command code

0x85 Reception timeout

0x86 Invalid data value
0x87 Buffer overflow
0x88 Frame error
0x89 Serial port protocol error

0x8C Address error
0x8D No data received
0x8E Incorrect data returned by the slave

0x90 Incorrect Modbus slave address
0x91 Incorrect data frame length, Ethernet (Modbus TCP)

0x92 Invalid data address
0x93 CRC error
0x94 Unsupported command code

0x95 Reception timeout

0x96 Invalid data value
0x97 Buffer overflow
0x98 Frame error
0x99 Serial port protocol error

0x9A Slave not connected
0x9B Incorrect protocol identifier

0x9C Address error
0x9D No data received
0x9E Incorrect data returned by the slave

0x9F Number of connected clients out of range

0xA0 Invalid data value

Appendix

‑515‑

9.8.7 EtherCAT Diagnosis Code

EtherCAT fault IDs are divided into EtherCAT bus fault IDs and EtherCAT slave fault IDs. The EtherCAT
bus fault IDs describe master and slave faults with the variable "m_LastError", while the EtherCAT
slave fault IDs describe the slave faults with the variable "ErrorCode".

Appendix

‑516‑

Name Diagnosis Code Diagnosis Information

m_
LastError

0x1 Abnormal master communication, with loss of more than 100 consecutive
frames of data

0x2 Some slaves disconnected, number of online slaves inconsistent with
configured value

0x3 Abnormal DC clock, reference clock remaining unchanged

0x4 Failed to open NIC

0x5 Failed to open redundant NIC
0x6 Failed to open redundant NIC. Same NIC configured for the redundancy

function
0x7 Slave initialization error because the slave does not exist during startup or

communication cannot be established
0x8 Configured vendor ID mismatching with the actual one

0x9 Configured product ID mismatching with the actual one, or master failed to
read the product ID from this slave

0xA Configured number of slaves greater than the actual number

0xB Failed to download SDO
0xC SDO download timeout
0xD Slave emergency event error

0xE Failed to download SOE
0xF SOE download timeout
0x10 State machine request from master timeout
0x20 Alias address conflicting because an alias address is assigned to multiple

slaves in the network
0x21 Slave IN/OUT connection error
0x22 The master failed to access EEPROM of the slave during startup

0x30 Continuous frame loss
0x31 Slave port link disconnected

0x32 Occasional loss frame warning

0x64 Failed to switch communication state
0x65 Unknown slave error
0x66 Failed to request slave memory for the mailbox

0x6A Slave firmware version inconsistent with that on EEPROM
0x6B The slave failed to update the firmware

0x75 State machine error
0x76 Unknown state change request received by the slave

0x77 State machine error because the slave does not support the boot mode
0x78 Invalid firmware program

0x79 Invalid mailbox configuration in the slave booth state

0x7A Invalid mailbox configuration in the slave pre-operational state

0x7B Invalid sync manager configuration detected by the slave

0x7C Invalid input data

0x7D Invalid output data
0x7E Synchronization error

0x7F Sync manager watchdog timeout

0x80 Invalid synchronization type

0x81 Invalid output PDO configuration

0x82 Invalid input PDO configuration

0x83 Invalid watchdog configuration

0x84 Starting the slave in cold mode

0x85 Initializing the slave

0x86 Pre-operating the slave

0x87 Operating the slave securely

0x88 Invalid input mapping because the slave does not support input PDO
configuration

Appendix

‑517‑

Name Diagnosis Code Diagnosis Information

m_
LastError

0x89 Invalid output mapping because the slave does not support output PDO
configuration

0x8A Inconsistent slave settings

0x8B Incorrect mode because the slave does not support the free mode
0x8C Incorrect mode because the slave does not support the synchronous mode

0x8E Incorrect parameter configuration because the slave needs to run in three
buffer modes in free mode

0x8F Invalid input and output
0x90 DC synchronization error. The Sync0 watchdog times out in the slave DC

mode.
0x91 DC synchronization error. No Sync0 interrupt signal is detected when the

slave mode is switched from safe mode to running mode.

0x92 DC synchronization error. The slave synchronization period is too small for the
slave address ({Addr}).

0x94 Invalid DC synchronization configuration

0x95 Invalid DC latch configuration

0x96 PLL error
0x97 Invalid DC
0x98 DC timeout
0x99 Invalid synchronization cycle period

0x9A Incorrect Sync0 configuration. The slave Sync0 period is out of the range.

0x9B Incorrect Sync1 configuration. The slave Sync1 period is out of the range.

0xA5 Slave MBX_AOE error
0xA6 Slave MBX_EOE error
0xA7 Slave MBX_COE error
0xA8 Slave MBX_FOE error
0xA9 Slave MBX_SOE error
0xB3 Slave MBX_VOE error
0xB4 Failed to access the EEPROM address
0xB5 Slave EEPROM error
0xB6 External slave hardware unready

0xC4 Slave already restarted locally

0xD4 Inconsistency between the configuration of the slave coupler mounted
module and the actual configuration

ErrorCode

0X08 Mismatching vendor ID

0X09 Mismatching product

0X20 Alias address conflict
0X21 IN/OUT reversing fault

0X22 EEPROM access failure
0X30 Continuous frame loss
0X31 Slave OUT port link disconnected
0X32 Occasional frame loss
0X64 Failed to switch communication state

Appendix

‑518‑

9.8.8 Axis Diagnosis Code

Diagnosis Code Diagnosis Information

0x1 Drive bus communication fault
0x2 Drive fault
0x3 Bus DC synchronization loss

0xA Software limit exceeded
0xB Hardware limit exceeded
0xC Axis position out of the maximum allowable range in linear mode

0xD Fast emergency stop or pause function not supported by drive

0xE None
0xF None
0x10 Deviation between target position and actual position out of the lag limit

0x11 Drive homing fault

0x12 None
0x14 Motion control function block executed while the axis is not enabled
0x15 Function block execution failed because an unsupported mode is detected
0x19 Logic axis operation not supported by the function block

0x1B None
0x1E Function block in execution not called during motion

0x1F Incorrect input parameter axis type of the function block

0x20 Axis instance changed during function block execution

0x21 Interrupt enabled during function block execution

0x22 Axis state not meeting the PLCopen state machine requirements when the
function block is triggered

0x23 Drive failed during axis moving

0x28 Virtual axis velocity exceeding the limit

0x29 Virtual axis acceleration rate exceeding the limit

0x2A Virtual axis deceleration rate exceeding the limit

0x32 Incorrect input homing parameter of host controller

0x33 No hardware limit configured for host controller homing

0x3C File read-write cache channel used up and handle that can be registered
being empty

0x41 SDO multi-channel communication initialization failed because no activated
app is obtained

0x42 Invalid IEC task handle
0x43 Too many tasks in the SDO multi-channel

0x44 SDO multi-channel underlying interface call error

0x45 None
0x46 Current control mode not supported by the function block or drive

0x47 Control mode failed to be changed because the axis is in a specific state
when the function block is triggered

0x48 Control mode switchover interrupted

0x4B Instance failed to run because the current control mode is not synchronous
torque

0x50 Function block failed to reset the axis
0x51 Initialization failed when the function block resets the axis
0x55 Incorrect axis type input by the function block

0x56 Invalid input parameter of the function block

Appendix

‑519‑

Diagnosis Code Diagnosis Information

0x5A Input parameter of the function block being zero

0x5B Function block execution failed because the drive is enabled
0x5C Invalid cycle of the rotary axis

0x5D Rotation position cycle not an integer

0x6E Task cycle time set to 0
0x78 No function block error that can be reset
0x79 No response to the drive reset request

0x7A Drive fault failed to be reset
0x7B Drive response timed out during reset

0x7C Bus communication error failed to be reset
0x82 Unknown parameter input by the function block

0x83 An error occurred when the function block reads the drive parameters
0x84 Input parameter of the function block not in the mapping table

0x85 Internal data conversion error of the function block
0x8C Unknown parameter input by the function block

0x8D An error occurred when the function block writes the drive parameters
0x8E Input parameter of the function block not in the mapping table

0x8F Internal data conversion error of the function block
0xAA Axis not in the standstill state
0xAB Homing instruction failed to write parameters

0xAC No response when the homing instruction reads parameters

0xAD None
0xAE Axis in the ErrorStop state during homing

0xB4 Stop function block aborted during stop

0xB5 Invalid input deceleration rate of the stop function block

0xB6 Unavailable when the direction is shortest
0xB7 Axis in the ErrorStop state
0xB8 Stop function block being executed not called in the bus cycle

0xB9 Function block execution in the Stopping state

0xC8 Task cycle time set to 0

0xC9 Invalid input velocity acceleration rate of the function block

0xCA Invalid direction parameter of the function block
0xE2 Invalid input velocity acceleration rate of the function block

0xE3 Invalid direction parameter of the function block

0xFB Invalid input velocity acceleration rate of the function block

0xFC Invalid direction parameter of the function block
0x114 Invalid input velocity acceleration rate of the function block

0x115 Invalid direction parameter of the function block
0x116 Invalid execution sequence of the function block

0x12C None
0x12D Invalid input velocity acceleration rate of the function block

0x12E Input direction parameter of the function block not supported
0x145 Invalid input ArraySize of the function block

0x146 Invalid input time parameter of the function block

0x15E Invalid input ArraySize of the function block
0x15F Invalid input time parameter of the function block

Appendix

‑520‑

Diagnosis Code Diagnosis Information

0x177 Invalid input ArraySize of the function block

0x178 Invalid input time parameter of the function block
0x190 Probe channel being occupied

0x191 The window probe function not supported by the drive

0x192 Probe communication error
0x19A Probe cannot be terminated
0x1AA Invalid input velocity acceleration rate of the function block
0x1AB Invalid input direction parameter of the function block

0x1C3 Invalid input velocity acceleration rate of the function block

0x1C4 Invalid input direction parameter of the function block
0x1C5 Input direction parameter of the function block not supported
0x1DB Function block execution must be in the standstill or power_off state

0x1DC Invalid input velocity acceleration rate of the function block

0x258 No tappet in the cam table
0x259 The tappet number set to a too large value

0x25A Over 32 activated tappet operations in one cam table

0x271 Cam table being empty

0x272 The master axis location in the cam table exceeding the cam cycle range

0x273 No velocity and acceleration rate input for cam dynamic coupling

0x274 Cam key point exceeding the range

0x275 To many tappets activated in one cycle

0x280 Input cam type of the function block not supported

0x2A3 Input gear ratio denominator being 0

0x2A4 Invalid input acceleration rate
0x2A5 Invalid input deceleration rate
0x2A6 Master axis enable state changed

0x2A7 Invalid input parameter Jerk of the function block
0x2D5 Invalid input velocity acceleration rate of the function block

0x2D6 Axis rotation cycle being zero

0x2EE Input non-cam table structure type parameter

0x2EF Cam table key point not in the master range

0x2F0 Master axis start value of the cam table greater than the end value

0x2F1 Invalid master axis location in the cam table
0x2F2 Invalid slave axis location in the cam table
0x307 Master axis direction changed

0x308 Reversion of the slave axis unable to be avoided
0x309 Input parameter of the function block not supporting linear axis

0x30A The master start distance in the Buffered mode must be 0
0x30B Motion synchronization unable to be enabled

0x320 Too large compensation clearance

0x339 Path generation internal error due to algorithm convergence failure

0x33A Path generation internal error due to invalid parameter value

0x33B Path generation internal error due to no results for axis calculations

0x33C Path generation internal error due to decrease in the duration of the lower
limit

Appendix

‑521‑

Diagnosis Code Diagnosis Information

0x33D Path generation internal error due to no common duration detected by
related axes

0x33E Path generation internal error due to invalid result interval

0x33F More phase parameters required to generate S-shaped velocity profile

0x340 Path generation internal error

0x352 Function block execution axis not in the standstill or power_off state
0x353 Invalid input parameters of the function block

0x354 Function block execution axis not in the standstill or power_off state

0x355 Invalid input position mode and cycle of the function block

0x356 Function block input axis not a virtual axis
0x79F Previous motion in motion cache not supporting Blending

0x7A0 Previous motion in motion cache not supporting BufferMode

0x7A1 Previous cache instruction not activated and called in the current cycle
0x7A2 Axis motion not taken over by any function block

0x7A3 Unsupported BufferMode parameter input

0x7A4 An error occurred in the previous motion in the motion cache
0x7A5 Function block instance failed to be added again because it is already in the

motion cache queue
0x4E20 Drive DC clock not synchronized

0x4E21 Drive not in OP mode
0x4E22 Failed to wait for DC synchronization during startup

0x4E23 Drive scaling ratio configured to 0

0x4E24 SMC_Basic version too low
0x4E25 No SoftMotion license
0x4E26 No activated app detected

0x4E27 Axis device disabled
0x4E28 No axis device found
0x4E29 Current axis and logical axis not in the same task

0x4E2A Failed to get axis background configuration parameters

0x4E2B Invalid device type

0x4E2C Task cycle set too large

0x4E2D Failed to get axis mapping parameters

0x5015 No response from the slave when the torque limit instruction reads/writes
parameters from/to the servo

0x5016 Timeout occurred when the torque limit instruction reads/writes parameters
from/to the servo

0x501F No response from the slave when reading the digit input

0x5020 Digital input reading timed out

0x5028 Failed to change from the torque control mode to the position control mode

0x5032 Input slope or velocity exceeding the allowable range during torque
instruction execution

0x5033 Runaway occurred in torque mode

0x5034 Invalid superposition in torque mode
0x5035 No maximum profile velocity PDO configured in the torque instruction

0x5036 Desired torque PDO not configured in torque instruction

0x503C Axis state error during deviation reset instruction execution

Appendix

‑522‑

Diagnosis Code Diagnosis Information

0x503D Deviation reset instruction unable to be executed in stopping state

0x503E Deviation reset instruction execution interrupted
0x5046 Failed to change from the torque control mode to the position control mode

0x5050 Incorrect abort superposition instruction execution sequence, or no
superposition instruction in the program

0x5051 Invalid input variable in the abort superposition instruction
0x505A Insufficient probe PDO
0x505B Exceeding the interrupt positioning instruction cache mode range

0x505C Upper boundary of the interrupt positioning instruction greater than the
lower boundary in linear mode

0x505D Probe already occupied

0x505E An error occurred during absolute, relative, or speed control

0x505F An error occurred during interrupt positioning

0x5060 Probe not triggered

0x5061 Difference between upper and lower boundaries of the interrupt positioning
instruction in linear mode exceeding the rotation cycle

0x5062 Invalid input feed distance
0x5063 Invalid input variable in the interrupt positioning instruction

0x5064 Master axis in the incorrect state machine
0x5065 Slave axis in the incorrect state machine
0x5066 Master axis in the incorrect control mode
0x5067 Slave axis in the incorrect control mode
0x5068 The sum of acceleration and deceleration segments cannot be greater than 1

0x5069 Acceleration/deceleration input exceeding the limit

0x506A Unreasonable master axis displacement input
0x506B Unreasonable slave axis displacement input
0x506C Waiting not allowed after repeated triggering

0x506D Master axis motion direction changed during superposition motion

0x506E Incorrect slave axis superposition displacement direction in the
synchronization superposition instruction

0x506F The curve type must not exceed the selectable range

0x5078 Single-axis instructions not allowed for a single axis in an axis group

0x754E SDO read/write error
0x754F SDO read/write error

9.9 Synchronizing the Project Information

9.9.1 Overview

You can synchronize the project data with the downloaded data to ensure accurate login to the PLC.

Project information synchronization is used to solve the following unexpected download problems:

● Only the project file is copied.
● One project debugs multiple PLCs.

Appendix

‑523‑

● The programming and debugging operations are performed by multiple people.
● The project data must be downloaded before clearing all the project data.

9.9.2 Synchronizing the Downloaded Project Information Automatically

Choose "Project" > "Project Settings" > "Download" > "Download project information", and download
the user program. Then, the system automatically starts to synchronize the project information, during
which, the status bar "Sync Project information" flashes in orange.

Double-click the status bar "Sync Project information". The current synchronization process is
displayed, as shown in the following figure.

If you log out before project information synchronization is completed, the project information
synchronization state box is displayed, as shown in the following figure.

● After synchronization is completed, the "Sync Project information" page is automatically closed
and login is exited.

● If you click "X", the page is closed but logout is canceled.
● If you click "Cancel sync", the synchronization project is interrupted, the state page is closed, and

the system is logged out.
● If you click "Disable sync", the "Sync Project information" function of the current project is

disabled, the state page is closed, and the system is logged out.

Appendix

‑524‑

9.9.3 Synchronizing the Downloaded Project Information Manually

Choose "Online" > "Sync Project information" to synchronize the project information. This command
can be executed only after you have logged into the PLC.

After this command is executed, the synchronization state is displayed, as shown in the following
figure.

In the manual mode, the project information is automatically downloaded no matter whether the
"Sync Project information" function is enabled for the project.

9.9.4 Special Notes on Synchronizing the Project Information

● If the CPU load ratio is greater than 85% during normal running, it may take a long time to
synchronize the project information.

● If you want to debug a single PLC multiple times, disable the synchronization function first and then
manually synchronize the project information after debugging.

9.10 SVN Function

9.10.1 Overview

This function is supported by InoProShop V1.8.0.0 and later versions.

InoProShop allows you to add project files to SVN libraries for management, such as importing project
files to SVN libraries or exporting project files from SVN libraries to InoProShop.

Before using the SVN function, you need to set up the SVN environment according to the following
installation and configuration procedure.

Appendix

‑525‑

9.10.2 Creation of an SVN Server and SVN Library

For how to create an SVN server (VisualSVN Server) and SVN library (SVN Repository), access the
CODESYS official website and download the CODESYS_SVN guide or contact the company's IT
department for support.

9.10.3 Installation of the CodeMeter Runtime Environment and SVN Plug-in

1. Install the CodeMeter runtime environment.

a. Unzip the InoProShop installation package on your local PC, double-click the
"InstallCodeMeterRuntime.bat" batch file in the "CodeMeterRuntime" folder. The program will
automatically recognize the local PC system type (32-bit or 64-bit) and install it silently.

b. Double-click the "ImportLicenses.bat" batch file in the "CodeMeter_WiBu" folder to open the
"CodeMeter Control Center" page.

c. Drag the "3S-Smart_Software_Solutions_Softlicenses.wbb", "CmFirm.wbc", "Patch_Protection_
Only.wbb", and "Patch_ProtectionUpdateFile.WibuCmRaU" files from the "CodeMeter_WiBu"
folder to the "License" tab page for license.

2. Install the SVN plug-in.

a. In the menu bar, choose "Tools" > "Package Manager".

www.codesys.com

Appendix

‑526‑

b. On the "Package Manager" page displayed, click "Install". In the dialog box displayed, select the
InoProShop installation package, unzip it, select the SVN plug-in package "CODESYS SVN 4.2.5.1.
package" from the folder, and then click "Open".

c. In the wizard dialog box displayed, select "Complete setup" and "CODESYS V3.5 SP11 Pathc 1" and
follow the wizard prompts.
After the plug-in is installed, the plug-in package information is displayed in the "currently
installed packages" list.

d. Close InoProShop.
e. In the InoProShop installation directory "..\Inovance Control\InoProShop1.8.0.0\CODESYS

\Common", double-click "InstallSVN.bat" batch file, and configure the SVN plug-in. After successful
execution, the following figure is displayed.

Appendix

‑527‑

f. Close the batch command window and re-open InoProShop.
g. Customize the SVN function through the menu bar.

1). In the menu bar, choose "Tools" > "Customize".

2). On the "Customize" page displayed, click "Load". In the dialog box displayed, select the
InoProShop installation package, unzip it, and then select the "Menu tools bar SVN
configuration.opt.menu" from the folder.

9.10.4 Acquisition of the Authorization Code and Offline Authorization

Before using the SVN function, you must get the authorization code and perform offline authorization.

Get the authorization code

The following describes how to get the authorization code of "CODESYS Professional Developer Edition
(Demo)", which is valid for 30 days. For longer license days, please purchase and get the authorization
code of "CODESYS Professional Developer Edition".

1. Log in to the CODESYS Store and create an account.
2. On the homepage of the CODESYS Store, enter "CODESYS Professional Developer Edition (Demo)" in

the search box, add it to your shopping cart, and place an order.

https://store.codesys.com/en/

Appendix

‑528‑

The authorization code is displayed on the page after the order is placed.

Offline authorization

1. In the menu bar of InoProShop, choose "Tools" > "License Management".

2. On the "License Manager" page displayed, click "Install Licenses". On the page displayed, select
"Request license" and then click "Next".

Appendix

‑529‑

3. Select "5000304" from the drop-down list of "Software vendor". Click "..." next to "Context file",
select the offline authorization file generation directory, and click "Finish". The offline request
authorization file "*.WibuCmRaC" is generated.

4. Log in to the CODESYS License Center, input the obtained authorization code, and click "NEXT".

5. Click "ACTIVATE LICENSES" to activate the license.

6. Select the license container type "CmActLicense" and authorize it on the same PC.

http://license.codesys.com

Appendix

‑530‑

7. Select "File-based license transfer".

8. Click "Browse..." and select the offline request authorization file "*.WibuCmRaC" generated in step 3.

9. Click "DOWNLOAD LICENSE UPDATE FILE NOW" to download the generated offline request
authorization file "*.WibuCmRaU" and save the file to a local PC.

Appendix

‑531‑

10. Repeat step 1, on the page displayed, click "Install Licenses". On the page displayed, select
"Request license" and then click "Next".

11. Click "...". In the dialog box displayed, select the offline request authorization file "*.WibuCmRaU"
generated in step 9 and then click "Finish".

12. (Optional) You can create and upload receipts to the licensing company as needed.

a. On the "CodeMeter Control Center" page, click "License Updates" and select "Create Receipt".

Appendix

‑532‑

b. Import the receipt to the CODESYS website.

9.10.5 SVN Operator Guidance

This section describes how to operate common SVN functions. For operations of more functions, visit
the CODESYS official website and download the CODESYS_SVN guide.

Set the SVN

● Set SVN settings in "Options"

1. In the menu bar, choose "Tools" > "Options". The "Options" dialog box is displayed.

2. Click "SVN Settings". For detailed settings, see the CODESYS_SVN guide.

● Set SVN settings in "Project Settings"

1. In the toolbar, choose "File" > "Page Settings". The "Project Settings" dialog box is displayed.

www.codesys.com

Appendix

‑533‑

2. Click "SVN Settings". For detailed settings, see the CODESYS_SVN guide.

Import a project to an SVN library branch

In the menu bar, choose "Project" > "SVN" > "Import Project to Subversion" to import a project to an
SVN library branch.

After the project is imported to the SVN library branch, the SVN tab is displayed in the device tree.

Appendix

‑534‑

Export a project from an SVN library branch to a local PC

1. In the menu bar, choose "Project" > "SVN" > "Checkout" to export a project from an SVN library
branch to a local PC.

2. In the dialog box displayed, set the SVN library branch path, the name and path of the local folder in
which you want to save the project information, and then click "OK".

Appendix

‑535‑

Compare the local project file with the SVN project file

In the device tree, right-click the project file to be compared. In the shortcut menu displayed, choose
"SVN" > "Compare" to compare the local project file with the SVN project file.

9.10.6 Uninstallation of the SVN Plug-in

1. Close InoProShop.
2. In the InoProShop installation directory "..\Inovance Control\InoProShop1.8.0.0\CODESYS

\Common", double-click "UninstallSVN.bat" batch file to uninstall the SVN plug-in. After the plug-in
is uninstalled, the following figure is displayed.

Appendix

‑536‑

3. Close the batch command window and re-open InoProShop.
4. In the menu bar of InoProShop, choose "Tools" > "Package Manager". The "Package Manager" page

is displayed.

5. Select the SVN plug-in, click "Uninstall", and uninstall the plug-in as prompted.
6. After the plug-in is uninstalled, close InoProShop.

19010980B06

	Preface
	1 Product Information
	1.1 Overview
	1.1.1 Product Information
	1.1.2 Product Configuration and Module Description
	1.1.3 System Application Process

	1.2 Overview of InoProShop
	1.2.1 Brief Introduction
	1.2.2 Connection Between InoProShop and Hardware
	1.2.3 Acquisition and Installation of the Software
	1.2.4 Installation Procedure
	1.2.5 Uninstallation of InoProShop

	2 Quick Start
	2.1 Programming Environment Launching
	2.2 Typical Procedure for Writing a User Program
	2.2.1 Overview
	2.2.2 User System Configuration Operations
	2.2.3 User Program Writing Operations
	2.2.4 Linkage Configuration Between User Program Variables and Ports
	2.2.5 Configuration of Execution Mode and Operation Cycle of User Program
	2.2.6 Compiling, Login, and Download of User Program

	2.3 Writing a Marquee Sample Project with InoProShop
	2.4 How to Log in to the Main Module
	2.4.1 Prerequisites and Operations of Main Module Login
	2.4.2 Scanning Medium-Sized PLC in InoProShop
	2.4.3 Solution to Device Scanning Failure

	3 Basic Functions
	3.1 Page Navigation
	3.2 Compiling a Command
	3.3 Resources List
	3.3.1 Overview
	3.3.2 Features

	3.4 Symbol Configuration
	3.5 Cross References
	3.6 Watch List
	3.7 Going to a Lower Level
	3.8 Project Version Upgrade
	3.9 Project Safety Management
	3.9.1 Project File Encryption
	3.9.2 Project User Authorization Management

	3.10 Adding an Object Through Application

	4 Network Configuration
	4.1 Device Configuration
	4.1.1 Device Configuration
	4.1.2 Network Configuration
	4.1.3 Hardware Configuration
	4.1.4 Device Tree Operations
	4.1.5 Configuration Compiling Error Locating

	4.2 CPU Configuration
	4.2.1 Overview
	4.2.2 General CPU Configuration Procedure
	4.2.3 CPU Parameter Configuration
	4.2.4 I/O Module Configuration
	4.2.5 High-Speed I/O Configuration
	4.2.6 I/O Mapping Parameters

	4.3 Expansion Card Configuration
	4.4 EtherCAT Configuration
	4.4.1 Overview
	4.4.2 Common Functions
	4.4.3 EtherCAT Master
	4.4.4 EtherCAT Slave
	4.4.5 CiA402 Axis
	4.4.6 Virtual Axis
	4.4.7 GR10-4PME Positioning Module
	4.4.8 GR10-2HCE counter module
	4.4.9 Splitter
	4.4.10 I/O Module
	4.4.11 Library (Implicit Variables)

	4.5 Modbus Device Editor
	4.5.1 Serial Hardware Port
	4.5.2 Network Configuration
	4.5.3 Modbus Master Configuration
	4.5.4 Modbus Master Communication Configuration
	4.5.5 Modbus Master Broadcast Configuration
	4.5.6 Modbus Slave Configuration
	4.5.7 Modbus Device Diagnosis
	4.5.8 Common Errors of Modbus
	4.5.9 Modbus Variable Addressing
	4.5.10 Modbus Communication Frame Format

	4.6 Application of Free Protocols on Serial Ports
	4.6.1 Overview
	4.6.2 Serial Port Configuration
	4.6.3 Communication Configuration
	4.6.4 Registers for Data Sending and Receiving
	4.6.5 Communication Tests Through the Serial Port Commissioning Assistant

	4.7 Modbus TCP Device Editor
	4.7.1 Overview
	4.7.2 Modbus TCP Master Configuration
	4.7.3 Modbus TCP Master Communication Configuration
	4.7.4 Modbus TCP Slave Configuration
	4.7.5 Modbus TCP Device Diagnosis
	4.7.6 Common Errors of Modbus TCP
	4.7.7 Modbus TCP Communication Frame Format

	4.8 CANopen Network
	4.8.1 Overview of CANopen Communication
	4.8.2 CANopen Master Configuration
	4.8.3 CANopen Slave Configuration
	4.8.4 CANopen Module
	4.8.5 CANopen Parameter Configuration
	4.8.6 Programming Interface

	4.9 CANlink 3.0 Configuration Editor
	4.9.1 Overview
	4.9.2 CANlink3_en.0 网络组成
	4.9.3 General Process of Using CANlink
	4.9.4 CANlink Network Configuration
	4.9.5 Network Management
	4.9.6 Send Configuration
	4.9.7 Receive Configuration
	4.9.8 Synchronous Write by the Master
	4.9.9 Local Slave Configuration
	4.9.10 设备接入CANlink3_en.0 网络

	4.10 CAN Free Protocol
	4.10.1 Overview
	4.10.2 Network Configuration
	4.10.3 CAN Free Protocol Configuration
	4.10.4 CANBus Library
	4.10.4.1 Enumeration Types of CANBus Library
	4.10.4.2 Structure Types of CANBus Library
	4.10.4.3 CANBus Function Blocks
	4.10.4.4 Error Codes of CANBus Function Blocks
	4.10.4.5 Example of Using CANBus Function Blocks

	4.11 EtherNet/IP Communication
	4.11.1 Overview of the Protocol
	4.11.2 EtherNet/IP Communication Specifications
	4.11.3 Configuration of PLC as the EtherNet/IP Master
	4.11.4 Programming Example for Configuration of PLC as the EtherNet/IP Master
	4.11.5 Configuration of PLC as the EtherNet/IP Slave
	4.11.6 Programming Example for Configuration of PLC as the EtherNet/IP Slave
	4.11.7 Diagnosis of EtherNet/IP Communication State

	4.12 PROFIBUS-DP Bus
	4.12.1 Overview
	4.12.2 General Process of Using PROFIBUS-DP
	4.12.3 PROFIBUS-DP Master Configuration
	4.12.4 PROFIBUS-DP Slave Configuration
	4.12.5 PROFIBUS-DP Module

	4.13 HMI Communication Configuration
	4.13.1 Communication Configuration
	4.13.2 Communication Example
	4.13.3 Common Faults

	5 Programming Basics
	5.1 Overview
	5.2 Direct Address
	5.2.1 Syntax
	5.2.2 PLC Direct Address Storage Area

	5.3 Variable
	5.3.1 Overview
	5.3.2 Variable Definition
	5.3.3 Variable Type
	5.3.4 Variable Import and Export

	5.4 Constants
	5.5 Persistent Variable
	5.5.1 Overview
	5.5.2 Variable Definition
	5.5.3 Persistent Variable Table
	5.5.4 Persistent Rules
	5.5.5 Persistent Mode
	5.5.6 Address Assignment
	5.5.7 Recipe Operations
	5.5.8 Description

	6 Programming Languages
	6.1 Programming Languages Supported by InoProShop
	6.2 Structured Text (ST)
	6.2.1 Overview
	6.2.2 Expressions
	6.2.3 ST Instruction
	6.2.4 ST Editor
	6.2.4.1 ST Tool Kit
	6.2.4.2 Intelligent Input
	6.2.4.3 Folding and Indenting Functions
	6.2.4.4 Page Colors of IEC Text Editor

	6.3 Ladder Diagram (LD)
	6.3.1 Overview
	6.3.2 LD Elements
	6.3.3 LD Editor Options
	6.3.4 Element Selection
	6.3.5 Standard Edit Commands
	6.3.6 LD Menu Commands
	6.3.7 Single-Key Command
	6.3.8 Line Drawing Function
	6.3.9 Drag and Drop
	6.3.10 Graphic Display Tool
	6.3.11 LD Debugging
	6.3.12 LD Data Update

	7 Diagnosis
	7.1 Overview
	7.2 Configuration Diagnosis
	7.2.1 Overview
	7.2.2 Network Configuration Diagnosis
	7.2.3 Hardware Configuration Diagnosis

	7.3 Fault Diagnosis
	7.4 Online Diagnosis
	7.4.1 Overview
	7.4.2 Diagnosis Procedure
	7.4.3 Scanning Devices
	7.4.4 Logging in to PLC

	7.5 List of Device Self-Diagnosis Information
	7.5.1 CPU Diagnosis
	7.5.2 EtherCAT Diagnosis
	7.5.3 I/O Diagnosis
	7.5.4 PROFIBUS-DP Diagnosis
	7.5.5 Modbus RTU Diagnosis
	7.5.6 Modbus TCP Diagnosis
	7.5.7 CANlink Diagnosis

	7.6 Diagnosis Programming Interface
	7.6.1 Overview
	7.6.2 Overview
	7.6.3 CPU Diagnosis Programming Interface
	7.6.4 CANopen Diagnosis Programming Interface
	7.6.5 PROFIBUS-DP Diagnosis Programming Interface
	7.6.6 CANlink Diagnosis Programming Interface
	7.6.7 Modbus Diagnosis Programming Interface
	7.6.8 Modbus TCP Diagnosis Programming Interface
	7.6.9 EtherCAT Diagnosis Programming Interface
	7.6.10 CPU Stop Control
	7.6.11 Axis Diagnosis

	8 FAQ
	8.1 CPU Utilization Too High
	8.1.1 CPU Usage Definition
	8.1.2 Analysis Procedure
	8.1.3 Common Optimization Methods

	8.2 Abnormal PLC Running
	8.2.1 Overview
	8.2.2 Symptoms
	8.2.3 Cause Analysis and Solutions

	8.3 Failure to Obtain Folders

	9 Appendix
	9.1 Communication Protocols for Communication Ports
	9.1.1 Overview
	9.1.2 Mini-USB Port and Built-in Communication Protocol
	9.1.3 COM Communication Ports and Built-in Protocols
	9.1.4 CANopen Communication Protocol
	9.1.5 CANlink Communication Protocol
	9.1.6 Ethernet Ports and Communication Protocols
	9.1.7 EtherCAT Port and Communication Protocol
	9.1.8 High-Speed I/O Interface
	9.1.9 Mini-SD Card Slot
	9.1.10 Local Bus Expansion Interface
	9.1.11 PROFIBUS-DP Port

	9.2 Soft Elements
	9.3 Cheat Sheet of Basic Instructions
	9.4 PLC Programming Software Upgrade
	9.4.1 Version
	9.4.2 Upgrade Method
	9.4.3 FAQs

	9.5 PLC User Program Upgrade
	9.5.1 Upgrade Using the InoProShop
	9.5.2 Upgrade Using an SD Card

	9.6 AM400 or AM600 High-Speed I/O Wiring
	9.7 High-Speed I/O Compatibility
	9.7.1 Introduction to Earlier and Latest UIs
	9.7.2 High-Speed I/O Diagnosis

	9.8 Diagnosis Code and Diagnosis Information
	9.8.1 Overview
	9.8.2 CPU Diagnosis Code
	9.8.3 I/O Module Diagnosis Code
	9.8.4 PROFIBUS-DP Diagnosis Code
	9.8.5 CANlink Diagnosis Code
	9.8.6 Modbus Diagnosis Code
	9.8.7 EtherCAT Diagnosis Code
	9.8.8 Axis Diagnosis Code

	9.9 Synchronizing the Project Information
	9.9.1 Overview
	9.9.2 Synchronizing the Downloaded Project Information Automatically
	9.9.3 Synchronizing the Downloaded Project Information Manually
	9.9.4 Special Notes on Synchronizing the Project Information

	9.10 SVN Function
	9.10.1 Overview
	9.10.2 Creation of an SVN Server and SVN Library
	9.10.3 Installation of the CodeMeter Runtime Environment and SVN Plug-in
	9.10.4 Acquisition of the Authorization Code and Offline Authorization
	9.10.5 SVN Operator Guidance
	9.10.6 Uninstallation of the SVN Plug-in

